
Advances in Water Resources 62 (2013) 1–12
Contents lists available at ScienceDirect

Advances in Water Resources

journal homepage: www.elsevier .com/ locate/advwatres
2D and 3D imaging resolution trade-offs in quantifying pore throats for
prediction of permeability
0309-1708/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.advwatres.2013.08.010

⇑ Corresponding author. Tel.: +1 609 258 5645; fax: +1 609 258 2799.
E-mail address: cap@princeton.edu (C.A. Peters).

1 Current address: Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
L.E. Beckingham a,1, C.A. Peters a,⇑, W. Um b, K.W. Jones c, W.B. Lindquist d

a Princeton University, Princeton, NJ, USA
b Pacific Northwest National Laboratory, Richland, WA, USA
c Brookhaven National Laboratory, Upton, NY, USA
d Stony Brook University, Stony Brook, NY, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 30 January 2013
Received in revised form 15 August 2013
Accepted 19 August 2013
Available online 3 September 2013

Keywords:
Pore network modeling
Permeability
Mineral precipitation
Hanford
CO2 sequestration
Alberta sedimentary basin
Although the impact of subsurface geochemical reactions on porosity is relatively well understood,
changes in permeability remain difficult to estimate. In this work, pore-network modeling was used to
predict permeability based on pore- and pore-throat size distributions determined from analysis of 2D
scanning electron microscopy (SEM) images of thin sections and 3D X-ray computed microtomography
(CMT) data. The analyzed specimens were a Viking sandstone sample from the Alberta sedimentary basin
and an experimental column of reacted Hanford sediments. For the column, a decrease in permeability
due to mineral precipitation was estimated, but the permeability estimates were dependent on imaging
technique and resolution. X-ray CT imaging has the advantage of reconstructing a 3D pore network while
2D SEM imaging can easily analyze sub-grain and intragranular variations in mineralogy. Pore network
models informed by analyses of 2D and 3D images at comparable resolutions produced permeability esti-
mates with relatively good agreement. Large discrepancies in predicted permeabilities resulted from
small variations in image resolution. Images with resolutions 0.4 to 4 lm predicted permeabilities differ-
ing by orders of magnitude. While lower-resolution scans can analyze larger specimens, small pore
throats may be missed due to resolution limitations, which in turn overestimates permeability in a
pore-network model in which pore-to-pore conductances are statistically assigned. Conversely, high-res-
olution scans are capable of capturing small pore throats, but if they are not actually flow-conducting
predicted permeabilities will be below expected values. In addition, permeability is underestimated
due to misinterpreting surface-roughness features as small pore throats. Comparison of permeability pre-
dictions with expected and measured permeability values showed that the largest discrepancies resulted
from the highest resolution images and the best predictions of permeability will result from images
between 2 and 4 lm resolution. To reduce permeability underestimation from analyses of high-resolu-
tion images, a resolution threshold between 3 and 15 lm was found to be effective, but it is not known
whether this range is applicable beyond the samples studied here.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Mineral precipitation and dissolution reactions in subsurface
porous media may induce changes in porosity and permeability
[1–6]. The impact of these reactions on porosity is relatively
straightforward, where precipitation reduces porosity and dissolu-
tion increases porosity. However, the resulting changes in perme-
ability are much more complex and less understood [7,8].
Specifically, in the case of mineral precipitation, the impact on per-
meability is dependent on where, within individual pores and a
network of pores, precipitation occurs. In some scenarios, precipi-
tation occurs as a relatively uniform coating on grain surfaces as in
Crandell et al. [9] (cancrinite coatings on grain surfaces), Luquot
et al. [10] (chamosite coatings on grains), Lu et al. [11] (chlorite
coatings on quartz grains), while in other cases, precipitation
may be related to fluid velocity [12], pore size [13], grain size [8],
or mineralogy [14]. Additionally, Crandell et al. [9] surmised that
even if precipitation occurs as a uniform coating on grain surfaces,
this does not guarantee a uniform effect on flow paths and perme-
ability as some pore throats are closed off due to clogging while
others are simply reduced in size.

