
J Grid Computing (2012) 10:367–393
DOI 10.1007/s10723-012-9222-7

A Distributed Workflow Management System with Case
Study of Real-life Scientific Applications on Grids

Qishi Wu · Mengxia Zhu · Yi Gu ·
Patrick Brown · Xukang Lu ·
Wuyin Lin · Yangang Liu

Received: 30 September 2011 / Accepted: 6 July 2012 / Published online: 16 August 2012
© Springer Science+Business Media B.V. 2012

Abstract Next-generation scientific applications
feature complex workflows comprised of many com-
puting modules with intricate inter-module de-
pendencies. Supporting such scientific workflows
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in wide-area networks especially Grids and op-
timizing their performance are crucial to the
success of collaborative scientific discovery. We
develop a Scientific Workflow Automation and
Management Platform (SWAMP), which enables
scientists to conveniently assemble, execute, mon-
itor, control, and steer computing workflows
in distributed environments via a unified web-
based user interface. The SWAMP architecture is
built entirely on a seamless composition of web
services: the functionalities of its own are pro-
vided and its interactions with other tools or sys-
tems are enabled through web services for easy
access over standard Internet protocols while be-
ing independent of different platforms and pro-
gramming languages. SWAMP also incorporates
a class of efficient workflow mapping schemes
to achieve optimal end-to-end performance based
on rigorous performance modeling and algorithm
design. The performance superiority of SWAMP
over existing workflow mapping schemes is jus-
tified by extensive simulations, and the system
efficacy is illustrated by large-scale experiments
on real-life scientific workflows for climate model-
ing through effective system implementation, de-
ployment, and testing on the Open Science Grid.
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1 Introduction

Next-generation e-science features complex
workflows comprised of many computing
modules (also referred to as activities, stages,
jobs, transformations, or subtasks in different
contexts) with intricate inter-module execution
dependencies. The execution of such scientific
workflows typically involves the invocation of
a large number and wide variety of distributed
programs or tools for collaborative data analysis
and knowledge discovery [60], and also requires
the use of a wide range of expensive and powerful
resources including supercomputers, PC clusters,
high-end workstations, experimental facilities,
large-screen display devices, high-performance
network infrastructures, and massive storage
systems. Typically, these resources are deployed
at various research institutes and national labo-
ratories, and are provided to users through wide-
area network connections that may span
through several countries [10, 19, 36, 61], hence
inevitably exhibiting an inherent dynamic nature
in their availability, reliability, capacity, and
stability.

As new computing technologies and network-
ing services rapidly emerge, enabling functional-
ities are progressing at an ever-increasing pace,
unfortunately, so are the dynamics, scale, hetero-
geneity, and complexity of the networked comput-
ing environment. Supporting large-scale scientific
workflows in distributed heterogeneous network
environments is crucial to ensuring the success
of mission-critical scientific applications and max-
imizing the utilization of massively distributed
computing and networking resources. However,
application users, who are primarily domain
experts, oftentimes need to manually exploit
available resources, and configure and run their
computing tasks over networks using software
tools they are familiar with based on their own
empirical studies, inevitably leading to unsatisfac-
tory performance in such diverse and dynamic
environments.

We propose to develop a Scientific Work-
flow Automation and Management Platform

(SWAMP1) to support the distributed execu-
tion and management of large-scale scientific
workflows in heterogeneous network environ-
ments. Compared to the previous work in [76], we
have made significant and substantial changes to
both the design and implementation of the system:

– The entire SWAMP architecture has been
completely redesigned and re-implemented
using distributed web services for a seam-
less integration instead of individual software
packages installed on the user site.

– The workflow execution mode has been
changed from Condor’s default centralized
data forwarding mechanism to the distributed
direct inter-module data transfer using Stork
for improved end-to-end performance.

– The previous system employs an extremely
simplified modeling method that uses the
processor frequency to represent the node’s
processing power; while the new system takes
a rigorous statistical approach that considers
a combination of both hardware and software
properties to model and predict the perfor-
mance of various types of scientific computa-
tions with a higher accuracy.

– In addition to the algorithm for delay min-
imization in unitary processing applications,
the workflow mapping component in the new
system has incorporated a set of specially-
designed algorithms for throughput maximiza-
tion in streaming applications.

Within SWAMP, a scientific workflow is mod-
eled as a Directed Acyclic Graph (DAG) where
each vertex represents a computing module
and each directed edge represents the execu-
tion dependency between two adjacent modules.
Each module is considered as an autonomous

1A preliminary version of the SWAMP development [76]
was published in Proc. of the 6th Int. Workshop on Sys.
Man. Tech., Proc., and Serv., in conjunction with IPDPS,
Atlanta, GA, April 19, 2010.
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computing agent: it receives data as input from
one or more preceding modules, executes a pre-
defined processing routine on the aggregate input
data, and sends the results as output to one or
more succeeding modules. We assume that nei-
ther can a module start execution until all the
required inputs arrive nor send out the results
until the execution is completed on each dataset.
The current version of SWAMP integrates a
graphical toolkit based on a unified web interface
for abstract workflow composition, employs Con-
dor/DAGMan [12] for workflow dispatch, and
adopts Stork [64] for direct inter-module data
transfer to realize completely distributed execu-
tion without centralized data forwarding. The goal
of SWAMP is to pool geographically distributed
but Internet connected computing resources to-
gether to enable and accelerate the execution
of computation-intensive scientific workflows in
wide-area networks.

The SWAMP architecture is entirely built on a
seamless composition of web services: the func-
tionalities of its own are provided and its in-
teractions with other tools or systems are facili-
tated through web services for easy access over
standard Internet protocols while being indepen-
dent of different platforms and programming lan-
guages. SWAMP also incorporates a specially-
designed mapping engine that automatically maps
abstract workflows to underlying networks to
achieve Minimum End-to-end Delay (MED) for
unitary (one-time) processing applications and
Maximum Frame Rate (MFR) for streaming ap-
plications based on real-time network measure-
ments and system status monitoring [28, 73]. The
core of this mapping engine consists of a class
of workflow mapping optimization schemes de-
veloped through rigorous performance modeling
and algorithm design. The performance superior-
ity of SWAMP over existing workflow mapping
schemes is justified by extensive simulations, and
the system efficacy is illustrated by large-scale
workflow experiments on a real-life scientific ap-
plication for climate modeling through effective
system implementation, deployment, and testing
on the Open Science Grid [48].

The rest of the paper is organized as follows:
In Section 2, we conduct a survey of related work.
The SWAMP framework and functional compo-
nents are described in Section 3. The performance
modeling and prediction approach is introduced
in Section 4. The workflow mapping algorithms
are presented in Section 5. The system implemen-
tation details and performance evaluations are
provided in Section 6. We conclude our work in
Section 7.

2 Related Work

With the advent of next-generation e-science, a
plethora of frameworks and tools have been dev-
eloped for generating, refining, and executing sci-
entific workflows. Such efforts include P-GRADE
[33], Pegasus [15], Kepler [40], Condor/DAGMan
[12], Taverna [30], Triana [9], Swift [65], Java
CoG Kit [37], Sedna [71], and SWAMP [76].
Each workflow system has its own language, de-
sign suite, and software components, and the sys-
tems vary widely in their execution models and
the kinds of components they coordinate [14].
Some systems attempt to provide general-purpose
workflow functionalities while others are more
geared toward specific applications and are op-
timized to support specific component libraries.
Google’s MapReduce provides a software frame-
work to support distributed computing on clus-
ters of computers [13]. Since its primary goal
is to process large datasets through a partition-
composition approach using the map and reduc-
tion operations, MapReduce does not sufficiently
meet the requirement of distributed scientific
workflows that typically consist of different com-
putational jobs executed in wide-area networks.