Predictions of reaction-induced changes in permeability are tra-
ditionally based on empirical power law relationships that are re-
lated to changes in porosity [15,16]. These relationships predict a
single permeability value based on a given change in porosity.
However, a single and constant power-law exponent may not
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universally apply for all porosity changes due to non-uniform
structural modifications that may impact permeability in different
ways [6,12,17,18]. Recent studies have recognized that both the
history and modification path along with the spatial distribution
of modifications may impact permeability. Bernabe et al. [17] dis-
tinguished between porosity-producing versus porosity-destroy-
ing processes and the creation of effective versus non-effective
pore space on the porosity–permeability relationships for a porous
medium. Gouze and Luquot [5], informed by information from 3D
imaging, considered the spatial distribution of alterations of tortu-
osity and hydraulic radius to explain changes in porosity and
permeability.

A research tool to quantify changes in permeability that ac-
counts for changes in flow network topology is to use pore-net-
work models that characterize pore sizes, pore connectivities and
pore-throat sizes. The use of pore-network models for reactive
transport modeling and to predict permeability began decades
ago [19], but it has grown rapidly in the last decade due in part
to advances in imaging technologies [12,20–24]. For example, Al-
give et al. [20] used reactive pore network models to examine
the effect of diagenetic cycles on the permeability of carbonate
rocks. Reactive pore network models have also been used to con-
sider the evolution of permeability in the context of CO2 sequestra-
tion [6,21,25–28].

Pore network models are often defined by mapping pores on a
regular cubic lattice and assigning connections, or pore throats, be-
tween pores [6,19–21,23–25,29,30]. The maximum number of con-
nections allowed to a pore, or pore coordination number, has
varied between models with the most recent model developed
by Raoof and Hassanizadeh [29] allowing for 26 possible connec-
tions in 13 different directions. The pore sizes, pore-throat sizes,
and network connectivity are statistically assigned by sampling
from probability distributions or histograms. Then, flow is numer-
ically simulated and permeability can be inferred. Other methods
for pore network construction, as in Kim et al. [30], do not use a
regular cubic lattice but instead use 3D direct 1-to-1 network map-
ping. Simulations from that work yielded comparable results for
reaction rates computed using a regular cubic lattice in Li et al.
[31]. Work on regular cubic lattices has been justified, as pointed
out in Raoof and Hassanizadeh [29], as long as the coordination
number distribution of the network is accounted for as found in
Arns et al. [32].

To provide accurate permeability predictions using pore-net-
work models requires a good description of the pore network
topology [32,33]. These descriptions can be obtained using a vari-
ety of 2D and 3D imaging methods. The first use of image-obtained
pore-space information to reconstruct a pore network consisted of
2D serial sectioning of samples [34,35]. These methods were
widely used [36] and expanded to include imaging of rock sections
using laser scanning confocal microscopy [37]. Pore- and throat-
size distributions have also been obtained from analysis of 2D
scanning electron microscopy (SEM) backscattered electron (BSE)
images of thin sections [9]. While 2D imaging has the advantage
of being widely accessible in addition to providing rapid informa-
tion about sub-grain and intragranular variations in mineralogy
as in Peters [38], it cannot directly provide information about net-
work connectivity. Some studies have used multiple-point statis-
tics from 2D images to generate realistic 3D networks [39,40].
Alternatively, as in this study, the 2D obtained data can be com-
bined with connectivity information from 3D analyses.

The use of three-dimensional methods to provide pore network
characterization has grown extensively in recent years. These
methods consist of scanning rock specimens using either synchro-
tron X-ray computed microtomography (X-ray CMT) [1,41] or
benchtop computed tomography (CT) [4,42]. Reviews in Werth
et al. [43] and Wildenschild and Sheppard [44] detail the recent
uses of X-ray microtomography for porous media characterization
as well as reactive and non-reactive fluid transport. A variety of
segmentation and interpretation methods have been deployed
with varying success as is described in Sezgin and Sankur [45],
Dong and Blunt [46], Porter and Wildenschild [47], Bhattad et al.
[48], Wildenschild and Sheppard [44], and Jiang et al. [49]. One
widely used approach, which is the approach adopted in this anal-
ysis, uses an indicator kriging method to achieve image segmenta-
tion [50] and interpret pores and their connections from
skeletonization using the medial axis transform [51]. Using this
method, nodal pore bodies are first characterized along vertices
connecting the percolating backbone medial axis. The remainder
of the pore space is informed by forming connections between no-
dal pores. Pore throats are defined at the minimum area of the
pore-to-pore connecting channels [52].

While there are many 2D and 3D imaging methods that can be
used to determine the pore network structure, there are few com-
parisons of 2D and 3D imaging with regard to the success of these
methods and their corresponding resolutions. One comparison by
Caubit et al. [22] compared 3D benchtop CT imaging with a 2D
reconstruction of the pore network for a variety of unconsolidated
and consolidated samples. Their intent was to determine if pore-
network models informed from either of these methods could
accurately match measured properties, including permeability.
They found that both the 2D and the 3D methods overpredicted
permeability. In the 3D method, permeability was overpredicted
in part due to the limitation in voxel resolution (3 lm), which
caused imprecisions in determining pore-throat sizes. Additionally,
they concluded both methods failed to capture small-scale hetero-
geneities, contributing to the overprediction of permeability. Peng
et al. [53] compared the ability of 12.7 lm and 0.35 lm resolution
X-ray CMT analyses to characterize a Berea sandstone sample.
They found the lower resolution analysis overestimated pore size
and pore connectivity and missed small pores. The higher resolu-
tion analysis was able to better describe pore sizes in the sample
analyzed but was not able to produce a representative pore-size
distribution or pore connectivity due to the small sample volume
analyzed [53]. While 3D imaging has the advantage of providing
3D information about the pore network structure, it is practically
limited to very small sample size for high-resolution analyses
[54]. Recent work by Pamukcu and Gualda overcame the trade-
off between sample-size and image-resolution to obtain represen-
tative crystal size distributions spanning multiple length scales by
combining information from higher and lower resolution 3D tomo-
grams of smaller and larger samples, respectively [55]. However,
this approach is still practically limited by beam time availability
and the requirement of multiple representative specimens.

The overarching goal of this work is to estimate permeability
changes due to mineral precipitation using pore-network models
statistically informed with different kinds of imaging information.
To achieve this requires (1) examining the differences in perme-
abilities estimated using statistical network data inferred from
2D images and those estimated using 3D image sets, and (2) exam-
ining the impact of image resolution and small pores and pore
throats on pore-network model-predicted permeability. While sev-
eral different image resolutions are considered in this study, vari-
ations in small pores and pore throats are used as a proxy for
further variations in image resolution. In this study, flow perme-
ability was estimated for a sediment-packed experimental column
and for a sandstone sample. The column experiment involved pre-
cipitation of secondary minerals in Hanford sediments due to reac-
tion with simulated caustic radioactive tank wastes, which was
analyzed for the pore space evolution in Cai et al. [1] and Crandell
et al. [9]. The sandstone sample is from the Viking formation in the
Alberta sedimentary basin in Canada. The mineral distribution of
this sample has been investigated using 2D and 3D imaging
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methods in Peters [38] and Kim et al. [30], respectively. The pore-
network models were created using statistical topological informa-
tion inferred either from 2D SEM images [9] or from 3D X-ray CMT
[1] data for both samples. The results from these two approaches
are compared as well as examined in the context of experimental
and expected values.
2. Methods

2.1. Samples

The first sample considered in this study is a 3.1 mm � 8.8 cm
PEEK column that was packed with 212 to 300 lm diameter Han-
ford sediment and reacted with simulated tank waste [1]. Details of
the column experiment are given in Cai et al. [1]. The second sam-
ple is a sandstone identified as ‘‘3w4’’ from the Viking formation in
the Alberta sedimentary basin (Canada). Specifics on the 3w4 sand-
stone sample are detailed in Peters [38].
2.2. Pore-structure analysis

Both samples were scanned using X-ray CMT at the X2B beam
line at the National Synchrotron Light Source at Brookhaven Na-
tional Laboratory. The reactive column sample was scanned before,
periodically during, and after reaction to track the evolution of the
pore space. The 3D reconstruction of the pore space for the Hanford
column experiment is detailed in Cai et al. [1]. As the sandstone
was not reacted, a single scan and reconstruction was created
and the details of this analysis are given in Kim et al. [30]. To char-
acterize the pore- and pore-throat size distributions as well as con-
nectivities, the reconstructed 3D pore networks were statistically
interpreted using 3DMA-Rock [1,30]. This program involves image
segmentation by indicator kriging followed by construction of the
percolating backbone medial axis. Pore bodies are defined by find-
ing nodal pores at multigrain junctions and the pores that connect
them to other nodes [52]. Pore throats are defined at the minimum
area along the channel connecting pore bodies together.