Many existing systems support workflow exe-
cution in Grid environments, which provide com-
positional programming and execution models
to enable resource interactions by supplying the
mechanisms to access, aggregate, and manage
the network-based infrastructure of science [32].
Such Grid-based scientific applications include
Large Hadron Collider (LHC) supported by the
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Worldwide LHC Computing Grid (WLCG) [72],
climate modeling supported by the Earth System
Grid (ESG) [20], and NASA’s National Airspace
Simulation supported by the Virtual National
Airspace Simulation (VNAS) Grid [32, 43]. Many
other Grid systems such as Open Science Grid
(OSG) [48], ASKALON [21, 66], TeraGrid, and
GridCOMP (see [17] for a more complete list)
are under rapid development and deployment.
These existing workflow or Grid systems have
a primary design goal to provide services or in-
frastructures for coordinated application interop-
eration, distributed job submission, or large data
transfer, but generally there lacks a comprehen-
sive workflow solution that integrates workflow
mapping schemes to support large-scale scientific
applications for end-to-end performance opti-
mization. Furthermore, most systems using a
batch scheduler are not inherently capable of sup-
porting streaming applications that require com-
putational steering, which is a critical activity in
explorative sciences where the parameter values
of an online simulation or a computing module
must be changed and determined on a realistic
time scale.

Over the years, the workflow mapping prob-
lems in heterogeneous network environments
have been increasingly identified and investigated
by many researchers to facilitate more conve-
nient and comprehensive collaborations among
different institutes and domains across wide-area
networks [6, 8, 16, 31, 55]. Existing workflow
mapping algorithms can be roughly classified into
the following five categories [42, 69]: (i) Graph-
based methods [11, 44]. Among the traditional
graph mapping problems in theoretical aspects of
computing, subgraph isomorphism is known to be
NP-complete while the complexity of graph iso-
morphism still remains open. (ii) List scheduling
techniques, in which the most commonly used is
critical path method [34, 41, 54]. (iii) Clustering al-
gorithms [6, 24], which assume an unlimited num-
ber of processors and thus are not very feasible for
practical use. (iv) Duplication based algorithms
[3, 7, 55], most of which are of a prohibitively high
complexity. (v) Guided random search methods
such as genetic algorithm [4, 70] and simulated
annealing [59], where additional efforts are often

required to determine an appropriate termination
condition and usually there is no performance
guarantee.

Most workflow mapping or task scheduling
problems in Grid environments or multiproces-
sor systems assume complete networks, homoge-
neous resources, and specific mapping constraints.
Our work differs from the above efforts in several
aspects: (i) We investigate the workflow map-
ping problems for both MED and MFR. (ii) We
target computer networks of arbitrary topology
with heterogeneous computer nodes and network
links. (iii) We consider resource sharing among
multiple concurrent module executions on the
node or data transfers over the link. (iv) We em-
ploy a statistical approach to performance mod-
eling and prediction. (v) We build the SWAMP
system on web services for easy access and en-
hanced interoperability across different platforms.
(vi) We implement and integrate our mapping
optimization algorithms into the SWAMP system
and test them with real-life scientific workflows on
Grids.

3 SWAMP System Design

SWAMP enables application users to conveniently
assemble, execute, monitor, and control com-
plex computing workflows in heterogeneous high-
performance network environments. As shown in
Fig. 1, SWAMP provides these services through
the interactions between three main elements:
(a) Kepler Manager, (b) Web Server Manager,
and (c) DAGMan Manager.

Within SWAMP, a user can use either a graph-
ical web interface or the GUI of Kepler to com-
pose abstract workflows. The Kepler Manager
converts the abstract workflow in XML format to
DAG format, and sends these workflow descrip-
tion files including a meta-workflow and a list of
component workflows to the Web Server Man-
ager. A meta-workflow file may contain one com-
ponent workflow with a single dataset or more
with multiple (e.g. time-series) input datasets. The
Web Server provides a visual management inter-
face for workflow selection, dispatch, monitor-
ing, and steering. The user can select a subset of
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Fig. 1 The SWAMP framework: a high-level overview

component workflows of interest, configure their
parameter settings, and dispatch them for execu-
tion through a web browser.

Upon the receival of an abstract workflow
from the Web Server, the DAGMan Manager
invokes the Workflow Mapper to map the abstract
workflow to the real network based on the avail-
ability and capability of computer nodes collected
by the Network and System Information Manage-
ment component. The mapped abstract workflow
is then submitted to Condor or Condor-G, which
extracts executable modules and source datasets
from the workflow repository and composes them
into an executable workflow. The mapped exe-
cutable workflow is dispatched to the network
for execution. Note that Condor/DAGMan has
a default centralized execution model where the
output of each module is sent back to the submit-
ter for forwarding to its succeeding module. This

centralized model may lead to prohibitively heavy
traffic in the network, especially for data-intensive
workflows with many computing modules. We re-
alize a completely distributed execution model by
adopting Stork [64] for direct inter-module data
transfer. The workflow execution status informa-
tion as well as the final results are collected and
sent on the fly to the Web Server Manager for
display on the web page. Based on the displayed
results, the user may reset the value of a command
argument for those steerable computing modules
and re-dispatch them into the network.

Figure 2 shows the SWAMP architecture,
where the main function components are imple-
mented as web services to achieve a seamless in-
tegration, and the solid and dashed arrows denote
data flows and control flows, respectively. More
details of the SWAMP design and implementation
are provided below.
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Fig. 2 The SWAMP
architecture: web
services-based function
components, control and
data flows
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3.1 User Authentication Service

Different computing environments may have dis-
tinct usage policies including authentication and
authorization. The user authentication compo-
nent in SWAMP is designed as a web service to
support a wide variety of security mechanisms
such as Grid security infrastructure (GSI), Ker-
boros, simple login/password, SSL, and so on.

3.2 Workflow Generation Service

In addition to the GUI of Kepler, SWAMP pro-
vides a graphical toolkit for visual construction

of abstract workflows on a unified web interface,
which generates a DAG file and a set of corre-
sponding submit files required by Condor DAG-
Man. As illustrated in Fig. 3, the user can inter-
actively compose complex abstract workflows by
simply dragging, dropping, and connecting mod-
ules and specifying their detailed configurations.
This web interface also supports the creation of
a meta-workflow in XML for easy human inter-
pretation and machine parsing. A meta-workflow
describes a list of component workflows that can
be submitted as a full set, subset, or individually
depending on the needs of the user.

However, it may not be always convenient or
feasible for the user to construct workflows via
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Fig. 3 The web-based workflow generation by dragging, dropping and connecting modules and specifying their detailed
configurations

the graphical toolkit in the web browser for ap-
plications where a large number of modules are
involved, or a collection of workflows need to be
generated by combining the parameters in a par-
ticular way specified by domain experts. SWAMP
provides a workflow generation web service to au-
tomatically generate such workflows. The inputs
to this web service are partial workflow represen-
tations that describe the input files, the executa-
bles (workflow components) and their parame-
ters, as well as the output files produced by these
executables. For example, the workflow structure
and module information specified through the
web interface in Fig. 3 can be directly sent to
the web service for automatic workflow genera-
tion. This service also requests the information
on datasets from the web interface and avail-
able computing resources from the resource and
workflow monitoring service.

The outputs of both interactive and automatic
workflow generations are workflow description
files in XML format. Scientists are also allowed to
customize the workflows by modifying the steer-

able parameters through the web interface after
the workflows are dispatched.

3.3 Workflow Execution Service

The workflow execution component is imple-
mented as a web service, which receives the ab-
stract workflow description files from its client, i.e.
the workflow dispatch component. The workflow
execution service needs to contact resource and
workflow monitoring service to place callback
to the workflow display service for dispatched
workflows. If the workflow execution service fails
to place the callback, it will prevent the workflow
from dispatching. Otherwise, the workflow execu-
tion service proceeds to perform workflow map-
ping, generates the desired workflow and job de-
scription files, and dispatches the workflows to
the Condor environment. The workflow execution
service serves as a portal to the Condor batch
system and its main goal is to simplify the process
of real workflow submission and execution.
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Fig. 4 Condor pool architecture

SWAMP allows users to submit jobs by using
a specified repository that stores all input data as
well as existing output data. A job can also be
submitted using a shared file system to directly
access input and output files. In the latter case,
the job or module must be able to access the data
files from any machine, on which it is deployed
through either NFS or AFS. SWAMP provides
access to Condor’s own native mechanisms for
Grid computing as well as other Grid systems,
e.g. through Condor-G when Grid universe jobs
are sent to Grid resources utilizing Globus soft-
ware for job execution. The Globus Toolkit pro-
vides a framework for building Grid systems and
applications.

Figure 4 shows a local Condor pool architec-
ture. Each execution node in the SWAMP condor
pool accepts a new job only if the load of the
system is not too high and there is enough mem-

ory available for efficient execution. The jobs are
submitted to the “schedd” process, which stores
them in a permanent storage and advertises their
needs. The “startd” process on an execution node
advertises its resources to the “collector” process.
The “negotiator” process regularly fetches these
advertisements (ClassAds) from the “collector”
and “schedd”, and assigns jobs to execution nodes.
For every such association, a shadow and a starter
process are created and all further communica-
tions take place between these two entities.

Figure 5 shows the execution procedure of
SWAMP in Grid environments. In order to sub-
mit jobs to Grid resources, the submit machine
needs to apply for a certificate from a trusted Cer-
tificate Authority (CA) for authentication. The
submit machine with all Grid software installed
and configured manages the jobs running on the
Grid. Before running jobs on the Grid, we need
to ensure that the submit machine is able to ob-
tain the correct user proxy, which is presented to
remote Grid sites during authentication. Condor-
G stages data and submits jobs to the Gatekeeper
at a remote Grid site. Globus GRAM on the
Gatekeeper authenticates users, sends jobs to the
local resource manager such as Condor, PBS, and
Fork, and notifies users of job statuses. The exe-
cution machines run the jobs and notify the local
resource managers of job statuses.

Each workflow supported by SWAMP has an
output module that runs after all other user mod-
ules have completed. The main task of this output
module is to send the final output to the Web

Fig. 5 The execution
procedure of SWAMP in
Grid environments
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Server. Instead of creating a separate daemon, we
add this extra job as part of the DAG workflow for
final output sending to avoid checking the Condor
log files or invoking Condor’s management com-
mand in polling mode. In Condor batch system,
jobs with higher numerical priority run before jobs
with lower numerical priority. To send the final
output to the user promptly, the output module is
assigned with the highest priority.

3.4 Performance Modeling and Prediction

In order to improve the quality of workflow ex-
ecution, we investigate the problem of modeling
scientific computations and predicting their exe-
cution time based on a combination of both hard-
ware and software properties. The performance
modeling and prediction component queries the
resource and provenance database to retrieve the
information of computing resources, datasets and
executables, or interacts with the resource discov-
ery component to collect such information. In this
component, we employ statistical learning tech-
niques to estimate the effective computational
power of a given computer node at any time point
and compute the total number of CPU cycles
needed for executing a given computational pro-
gram on any input data size. The technical details
of this component are provided in Section 4.

3.5 Workflow Mapping

The efficiency of the SWAMP system largely
depends on the performance of the mapping
schemes that map computing workflows to net-
work nodes in the Condor pool, which is deter-
mined by the Condor job dispatch scheme. The
mapping scheme currently employed by the Con-
dor scheduler works as a matchmaker of Clas-
sAds. Condor schedules job dispatch by match-
ing the requests for both machine ClassAds and
job ClassAds. In addition to the Condor pool,
SWAMP is capable of mapping workflows onto a
variety of target resources such as those managed
by Portable Batch System (PBS) [53] and Load
Sharing Facility (LSF) [39], with an improved
mapping performance by incorporating a set of
well-designed mapping schemes into the Condor
negotiator daemon.

The workflow mapping component obtains the
information on computing modules such as the ex-
ecutables and data from the resource and prove-
nance database, and then converts an abstract
workflow to an executable workflow based on
the prediction of the module execution time using
the performance modeling and prediction compo-
nent. The mapping objective is to select an appro-
priate set of computer nodes in the network and
assign each computing module in the workflow
to one of those selected nodes to achieve MED
for fast response and MFR for smooth data flow.
The workflow mapping algorithms are presented
in Section 5.

3.6 Resource Discovery

The resource discovery component interacts with
an extensive set of existing services and systems to
acquire information on data, computing and net-
working resources, and data movement tools, all
of which is stored in the resource and provenance
database.

The data discovery process involves two steps:
(i) Use data attributes specified by users to query
a metadata service, which maps the specified at-
tributes into a list of logical file names. (ii) Use
these logical names to query existing registry ser-
vices such as the Globus Replica Location Service
(RLS) [25] to locate the replicas of the required
data.

The resource discovery component also com-
municates with information services and systems
to discover available computing resources and
corresponding characteristics such as the number
of CPUs, CPU frequency, queueing length, and
available disk space. Currently supported infor-
mation services and systems include Monitoring
and Discovery Service (MDS) [45], Resource and
Site Validation (RSV) [50], and so on.

This component queries a number of resource
monitoring services and tools to monitor the sta-
tus of the networking resources, including perf-
SONAR [52], Network Weather Service (NWS)
[46], One-Way Active Measurement Protocol
(OWAMP) [47], and Bandwidth Test Controller
(BWCTL) [5].

In order to improve the performance of large
data transfer in wide-area networks, the resource
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discovery component also queries other infor-
mation services to locate and employ the avail-
able data movement services and tools, including
GridFTP [26], Reliable File Transfer (RFT) [57],
Storage Resource Broker (SRB) [62], Storage
Resource Management (SRM) [63], On-demand
Secure Circuit Advance Reservation System
(OSCARS) [49], and TeraPaths [67].

3.7 Data Provenance

The data management in heterogeneous networks
such as OSG [48] is a key component of the
architecture and service of the common infrastruc-
ture. Large-scale scientific applications have led
to unprecedented levels of data collection, which
make it very difficult to keep track of the data
generation history. The data provenance compo-
nent provides information about the derivation
history of data starting from its original sources.
It enables scientists to verify the correctness of
their simulations and reproduce them if neces-
sary. SWAMP provides provenance information
related to workflow module execution by ana-
lyzing the log files of the Condor system. These
log files contain execution information of each
module, such as location, time, and output, all of
which are stored in the resource and provenance
database.

3.8 Resource and Workflow Monitoring Service

The resource and workflow monitoring service
uses the callback placed by the workflow execu-
tion service to trigger the data provenance com-
ponent to keep track of the workflow execution
progress. It also queries the resource and prove-
nance database to obtain the status information
of the computing resources, and then sends the
above information on the fly to the workflow
display service to update the web interface.

3.9 Workflow Display Service

Each workflow eventually generates an output.
The ability to view and manage the output data
as soon as it is produced is valuable to users
for result interpretation. Users can keep track of
the real time information of workflow mapping,

execution and result through the web interface.
The workflow display service component instan-
taneously updates the web interface using the in-
formation provided by the resource and workflow
monitoring service component. The ability to re-
dispatch workflows and return the immediate
feedback allows the user to modify parameters of
any dispatched workflow and re-dispatch individ-
ual workflows that require further computation.
SWAMP uses coloring convention to indicate the
execution status of a module and supports a tab-
ular fashion to show the statistical information of
the modules and the links.