2D SEM image analysis of both samples was performed at
Princeton University’s PRISM Image and Analysis Center using a
FEI Quanta 200 FEG Environmental SEM. After the final 3D X-ray
CMT scan of the Hanford column, the contents were solidified with
epoxy and sectioned as detailed in Crandell et al. [9]. Polished sec-
tions of both samples were imaged using 2D SEM imaging in back-
scattered electron (BSE) mode. 2D images of the sandstone 3w4
sample, from the analysis detailed in Peters [38], consisted of
images at 1.8 lm and between 3 and 4 lm resolution. SEM images
of the Hanford column, from Crandell et al. [9], were taken at a res-
olution of 0.4 lm. From the 2D images, pore-radii and pore-throat
size distributions were determined using an erosion–dilation im-
age analysis method. In this method, the pore space is eroded with
a circle structural element and then dilated with the same element.
A series of erosion–dilation cycles are used with the size of the
structural element increasing with each cycle. Pore seed pixels
remaining after pore space erosion are equivalent to pores with a
diameter greater than the size of the eroding structural element.
A pore throat is defined when a large pore space is divided into
two separate pore bodies with the size of the pore throat equiva-
lent to the size of the current structural element. The inherent
biases that arise when inferring diameters from 2D images were
corrected using sample-specific bias correction values based on
principles first developed in stereology, as described in Crandell
et al. [9].

2D imaging is not traditionally used to determine changes in
the pore network resulting from secondary minerals due to the
destructive nature of sample preparation that requires epoxy
impregnation and sample sectioning and polishing. This work
takes advantage of the method developed in Crandell et al. [9]
which digitally alters SEM images to remove secondary mineral
precipitates, effectively creating an image of the pore structure be-
fore precipitation. Direct comparison of the unaltered pore struc-
ture (with secondary minerals present) and the simulated before-
precipitation structure allow for analysis of the impact of second-
ary minerals on the pore network. Note, however, that changes
in pore structure due to mineral dissolution cannot be accounted
for due to the destructive nature of sample preparation required
for 2D imaging.

2.3. Experimental permeability measurement

The permeability of sandstone sample 3w4 was experimentally
measured by Core Laboratories (Houston, TX) using a pressure-de-
cay profile permeameter [56]. A total of eight permeability mea-
surements were made on the sandstone core sample. Reference
to these experimentally measured values is to the entire range of
measured values as opposed to an average of the eight values.

2.4. Pore-network model construction

Pore-network models were created based on the model developed
in Raoof and Hassanizadeh [29] in which pores are defined on a reg-
ular, square lattice and their sizes randomly assigned from pore-radii
distributions (Fig 1.). For this work, the model was constructed of
1000 pores in a 10� 10� 10 network corresponding to approxi-
mately a 2 mm cube. No-flow boundaries were applied in two direc-
tions to create a 1D flow system with fixed fluid pressures at the inlet
and outlet of the flow direction. As permeability is an intrinsic prop-
erty of the medium, it depends solely on the properties of the medium
and does not vary with fluid velocity [57]. This was confirmed in the
pore-network model by applying different values of boundary fluid
pressures, and therefore fluid velocities, and verifying consistent
pore-network model-predicted permeability values.

The model developed by Raoof and Hassanizadeh [29] is unique
in that it allows for 26 possible connections for each pore. In our
model, the number of connections for each pore is related to the
pore size, as determined from the 3DMA rock analysis and reported
in Cai et al. [1] for the reactive Hanford column experiment and in
Kim et al. [30] for sandstone 3w4. To prevent dead-end pores,
which do not conduct flow and contribute to permeability, each
pore was assigned to have, at a minimum, two connections. This
effectively defines the minimum pore size included in the model
to a radius of 27 lm and 18 lm for the respective reacted and
unreacted Hanford column images [1] and 5 lm for the sandstone
[30]. While the correlation between pore size and coordination
number was retained from the 3D network, the connection direc-
tion was randomly assigned from one of the possible 13 forward
directions. The size of each pore throat, or connection, was ran-
domly sampled from the 2D- or 3D-determined pore-throat size
distributions. The random sampling of pore and pore-throat sizes
did create slight variations in bulk properties, such as porosity,
but this effect is expected to be minimal.