4 A Statistical Approach to Performance
Modeling and Prediction

Finding a good workflow mapping scheme crit-
ically depends on an accurate prediction of the
execution time of each individual module in the
workflow. The time prediction of a scientific com-
putation does not have a silver bullet as it is
determined collectively by several dynamic sys-
tem factors including concurrent loads, memory
size, CPU speed, and also by the complexity
of the computational program itself. To tackle
the problem of modeling scientific computations
and predicting their execution time, we employ a
performance model that takes into account both
hardware and software properties, which is then
used by the prediction method for predicting or
estimating the execution time of a given computa-
tional job on any computer.

In [18], Dobber et al. provided a broad sur-
vey of existing prediction methods and also pro-
posed a Dynamic Exponential Smoothing (DES)
method for job runtime prediction on shared
processors. All the methods in [18] are solely
based on the statistical analysis of historical run-
time measurements of user jobs. Although also
employing a statistical method, our performance
modeling and prediction take a fundamentally
different approach using benchmark machines
with the main goal to accurately describe the rela-
tionship between the runtime of a given scientific
computation and various system factors including
the hardware properties of the computing node
and the software properties of the program. Since
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these methods are based on different inputs un-
der different assumptions, their prediction perfor-
mances may not be directly comparable.

Let vector H(t) represent the hardware profile
of a given machine that consists of both static
configuration and dynamic usage information at
time t, defined as:

H(t) = hstatic ∪ hdynamic(t) (1)

where hstatic denotes the set of static properties
and hdynamic(t) denotes the set of dynamic prop-
erties at time point t. Typically, the hardware
specifications of the machine are considered static
while the workloads on the machine are dynamic
in nature, therefore resulting in a time-varying
level of resource capacity. For convenience, we
tabulate in Table 1 the notations used in our
performance model.

Let Ch represent the ef fective processing (EP)
power provided by the available hardware re-
sources of the machine. The EP power determines
the number of usable CPU cycles (i.e. the total
number of CPU cycles minus those used for sys-
tem overheads and other background workloads).
The relationship between the hardware profile
and Ch can be described as:

Ch(t) = H(t) · θh + ϑh (2)

Table 1 Notations used in the performance model

Symbol Meaning

H(t) The total hardware resources on the machine
in the presence of concurrent workloads
at time point t

hstatic The set of static hardware properties of the
machine

hdynamic(t) The set of dynamic hardware properties at
time point t

S The set of software properties of the
computational job

Ch The effective processing power
Cs The total number of CPU cycles required

by the computational job
θh The coefficient vector for hardware

estimation
θs The coefficient vector for software

estimation

where θh is the coefficient vector of a regression
estimate for hardware profiles, and ϑh denotes the
set of regression constants.

Now let us consider the software properties of
the computational job and estimate the number Cs

of CPU cycles that are needed to execute the job.
Similarly, we employ a polynomial regression to
capture the relationship between Cs and the job’s
software properties:

Cs = S · θs + ϑs (3)

where S denotes the vector holding the software
properties of the program (computational job), θs

is the coefficient vector of a regression estimate
for software properties, and ϑs denotes the set of
regression constants.

Given Ch and Cs, the relationship between the
execution time and the hardware and software
properties is still very complicated. We employ a
nonlinear parametric regression analysis method
to model such complex behaviors. The estimation
of the job execution time T(t) on the machine at
time point t is given by:

T(t) = f ((Ch(t)θ1 + Csθ2), β) + ϑ, (4)

where θ1 and θ2 are the coefficient vectors of a
regression estimate for the hardware and soft-
ware properties, respectively. Equation (4) can be
rewritten in the following form:

T(t) = f (X0) · β ′ + ϑ, (5)

where X0 denotes Ch(t)θ1 + Csθ2. Equation (5) is
linear in terms of the explanatory variable β

′
, and

the dimension of the vector class estimator is the
same as the dimension of X0.

For a given computational job running on a
given machine, we assume that the available hard-
ware resources H(t) on the machine and the job
execution time T(t) on that machine be distrib-
uted by a joint probability distribution PH(t),T(t).
Note that the software properties of a computa-
tional job remain constant, and therefore the total
number of CPU cycles required for running the
job is fixed for a given input data size. Note that
the actual runtime of some algorithms (especially
for optimization purposes) may depend on both
the input size and the input data. Since our sys-
tem is focused on scientific applications and the
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complexity of scientific computations is largely
determined by the dimensional parameters and
the number of iterations, our approach is still ap-
plicable in most science domains (especially with
volume data processing such as visualization),

Now by using the least squares estimate, we
calculate the execution time estimation error as:

Iθ,ϑ =
∫

(T̂(t) − T(t))dPH(t),T(t), (6)

where T̂(t) denotes the actual amount of time
taken. The best estimator for the actual execution
time is given by minimizing (6). In order to obtain
the best estimation, one would need an accurate
distribution PH(t),T(t), which is very hard to find in
practice. The problem may not be tractable if this
distribution is complex [75].

Let I∗
θ,ϑ denote the best estimation given by (6):

I∗
θ,ϑ = min(Iθ,ϑ ). (7)

The goal of the estimation is to have a high
probability that the estimation error is within
some permissible limit ε. Using the result from the
sample size estimation [56], we have:

P((Iθ,ϑ − I∗
θ,ϑ ) > ε) ≤ 1 − 8

(
64e
ε

ln
64e
ε

)d

e−ε2 k
512 ,

(8)

where k is the sample size.
As mentioned in [75], the same argument holds

on the estimation bound. Note that this estimation
bound does not depend on the form of distribution
PH(t),T(t), but the drawback is that it only ensures
the closeness of the estimation error to the best
possible linear approximation. It is possible that
the latter itself may not be unsatisfactory if the
underlying relationship is non-linear.

The factors that affect the job execution time
can be categorized into hardware and software
parameters. Since the hardware parameters them-
selves are an exhaustive list, we consider the
most significant hardware properties as shown in
Table 2.

The size of used RAM provides important in-
formation on the amount of concurrent workloads
in the system as a process always consumes a

Table 2 Hardware properties used for prediction

Hardware properties

Size of used and free RAM
Size of used and free buffer Size of used and free cache
Whetstone measurement

certain portion of RAM. The buffer and cache
size largely affects the performance of I/O op-
erations. Since the total execution time of the
program consists of both computation time and
I/O time, it is necessary to consider these para-
meters collectively to obtain a fair estimate of the
effective processing power of the machine. These
parameters can be collected by some system tools
such as the free command in Linux. We take
Whetstone [68] as one of the hardware parame-
ters instead of the CPU clock speed (frequency)
because the number of floating point arithmetic
operations that can be done per second by the
processor is dependent on both the clock speed,
processor architecture, and the concurrent load on
the machine.

Besides the hardware properties, the job execu-
tion time also depends on the computational com-
plexity of the program, which is hard to estimate
just by examining the source code. Since the pro-
gram might use multiple system or user-defined
libraries, obtaining a holistic computational com-
plexity function is a very challenging task. In order
to address this issue, we use TPROF tool [51] to
calculate the number of CPU cycles used by the
module. We repeat this job execution experiment
with different input data sizes on a benchmark
machine and perform a polynomial regression to
fit a curve among these measured data points. The
fitted curve is of the form:

f (z) = a0 + a1 · z + a2 · z2 + ... + an · zn, (9)

where z is the data size of the input. The fitted
curve is then used to estimate computational com-
plexity of the program. This complexity estimator
provides us an expected number of CPU cycles to
execute the computational program on any given
input data size, which is used as one of the inde-
pendent variables in the prediction model. Since
the number of CPU cycles depends on the proces-
sor architecture, to be more specific, the microin-
struction set, the estimated program complexity
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needs to be adjusted appropriately on a machine
with a different architecture, for example, by cal-
culating and applying the ratio of the required
CPU cycles for performing the same floating-
point operation (flop) between the current ma-
chine and the benchmark machine. The predic-
tion model is built using a multivariate nonlinear
regression function which takes estimated CPU
cycles, and hardware parameters shown in Table
2 as independent variables and estimates the
amount of time module takes on the machine. The
prediction model is of the form:

T = A( f (z))

B(I)
, (10)

where T is the dependent variable which repre-
sents time taken by the executable, I represents
the independent variables. Once its regression
form is determined, f (z) produces a concrete
value for a given input data size z. However,
directly using this value (the estimated number
of CPU cycles) may not yield an accurate time
prediction because the actual number of CPU
cycles allocated to a job execution may be subject
to a certain variation, for example, due to fre-
quent page swapping if the program requires more
memory space than what is available. The function
A(·) is in the form of A(x) = p0 + p1 · xk0 + p2 ·
xk1 + ... + pn · xkn−1 where p0....pn, k0...kn are real
numbers, and the purpose of using this function
is to capture such variations. Similarly, we use a
polynomial function B(·) formed by taking all pos-
sible combinations of the independent variables I
to capture the effect of each independent variable
when acting alone and in combination of other
independent variables. In the simplest case with
two dependent variables, x1 and x2, a possible
form of the first order the function B(·) could take
is B(x1, x2) = p0 + p1 · x1 + p2 · v2 + p3 · (v1 · v2).

The estimated computational complexity of
the module using polynomial regression in (9)
does not indicate the inherent parallelism of the
module.

Once both hardware and software properties
are measured or calculated through either system
tools or regression-based estimators, we combine
them to achieve a good estimate of the job ex-
ecution time based on regression techniques, as
shown in Fig. 6.

Fig. 6 Regression-based performance prediction consider-
ing both hardware and software properties

5 Workflow Mapping Optimization

The SWAMP system incorporates a workflow
mapper, which consists of a class of rigor-
ously designed mapping algorithms for end-to-end
workflow performance optimization.

5.1 Problem Formulation

The workflow is modeled as a Directed Acyclic
Graph (DAG) Gw = (Vw, Ew), |Vw| = m, where
vertices represent computing modules starting
from module w0 and ending at module wm−1. The
dependency between a pair of adjacent modules
wi and w j is represented by a directed edge ei, j ∈
Ew between them. Module w j receives a data
input from each of its preceding modules and
performs a predefined computing routine whose
complexity is modeled as a function λw j(·) on the
aggregate input data size zw j . The overlay com-
puter network is modeled as an arbitrary weighted
graph Gc = (Vc, Ec), consisting of |Vc| = n com-
puter nodes interconnected by |Ec| overlay net-
work links. Following the modeling approach in
Section 4, we use a normalized variable pi to
represent the overall effective processing power
of node vi without specifying its detailed system
resources. The link li, j between nodes vi and v j

has Bandwidth (BW) bi, j and Minimum Link De-
lay (MLD) di, j. We specify a pair of source and
destination nodes (vs, vd) to run the start mod-
ule w0 and the end module wm−1, respectively,
and further assume that module w0 serves as a
data source without any computation and module
wm−1 performs a terminal task without any data
transfer.

We use Texec(w, v) = ∑ α(t)·δw(t)
p to denote the

execution time of module w on node v, where α(t)
is the number of concurrent modules on node v
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during 	t, δw(t) = p
α(t)	t denotes the amount of

partial module execution completed during time
interval [t, t + 	t] when α(t) remains unchanged,
and λw(zw) = ∑

δw(t) is the total computational
requirement of module w. We use Ttran(e, l) =∑ β(t)·δe(t)

b + d to denote the data transfer time of
dependency edge e over network link l, where β(t)
is the number of concurrent data transfers over
link l during 	t, δe(t) = b

β(t)	t denotes the amount
of partial data transfer completed during time
interval [t, t + 	t] when β(t) remains unchanged,
and ze = ∑

δe(t) is the total data transfer size
of dependency edge e. Note that computing and
networking resources could be shared by multi-
ple modules and edges that are processing and
transferring different input datasets. Due to the
dynamics in concurrent workload on nodes and
concurrent traffic over links, both α(t) and β(t) are
time-varying in nature.

Based on the analytical cost models, we con-
sider two performance metrics:

(i) End-to-end Delay (ED), which is the total
completion time of the entire workflow from
the time when a single dataset is fed into
the first module to the time when the final
result is generated at the last module. Once
a mapping scheme is determined, the ED is
calculated as the total time cost incurred on
the critical path (CP), i.e. the longest path.
We denote the set of contiguous modules on
the CP that are allocated to the same node
as a “group”, and refer to those modules
located on the CP as “critical” modules and
others as “branch” or “non-critical” mod-
ules. A general mapping scheme divides the
CP into q (1 ≤ q ≤ m) contiguous groups
gi, i = 0, 1, · · · , q − 1 of critical modules and
maps them to a network path P of not neces-
sarily distinct q nodes, vP[0], vP[1], · · · , vP[q−1]
from source vs = vP[0] to destination vd =
vP[q−1]. The ED of a mapped workflow is
defined as:

TED
(
CP mapped to a path P of q nodes

)

= Texec + Ttran =
q−1∑
i=0

Tgi +
q−2∑
i=0

Te(gi,gi+1)

=
q−1∑
i=0

⎛
⎝ ∑

j∈gi, j≥1

(∑ α j(t) · δw j(t)

pP[i]

)⎞
⎠

+
q−2∑
i=0

(∑ βe(gi,gi+1)(t) · δe(gi,gi+1)(t)
b P[i],P[i+1]

+ dP[i],P[i+1]
)

, (11)

where e(gi, gi+1) denotes the edge from
group gi to gi+1 mapped to link lP[i],P[i+1]
between nodes vP[i] and vP[i+1].

(ii) Frame Rate (FR) or throughput, i.e. the in-
verse of the global Bottleneck Time (BT)
of the workflow. The bottleneck time TBT

could be either on a node or over a link,
defined as:

TBT(Gw mapped to Gc)

= max
wi∈Vw,e j,k∈Ew

vi′ ∈Vc,l j′ ,k′ ∈Ec

(
Texec(wi, vi′),

Ttran(e j,k, l j′,k′)

)

= max
wi∈Vw,e j,k∈Ew

vi′ ∈Vc,l j′ ,k′ ∈Ec

⎛
⎝

∑ αi(t)·δwi (t)
pi′

,∑ β j,k(t)·δe j,k (t)

b j′ ,k′ + d j′,k′

⎞
⎠ .

(12)

We assume that the inter-module communi-
cation cost on the same node is negligible.

Since the execution start time of a module de-
pends on the availability of its input datasets, the
modules assigned to the same node may not run
simultaneously. The same is also true for concur-
rent data transfers over the same network link.
The workflow mapping problem with arbitrary
node reuse for MED or MFR is formally defined
as follows: Given a DAG-structured computing
workf low Gw = (Vw, Ew) and a heterogeneous
computer network Gc = (Vc, Ec), we wish to f ind
a mapping scheme that assigns each computing
module to a network node such that the mapped
workf low achieves:

MED = min
all possible mappings

(TED) , (13)

MFR = max
all possible mappings

(
1

TBT

)
. (14)
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Note that MED is the minimum sum of time
costs along the CP while MFR is achieved by iden-
tifying and minimizing the time TBT on a global
bottleneck node or link among all possible map-
pings. We maximize FR to produce the smoothest
data flow in streaming applications when multiple
datasets are continuously generated and fed into
the workflow.

5.2 Design of Mapping Algorithms

A workflow mapping scheme must account for
the temporal constraints in the form of execu-
tion order of computing modules and spatial con-
straints in the form of geographical distribution of
network nodes and their connectivity. The gen-
eral DAG mapping problem is known to be NP-
complete [2, 22, 35, 38] even on two processors
without any topology or connectivity restrictions
[1], which rules out any polynomial optimal so-
lutions. We incorporate two efficient workflow
mapping algorithms into the SWAMP system to
optimize workflow performance in terms of MED
and MFR.