2.5. Upscaled permeability prediction

Pore-network models are used to predict permeability by using
principles of upscaling, outlined in Li et al. [31] and described below.
At the pore scale, for an incompressible fluid and constant pore vol-
ume of pore i, the sum of all pore inflows must equal all outflows or,

Xnc

j¼1

Q ij ¼ 0 ð1Þ



Fig. 1. Conceptualization of the process of informing pore-network models with information from 3D X-ray CMT or 2D SEM imaging.
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where nc is the number of connections to and from pore i and Qij the
flowrate from pore i to pore j [31]. The flowrate between pores i and
j is proportional to the pressure differential as given by,

Q ij ¼ CijðPi � PjÞ ð2Þ

where Pi and Pj are the fluid pressures in pores i and j and Cij is the
conductance [31]. Following the method of Li et al. [31], the conduc-
tance is related to the diameter of the throat connecting pores i and
j, dij, fluid viscosity v, and pore-throat length l using Poiseuille’s law,

Cij ¼
pd4

ij

128vl
ð3Þ

assuming each pore throat can be approximated as cylindrical. Eqs.
(1)–(3) are applied at the pore scale and used to calculate the pres-
sure in each node. At the continuum scale, the permeability, K, is
computed by applying Darcy’s Law,

K ¼ Q TvL
DPK

ð4Þ

where QT is the total flow rate through the network, L is the length
of the network, DP the pressure difference between the inlet and
outlet boundaries, and K the cross sectional area of the pore net-
work perpendicular to the direction of flow.

2.6. Predicted permeability distributions

Because a 1000-node 2 mm3 is a small system, we applied a sta-
tistical approach to examine variability from different manifesta-
tions, or variations in value and distribution of sampled pore and
pore-throat sizes, of such network systems. For each sample, for
both the 2D and 3D pore-radii and pore-throat size distributions,
a distribution of pore-network model-predicted permeabilities
was compiled by creating one thousand pore-network models with
pores and pore throats sampled from the image-derived distribu-
tions. For each pore-network model, the permeability was pre-
dicted as described above, applying the same boundary
conditions and model parameters. To test the sensitivity of pore-
network model-predicted permeability to image resolution and
small pores and pore throats, a series of analyses were developed.

2.6.1. Sensitivity to 2D image resolution
The sensitivity to 2D image resolution is determined in this

study using the 3w4 sandstone sample analysis. Pore-network
models were generated from pore- and pore-throat size distribu-
tions determined from two different resolutions of SEM images,
1.8 lm and 3 to 4 lm as shown in Fig. 2. These models included
all pore throats and pores with a minimum connectivity of 2, cor-
responding to a pore radius greater than 5 lm. The 2D pore-net-
work model-predicted permeability distributions are then
compared with the experimentally-measured permeability to
determine the variation in permeability with image resolution.

2.6.2. 2D versus 3D image data
A direct comparison between the 2D and 3D methods for gener-

ating statistical pore information was performed through analysis
of the sandstone sample. A 4 lm resolution 3D-predicted distribu-
tion is compared with a 3 to 4 lm resolution distribution deter-
mined from the 2D analysis. At essentially the same resolution,
this analysis allows for examination of the effect of using 2D or
3D methods to characterize the pore space for pore-network
models.

2.6.3. Sensitivity to small pore throats in 2D images
The third analysis tested the sensitivity of permeability pre-

dicted from the pore-network model to the abundance of small
pore throats as a proxy for variation in image resolution.
Pore-throat size distributions from 2D image analysis of the Han-
ford column were truncated to apply a threshold that specified
the minimum size for flow-conducting pore throats, or a pore-
throat threshold. The lower-size bound for flow-conducting pore
throats was varied in 1 lm intervals from 1 to 5 lm. As in the ori-
ginal pore-network models, these pore-network models included
all flow-conducting pores, or those with a minimum connectivity
of 2 for each pore. For the Hanford column this corresponds to a
smallest pore radius of 27 lm. Highlighted in Fig. 3 are the trun-
cated pore-throat size distributions for each of the pore-throat
threshold tests. As above, a distribution of predicted permeabilities
was computed for each threshold value by creating one thousand
pore-network models from each distribution.