For unitary processing applications, we incor-
porate into our system an improved Recursive
Critical Path (impRCP) algorithm [74], which re-
cursively chooses the CP based on the previous
round of calculation and maps it to the network
using a dynamic programming (DP)-based pro-
cedure until the mapping results converge to an
optimal or suboptimal point. For the sake of com-
pleteness, we provide a brief summary of those
key steps in the impRCP algorithm:

1. Assume the network topology to be complete
with identical computing nodes and communi-
cation links, and determine the initial comput-
ing/transfer time cost components.

2. Find the CP of the workflow with initial time
cost components using a longest path algo-
rithm.

3. Remove the assumption on resource homo-
geneity and connectivity completeness, and
map the current CP to the actual network
using the optimal pipeline mapping algorithm
based on a DP-based procedure for MED with
arbitrary node reuse as proposed in [29].

4. Map non-critical modules using A∗ and Beam
Search algorithms.

5. Compute a new CP using updated time cost
components and calculate the new MED.

Steps 2–5 are repeated until a certain condition is
met, for example, the difference between a new
MED resulted from the current mapping and an
old MED resulted from the previous mapping
is less than a preset threshold. The complexity
of impRCP is O(ρ · m · n · |Ew|), where ρ is the
predefined beam width in the BS algorithm, m
and |Ew| are the number of modules and edges in
the workflow, respectively, and n is the number of
nodes in the network.

For streaming applications with serial data in-
puts, we incorporate into our system a Layer-
oriented Dynamic Programming algorithm [27],
referred to as LDP, which maps workflows to
networks by identifying and minimizing the global
BT to achieve the smoothest dataflow. The key
idea of LDP is to first sort a DAG-structured
workflow in a topological order and then map
computing modules to network nodes on a layer-
by-layer basis, while taking into consideration
both module dependency in the workflow and
node connectivity in the network. We use a two-
dimensional DP table to record the intermediate
mapping result at each step where a module is
mapped layer-by-layer to a strategically selected
network node, where the horizontal coordinates
represent the sequence numbers of topologically
sorted modules, and the vertical coordinates rep-
resent the labels of nodes starting from the source
node vs to the destination node vn−1.

To reduce the search complexity, we propose
a Greedy LDP, which selects the best node in
each column that yields the minimum global BT
for mapping the current module, hence filling
one cell only in each column. In Greedy LDP,
we recursively calculate the minimum BT of the
sub-solution that maps the subgraph (a partial
workflow) consisting of the current module w j

and all the modules before the current layer to
the network until the last module wm−1 is reached
and mapped to the destination vd, which is repre-
sented by the right bottom cell in the DP table.
The complexity of this algorithm is O(l · n · |Ew|),
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where l is the number of layers in the topologically
sorted workflow, n is the number of nodes in the
network, and |Ew| is the number of edges in the
workflow.

6 System Implementation and Evaluation

We conduct extensive comparative performance
evaluations based on both simulations and ex-
periments through system implementation and
real deployment to illustrate the performance
superiority of the proposed solution over other
workflow mapping algorithms and the Condor
default execution model.

6.1 Simulation-based Performance Evaluation

The proposed impRCP and Greedy LDP mapping
algorithms are implemented in C++. For perfor-
mance comparison, we also implement three exist-
ing algorithms, namely (i) Greedy A∗ [58], which
maps subtasks onto a large number of sensor
nodes based on A∗ algorithm, whose complexity
is O(m2 + kn(m − k)), where m is the number of
modules, n is the number of sensor nodes, and

k is the number of modules in the independent
set; (ii) Streamline (SL) [2], which maximizes the
throughput of an application by assigning the best
resources to the most needy stages, whose com-
plexity is O(mn2), where m is the number of stages
or modules in the dataflow graph and n is the
number of resources or nodes in the network;
and (iii) Greedy, which employs a simple local
optimal search procedure at each mapping step,
whose complexity is O(|Ew| · |Ec|), where |Ew| is
the number of edges in the workflow and |Ec|
is the number of links in the network. We con-
duct an extensive set of mapping experiments for
both MED and MFR using simulation datasets
generated by randomly varying the parameters of
workflows and networks within a suitably selected
range of values, represented by a four-tuple (m,
|Ew|, n, |Ec|): m modules and |Ew| edges in the
computing workflow, and n nodes and |Ec| links
in the computer network.

The MED measurements of 20 problem sizes
indexed from 1 to 20 are tabulated in Table 3
and visualized in Fig. 7, respectively. In each
problem size, we generate ten random mapping
instances and calculate the average performance
measurement. The percentage enclosed in the

Table 3 MED
measurements of four
algorithms in comparison

Problem Problem size MED (s)

index m, |Ew|, n, |Ec| impRCP Greedy A∗ SL Greedy

1 4, 6, 6, 29 0.50 0.52 (3.8 %) 0.51 (2.0 %) 0.52 (3.8 %)
2 6, 10, 10, 86 1.05 1.19 (11.8 %) 1.14 (7.9 %) 1.11 (5.4 %)
3 10, 18, 15, 207 1.15 1.61 (28.6 %) 1.65 (30.3 %) 1.94 (40.7 %)
4 13, 24, 20, 376 2.15 2.41 (10.8 %) 2.45 (12.2 %) 2.33 (7.7 %)
5 15, 30, 25, 597 2.23 2.88 (22.6 %) 2.94 (24.1 %) 2.87 (22.3 %)
6 19, 36, 28, 753 1.96 2.71 (27.7 %) 2.72 (27.9 %) 3.03 (35.3 %)
7 22, 44, 31, 927 2.46 2.63 (6.5 %) 2.76 (10.9 %) 2.93 (16.0 %)
8 26, 50, 35, 1180 1.85 2.79 (33.7 %) 4.00 (53.8 %) 2.56 (27.7 %)
9 30, 62, 40, 1558 3.56 5.06 (29.6 %) 5.22 (31.8 %) 4.45 (20.0 %)
10 35, 70, 45, 1963 4.05 4.37 (7.3 %) 5.79 (30.1 %) 7.02 (42.3 %)
11 38, 73, 47, 2153 4.62 5.78 (20.1 %) 6.89 (32.9 %) 6.92 (33.2 %)
12 40, 78, 50, 2428 2.01 2.97 (32.3 %) 3.13 (35.8 %) 2.71 (25.8 %)
13 45, 96, 60, 3520 3.64 5.13 (29.0 %) 5.92 (38.5 %) 5.17 (29.6 %)
14 50, 102, 65, 4155 2.80 5.12 (45.3 %) 4.37 (35.9 %) 4.82 (41.9 %)
15 55, 124, 70, 4820 4.49 6.86 (34.6 %) 6.63 (32.3 %) 7.46 (39.8 %)
16 60, 240, 75, 5540 8.67 9.30 (6.8 %) 14.63 (40.7 %) 13.43 (35.4 %)
17 75, 369, 90, 7990 15.41 18.25 (15.6 %) 20.53 (24.9 %) 17.92 (14.0 %)
18 80, 420, 100, 9896 19.81 25.04 (20.9 %) 26.20 (24.4 %) 22.71 (12.8 %)
19 90, 500, 150, 22346 24.01 28.83 (16.7 %) 28.18 (14.8 %) 25.84 (7.1 %)
20 100, 660, 200, 39790 24.79 34.71 (28.6 %) 29.78 (16.8 %) 26.62 (6.9 %)
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Fig. 7 MED performance comparison among four
algorithms

parentheses after each average measurement in
the table is the MED improvement of impRCP
over the other algorithms in comparison, defined
as |MEDothers−MEDimpRCP

MEDothers
| × 100 %. We observe that

the impRCP algorithm consistently outperforms
all other methods. These performance measure-

ments also illustrate a trend that the superiority
of the proposed mapping approach becomes more
obvious as the problem size increases.

We also compare the MFR performance of
the proposed Greedy LDP algorithm with that of
the Greedy A∗, SL, and Greedy algorithms. The
MFR measurements in 20 mapping problems of
various sizes indexed from one to 20 are tabu-
lated in Table 4. Similarly, these are the aver-
age measurements calculated from ten instances
in each problem size and the performance im-
provement in the percentage term is enclosed
for each average measurement. We observe that
Greedy LDP outperforms the other methods in all
the cases we studied. Note that these algorithms
may produce the same optimal mapping results
in small-scale problem cases. Another significant
advantage of Greedy LDP is that it considers
both module dependency and network connectiv-
ity during workflow mapping, therefore leading
to a much higher success rate in mapping (no
invalid mapping in all the cases we studied). Since
both Greedy A∗ and SL are designed for complete
networks without considering any topology con-
straint on mapping, they may miss certain feasible

Table 4 MFR measurements of four algorithms in comparison

Problem Problem size MFR (frames/s)

index m, |Ew|, n, |Ec| Greedy LDP Greedy A∗ SL Greedy

1 4, 6, 6, 29 1.025 0.980 (4.6 %) 0.980 (4.6 %) 0.980 (4.6 %)
2 6, 10, 10,86 1.854 1.201 (54.4 %) 1.201 (54.4 %) 1.201 (54.4 %)
3 10, 18, 15, 207 1.544 1.325 (16.5 %) 1.072 (44.0 %) 1.325 (16.5 %)
4 13, 24, 20, 376 1.716 – 1.048 (63.7 %) –
5 15, 30, 25, 597 1.724 1.259 (36.9 %) 0.684 (152.0 %) 1.154 (49.4 %)
6 19, 36, 28, 753 1.116 1.050 (6.3 %) 0.668 (67.1 %) –
7 22, 44, 31, 927 1.692 – 1.164 (45.4 %) 1.674 (1.1 %)
8 26, 50, 35, 1180 0.946 0.774 (22.2 %) 0.734 (28.9 %) 0.801 (18.1 %)
9 30, 62, 40, 1558 1.393 0.972 (43.3 %) 0.780 (78.6 %) 0.736 (89.3 %)
10 35, 70, 45, 1963 0.812 – – 0.677 (19.9 %)
11 38, 73, 47, 2153 0.863 0.683 (26.4 %) 0.502 (71.9 %) 0.675 (27.9 %)
12 40, 78, 50, 2428 1.461 1.230 (18.8 %) 0.730 (100.1 %) 1.217 (20.0 %)
13 45, 96, 60, 3520 0.885 0.800 (10.6 %) – 0.752 (17.7 %)
14 50, 102, 65, 4155 1.911 1.145 (66.9 %) 1.191 (60.5 %) 0.774 (146.9 %)
15 55, 124, 70, 4820 0.836 0.593 (41.0 %) 0.569 (46.9 %) –
16 60, 240, 75, 5540 0.521 0.392 (32.9 %) 0.391 (33.2 %) 0.396 (31.6 %)
17 75, 369, 90, 7990 0.373 0.238 (56.7 %) – 0.241 (54.8 %)
18 80, 420, 100, 9896 0.333 0.205 (62.4 %) 0.220 (51.4 %) 0.205 (62.4 %)
19 90, 500, 150, 22346 0.417 0.278 (50.0 %) 0.318 (31.1 %) 0.364 (14.6 %)
20 100, 660, 200, 39790 0.317 0.187 (69.5 %) 0.190 (66.8 %) 0.263 (20.5 %)
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mapping solutions when two dependent modules
are mapped to two nonadjacent nodes. This prob-
lem can also occur in the Greedy algorithm when
the last selected node does not have a link to the
destination node. In Table 4, we cross out the
MFR measurement in an invalid mapping scheme.
For a visual comparison, we remove those in-
valid mapping results and re-compute them using
new randomly generated instances with the same
problem size. We plot the MFR measurements
produced by these four algorithms in Fig. 8, which
shows that Greedy LDP consistently exhibits com-
parable or superior MFR performances over the
other three algorithms.

Since the MED represents the total delay from
source to destination, a larger problem size with
more network nodes and computing modules gen-
erally (not absolutely, though) incurs a longer
mapping path resulting in a longer ED, which ex-
plains the increasing trend in Fig. 7. The MFR, the
reciprocal of the global bottleneck in a mapped
workflow, is not particularly related to the prob-
lem size, and hence the performance curves lack
an obvious increasing or decreasing trend in re-
sponse to varying problem sizes. The slightly de-
creasing trend in Fig. 8 is due to the fact that larger
problem sizes are more likely to have one node
or one link shared by more module executions or
data transfers.
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Fig. 8 MFR performance comparison among four
algorithms

6.2 Experimental Results on Climate Modeling
Workflows

6.2.1 A Brief Introduction to NCAR Single
Column CAM (SCAM)

Numerical modeling of the climate system and
its sensitivity to anthropogenic forcing is a highly
complex scientific problem. The progress towards
accurately representing the climate system using
global numerical models is primarily paced by un-
certainties in the representation of non-resolvable
physical processes, most often treated by what
is known as physical parameterization. Evaluat-
ing many parametric approaches that attempt to
represent the physical processes in atmospheric
models can be both scientifically complex and
computationally expensive.

Because of the high computational expense as-
sociated with evaluating new parameterizations
using a complete atmospheric general circulation
model, a highly flexible and computationally in-
expensive single column modeling environment
for the investigation of parameterized physics tar-
geted for global climate models has been devel-
oped. In particular, this framework is designed
to facilitate the development and evaluation of
physical parameterizations for the NCAR Com-
munity Atmosphere Model (CAM). The SCM
modeling environment provides a framework for
making initial assessments of physical parameter-
ization packages and allows for the incorporation
of both in-situ forcing datasets (e.g., Atmospheric
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Radiation Measurement (ARM) data) and syn-
thetic, user-specified, and forcing datasets, to help
guide the refinement of parameterizations under
development. Diagnostic data that are used to
evaluate model performance can also be trivially
incorporated. The computational design of the
SCM framework allows assessments of both the
scientific and computational aspects of the physics

parameterizations for the NCAR CAM because
the coding structures at the physics module lev-
els are identical. This framework has widespread
utilities and helps enrich the pool of researchers
working on the problem of physical parameteriza-
tion since few have access to or can afford testing
new approaches in atmospheric GCMs. Another
strength of this approach is that it provides a

Fig. 11 SCAM workflow generation
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common framework to investigate the scientific
requirements for successful parameterization of
subgrid-scale processes.

6.2.2 SCAM Workf low Structure

As shown in Fig. 9, we represent SCAM as a
workflow with 14 modules to be executed using
SWAMP in Grid environments with GridFTP-
enabled inter-module data transfer. For each com-
bination of available physics packages, data to be
used, and experiment controls, we treat it as a
separate dispatch of one SCAM workflow. There
are a dynamic number of workflow dispatches
for the SCAM experiment depending on different
combinations.

Figure 10 shows the corresponding executable
SCAM workflow structure where a solid line rep-
resents a data flow and a dotted line represents a

control flow. Note that several auxiliary modules
are added to the SCAM workflow to stage in data,
executable, and libraries required by the workflow
modules and remove the data used or produced by
these modules at the remote Grid sites.

6.2.3 SCAM Workf low Generation
and Customization

Given a combination of available physics pack-
ages, data to be used, and experiment controls, a
SCAM model experiment (i.e. scam2nc module)
is performed to generate simulation data. The
physics packages available in SWAMP include
parameterizations for convection, turbulence, and
cloud/precipitations. The used data include ini-
tial and boundary conditions, so-called large-scale
forcing that would drive the responses from the
physics processes but are considered independent

Fig. 12 SCAM workflow customization
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of the physics. These data are in general care-
fully constructed to minimize uncertainties due
to other factors not included in the intended
parameterizations and isolate the influence just
due to the parameterized processes. The exper-
iment controls include single case targeting a
specific event, a set of similar events, ensemble
experiments to account for uncertainties in input
data, and simultaneous multi-regime evaluations.
Both model simulated data and observed data are
needed for post-processing and visualization. The
SCAM workflow uses csh script as a master con-
trol, NCAR Command Language (NCL) script to
process data and produce plots, and Ghostscript to
convert the postscript image format to web-ready
format (e.g. jpeg, png).