2.6.4. Sensitivity to pore size and coordination in 2D images
This analysis was designed to examine the sensitivity of pore-

network model-predicted permeability to abundance of the small-
est pore sizes, which also affects the pore network by altering the
pore coordination numbers. This series of analyses involved trun-
cations to increase the smallest pore radii to 27, 30, 35, 40, 45,
and 50 lm in the Hanford column 2D pore-size distribution.
Fig. 3(B) shows the pore-radii distributions corresponding to each
test. As the coordination number is related to the pore size as de-
scribed above, increasing the smallest pore radii increases the cor-
responding smallest coordination number from 2 to 4. No change
was made to the pore-throat distribution and the original 2D dis-
tribution corresponding to a resolution of 0.4 lm was used.

2.6.5. Predictions of precipitation induced changes in permeability
The final analysis aims to predict mineral precipitation induced

changes in permeability using pore-network models informed with
both 2D and 3D distributions. As the Hanford column was scanned
using 3D X-ray CMT both before and after reaction, pore- and pore-
throat size distributions as well as corresponding coordination
data were determined. Digitally-created pre-precipitation 2D
images (see Section 2.2 and [9]) were analyzed to determine the
before-precipitation pore- and throat-size distributions. These dis-
tributions were used to generate pore-network models and corre-
sponding distributions of pore-network model-predicted
permeabilities that were compared with calculations of final per-
meability. In addition, the impact of applying a constant pore-
throat threshold, determined in the third analysis, to both before-
and after- reaction pore-throat distributions was examined.
3. Results and discussion

3.1. Hanford column experiment

3.1.1. Permeability predicted from 2D image data
The distribution of predicted permeabilities for the reacted

Hanford column computed from the pore- and pore-throat size
distributions from the 2D image analyses is shown in Fig. 4 (la-
beled 2D 0.4 lm resolution). The distribution shows a range of per-
meabilities from 6 � 10�17 to 7 � 10�16 m2 (6 � 10�5 to
7 � 10�4 D), capturing the variability in possible outcomes for
1000 versions of network models informed from the same pore-
and pore-throat size distributions. The total number of nodes
(1000) was selected to remain representative while maintaining
a reasonable computational time. We tested the representative-
ness by increasing the total number of network nodes and found
that if each network had been larger than 1000 nodes, the variabil-
ity in permeability estimates was tighter but had the same central
tendency.

Ideally, we would compare these estimates with an experimen-
tally-measured permeability for the column, but one could not be



Fig. 2. Pore- (A) and pore-throat size (B) distributions for sandstone sample 3w4 as determined from 1.8 lm (C) and 3 to 4 lm (D) resolution 2D SEM images.
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determined for a variety of reasons. However, for unconsolidated
fine-grain sands, the expected permeability range is 10�14 to
10�11 m2 (10�2 to 10 D) [58]. This range is reasonable for the unre-
acted sands. After reaction, mineral precipitation on grain surfaces
decreased pore and pore-throat sizes and cemented some of the
grains together, thereby clogging some pore throats [9]. Therefore,
the permeability of the reacted column should be lower. We may
reasonably expect the final permeability for the reacted column
to be a few orders-of-magnitude lower, such as 10�15 to
10�12 m2 (10�3 to 1 D). The expected permeability of the column
was also calculated using the Kozeny–Carman equation,

K ¼ B
/2

ð1� /Þ2
d2 ð5Þ

where B is a geometric factor of 3/2, d the average grain diameter,
and / the porosity [15,16,59]. An average grain diameter of
250 lm [1] and porosity values from both the 2D- and 3D-image
analysis in Crandell et al. [9] were used to calculate column perme-
abilities of 6.7 � 10�12 m2 (6.7 D) and 4.1x10�12 m2 (4.1 D), respec-
tively. These permeability values calculated from the Kozeny–
Carman relationship agree well with the above-mentioned range.