The combinations of available physics pack-
ages, data to be used and experiment controls
require a number of workflow dispatches to exten-
sively evaluate new parameterizations. We devel-
oped a separate program to automatically gener-
ate DAG and submit files for a climate modeling
workflow. As shown in Fig. 11, all the combina-

tions of parameters are gathered from web input
and passed into SCAM model through a startup
file.

Once the workflow meta file is generated, one
SCAM workflow will be dispatched multiple times
immediately in a batch mode and the user can
customize the SCAM workflow before dispatch,
as shown in Fig. 12.

6.2.4 Experimental Settings and Performance
Comparison

For performance evaluation, we set up a distrib-
uted heterogeneous network testbed consisting
of 9 PC workstations located at University of
Memphis and three PC workstations at Southern
Illinois University at Carbondale. These comput-
ers have different hardware configurations in
terms of CPU frequency, memory size, and disk
space. The most important parameter, CPU fre-
quency, varies from 1.2 GHz to 3.4 GHz. We
create an arbitrary network topology by config-
uring different firewall settings and measure the

Table 5 Input data sizes in ten SCAM experiments

Case Idx 1 2 3 4 5 6 7 8 9 10

# of days 2 4 6 8 10 12 14 16 18 20
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Fig. 14 MFR comparison between Greedy LDP, Random,
Round Robin, and Greedy A∗

link bandwidth between two adjacent computers
using the “iperf” tool [23]. We deploy SWAMP in
this network testbed.

Since Condor is not inherently capable of sup-
porting streaming processing of multiple contin-
uous datasets, for MFR experiments, we link
100 SCAM workflows together to form a vir-
tual workflow as shown in Fig. 13, where each
module in the previous component workflow is
connected to its corresponding module in the suc-
ceeding component workflow with a virtual con-

trol flow edge denoted by a dashed arrow. When
the current module finishes executing the current
dataset, it sends the output along the horizontal
data flow edge (a solid arrow) to its succeeding
module in the same workflow, and also sends a
signal through the vertical control flow edge to the
corresponding module in the succeeding compo-
nent workflow. When the corresponding module
receives the signal, it starts executing the next
dataset immediately, and the same is applied to
the rest of the modules.

The SCAM workflows use the Intensive Ob-
serving Period (IOP) data in March 2000, which
provide transient forcing information to SCAM
physics, where the data source is collected from
observational field programs such as GATE,
ARM, and TOGA COARE. To obtain an accu-
rate performance estimation, we run each SCAM
module with a certain input data size z on
every computer node and measure its execu-
tion time t. The time cost coefficient c per data
unit for the module on that particular node
is calculated as c = t/z, which is stored in a
2D table with rows representing modules and
columns representing computer nodes. Each mod-
ule execution is repeated for ten times on every
node and the average execution time is used to
compute c.

Fig. 15 SCAM execution on OSG using SWAMP
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Since there are 20 days of IOP data available
in March 2000, we choose a different number of
days in each experiment to control the input data
size. Table 5 lists the number of days used in ten
SCAM workflow experiments.

We run SCAM streaming experiments using
the data sizes in Table 5 to compare the MFR
measurements of the proposed Greedy LDP algo-
rithm with those of the Random, Round Robin,
and Greedy A∗ workflow mapping algorithms.
The Random algorithm assigns each SCAM mod-
ule to one of the 12 computers on a random
basis while the Round Robin algorithm assigns
SCAM modules to the 12 computers in a round-
robin manner. The performance curves produced
by these four algorithms are plotted in Fig. 14. We
observe that Greedy LDP outperforms the other
three algorithms in all the cases we studied. Since
we use the same workflow structure and mapping
scheme for different input data sizes (which is

different from the simulation setting), a larger
data size is more likely to have a longer execution
time, resulting in a smaller MFR, which explains
the decreasing trend in each curve. We do not
have the performance comparison in the OSG
environment because the resource information re-
quired by the mapping schemes are not available
on OSG, which does not provide detailed node in-
formation within each Grid site but only the high-
level site information via information services.

6.3 A Real-life Use Case: Climate Modeling
Workflow on Open Science Grid (OSG)

6.3.1 SCAM Workf low Execution on OSG

SWAMP provides a web-based interface to au-
tomate and manage the SCAM workflow ex-
ecution and uses a special site-level workflow

Fig. 16 A gallery of final images generated by the SCAM workflow executed on OSG using SWAMP
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mapper to optimize its end-to-end performance
on OSG.

Figure 15 shows an example mapping of the
SCAM workflow onto three OSG sites. In this
example, DAGMan Manager and Condor-G are
installed on the submit machine belonging to en-
gagement virtual organization at University of
North Carolina. Condor-G stages in the executa-
bles, libraries and data of all the modules to
the corresponding Grid sites in parallel using
GridFTP and submits the first scam2nc module
to RENCI site at University of North Carolina.
After the scam2nc module completes, Condor-G
stages out its output to the Nebraska Omaha site
at University of Nebraska using GridFTP and
submits all the nc2ps modules to this site. At
the same time when all the nc2ps modules are
running on the Nebraska Omaha site, SWAMP
runs scam2nc_submit and scam2nc_remove jobs
to transfer the output of scam2nc back to the
submit machine in order to keep track of the
data provenance and remove all the data used
or produced by scam2nc. When any of the nc2ps
modules finishes execution, Condor-G stages out
its output to the Brookhaven Atlas Tier1 site
at Brookhaven National Laboratory (BNL) and
submits the corresponding ps2png module to this
site. At the same time when the ps2png mod-
ules are running on the Brookhaven Atlas Tier1
site, the SWAMP system runs corresponding
nc2ps_submit and nc2ps_remove jobs to transfer
the output of nc2ps modules back to the sub-
mit machine in order to keep track of the data
provenance and remove all the data used or pro-
duced by nc2ps modules. Condor-G stages out the
data from BNL to the Web Server at University
of Memphis using GridFTP for display and also
sends those png files back to the submit machine
for data provenance.

6.3.2 Display of SCAM Workf low Results

Each SCAM workflow eventually generates a
number of images. A gallery of final images
for one SCAM workflow are provided on the
web interface for a visual examination, as shown
in Fig. 16. Also, based on the displayed re-
sults, SWAMP enables the user to customize

those steerable computing modules of the SCAM
workflow and re-dispatch them into the Grid.

7 Conclusion

We developed a scientific workflow system based
on web services, SWAMP, for application users
to conveniently assemble, execute, monitor, and
control complex computing workflows in hetero-
geneous network environments. We proposed two
efficient mapping algorithms, impRCP for MED
and Greedy LDP for MFR, and incorporated
them into SWAMP for performance optimiza-
tion. The system was implemented, deployed, and
tested for a real-life scientific application in Open
Science Grid.

We learned a valuable lesson in the real sys-
tem implementation that the workflow perfor-
mance highly relies on the quality of the mapping
scheme, which in turn relies on the accuracy of the
performance modeling and estimation. The time-
varying nature of system and network resources’
availability makes it very challenging to perform
an accurate estimation of the execution time of
a module or the transfer time over a link in real
networks. We will investigate sophisticated cost
models to characterize real-time node and link be-
haviors in dynamic network environments. Also,
the overhead brought by Stork may counteract
the performance improvement of distributed ex-
ecution in small problem sizes, but it is worth the
effort for workflows with large data sizes, which
are common in large-scale scientific applications.
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