The entire range of pore-network model-predicted permeability
values from the 2D image analysis of the reacted column are much
smaller than those expected based on grain type and computed
from the Kozeny–Carman, by as much as 4 orders-of-magnitude.
This underestimation is because of the high abundance of small
pore throats in the distribution used to populate the network mod-
els. We speculate that some of the small pore throats do not con-
duct flow or are actually surface-roughness features (Fig. 5) that
are misinterpreted as small flow-conducting pore throats and to
accurately predict permeability using pore-network models from
the 2D distributions requires defining a pore-throat threshold for
flow-conducting pore throats.
3.1.2. Permeability predicted from 3D image data
Permeabilities predicted for the reacted Hanford column from

the pore- and pore-throat size distributions resulting from 3D im-
age analysis range from 10�12 to 10�11 m2 (1 to 10 D) (Fig. 4 la-
beled with 3D 4 lm resolution). These permeabilities are slightly
larger than the Kozeny–Carman calculated post-reaction perme-
ability. This is likely due to limitations in voxel resolution which
will cause small pores and pore throats to be missed. For a pore-
network model constructed from statistically-populated parame-
ters, this will result in overestimation of permeability.
3.1.3. 2D- versus 3D-predicted permeability and sensitivity to image
resolution

As shown in Fig. 4, for the reacted Hanford column there is a
huge discrepancy between the permeabilities predicted from the
2D and 3D pore- and pore-throat size distributions (labeled with
2D 0.4 lm resolution and 3D 4 lm resolution). We do not believe
this is an artifact of trying to determine distributions from 2D
images as there is a relatively good agreement between pore-net-
work model permeability predictions for the sandstone sample
from 2D and 3D image data of similar resolution (as presented in
Section 3.2.3). The resolution of the 2D images is 0.4 lm, and, as
stated above, may result in the misinterpretation of surface-rough-
ness features as small pore throats or require thresholding to sep-
arate flow- from non-flow conducting small pore throats.
Conversely, the voxel resolution of the 3D image data is 4 lm,
which will cause small pore throats to be missed, especially those
at grain-to-grain boundaries. Despite only a one order-of-magni-
tude difference in image resolution, the predicted permeabilities
are more than four orders-of-magnitude different. The series of
analyses further examines the impact of image resolution on
pore-network model-predicted permeability and subsequently
the impact of underestimating or overestimating small pores and
pore throats.



Fig. 3. Pore- (B) and pore-throat (A) size distributions for Hanford column determined from 0.4 lm resolution 2D SEM images. Horizontal bars reflect the portion of the pore-
or pore-throat distribution included in the thresholding analyses that vary the smallest pore and pore-throat radii included in the pore network model.
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3.2. Sandstone sample 3w4

3.2.1. Permeability predicted from 2D image data
The permeability for sandstone 3w4 was predicted using pore-

network models informed from two resolutions of 2D images as
shown in Fig. 6. For the 1.8 lm resolution images, permeability
predicted from pore-network modeling ranged from 2 � 10�15 to
2 � 10�14 m2 (2 � 10�3 to 2 � 10�2 D). The permeability range pre-
dicted from the pore-network model informed by the 3 to 4 lm
resolution 2D images is much higher, spanning 2 � 10�13 to
8 � 10�13 m2 (0.2 to 0.8 D). Also shown in Fig. 6 is the range of
experimentally-measured permeability values for sandstone 3w4.
In comparison, permeabilities predicted from the pore-network
modeling informed from the 1.8 lm resolution 2D images are
much smaller, by up to two orders-of-magnitude. Permeability val-
ues predicted from pore-network models informed from 3 to 4 lm
resolution images agree relatively well with the experimentally-
measured values. This suggests that the 1.8 lm resolution images
misinterpret small pore throats and require thresholding to sepa-
rate flow-conducting pore throats from other small pore throats
or surface-roughness features, a concept that is further explored
in the series of analyses to follow.

3.2.2. Permeability predicted from 3D image data
As is also shown in Fig. 6, permeability predicted from the pore-

network model using the 3D-determined pore- and pore-throat
size distributions for the sandstone sample 3w4 range from
5 � 10�13 to 2 � 10�12 m2 (0.5 to 2 D). These permeability predic-
tions are slightly larger than the experimentally-measured values,
within one order-of-magnitude. Voxel resolution limitations, as
postulated above, are likely underestimating small flow-conduct-
ing pore throats resulting in overestimating predicted permeabil-
ity. This projection is consistent with the results present in
Caubit et al. [22] who observed X-ray CMT voxel limitations led
to overestimations of predicted permeability.

3.2.3. 2D- versus 3D-predicted permeability and sensitivity to image
resolution

As observed for the Hanford column analysis above, small dif-
ferences (microns) in 2D versus 3D image resolution resulted in a
large difference (orders of magnitude) in pore- network model per-
meability predictions. The analysis for the 3w4 sandstone, how-
ever, has the advantage of being able to compare similar
resolutions in 2D and 3D as well as compare pore-network mod-
el-predicted permeabilities with experimental values. Predicted
permeabilities from the pore-network models informed from 2D
and 3D imaging data with comparable resolution agree relatively
well (Fig. 6). The permeability predictions from the pore-network
model based on 2D images at 3 to 4 lm resolution have a slightly
lower range of permeability values predicted. This is likely because
their slightly higher (up to 1 lm) resolution captures some smaller
pore throats missed in the 3D analysis. While both the 2D and 3D



Fig. 4. Distributions of pore-network model-predicted permeabilities for the reacted Hanford column from 3D images (at 4 lm resolution) and from 2D images with
increasing pore-throat threshold (indicated above the distribution).

Fig. 5. SEM BSE images of reacted Hanford sediment where surface roughness features create small pores and pore throats.

8 L.E. Beckingham et al. / Advances in Water Resources 62 (2013) 1–12
�4 lm resolution pore-network model permeability predictions
agree relatively well with the experimentally-measured values,
there is better agreement with the slightly better resolution (3 to
4 lm) 2D predictions. This suggests that a resolution of 4 lm is
slightly too coarse to completely capture all permeability control-
ling features. In addition, this analysis shows a resolution of 1.8 lm
overestimates small features. The ideal resolution for the sand-
stone sample would fall between 1.8 lm and 4 lm, closer to
4 lm than 1.8 lm. This may also be the ideal image resolution
range for the column sample as a similar relative agreement be-
tween the 4 lm pore-network model-predicted and Kozeny–Car-
man computed permeability values was observed.

3.3. Further analyses

3.3.1. Sensitivity to small pore throats in 2D images
As the pore-throat threshold for the 2D Hanford reacted column

images was increased from 0.4 lm to 1, 2, 3, 4, and 5 lm, the pore-
network model-predicted permeabilities increased by up to three
orders-of-magnitude as shown in Fig. 4. The difference between
two pore-network model-predicted permeability distributions de-
creases as the size of the smallest pore throat increases. For exam-
ple, there is less difference between the pore-network model-
predicted distributions from smallest pore throats with radii of
4 lm and 5 lm than there is between distributions predicted with
smallest pore throats of 1 lm and 2 lm. This suggests that the
smaller the pore-throat size, the larger effect it has on decreasing
pore-network model-predicted permeability.

While the differences between pore-throat thresholds are small,
a maximum of 1 lm, their impact on pore-network model-predicted
permeability is large, up to three orders-of-magnitude. Small in-
creases (microns) in the smallest flow-conducting pore-throat size
have huge impacts on pore-network model-predicted permeability
because of the high abundance of small pore throats in the 2D distri-
butions. As the pore-throat threshold is increased, many small pores
are removed from the sampling distribution. Decreasing the total
number of small pore throats reduces the proportion of small pore
throats to total pore throats. This results in a higher fraction of
flow-through larger pore throats in the network, increasing pore-
network model-predicted permeability. Additionally, as the thresh-
old is increased, the smallest pore throat included in the model in-
creases in size, which increases predicted permeability.

In comparison with the expected permeability of the reacted
column, computed above from the Kozeny–Carman relationship,



Fig. 6. Distributions of pore-network model-predicted permeability for sandstone sample 3w4 from 2D images of two different resolutions, 3D image analysis, and
experimentally-measured permeability.
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a large flow conducting pore throat threshold was required to pre-
dict permeability from the pore-network model. The Kozeny–Car-
man computed column permeability, as calculated in Section 3.1.1,
is approximately 4 to 7 � 10�12 m2 (4 to 7 D). To reach this Koze-
ny–Carman computed permeability, a pore-throat threshold be-
tween 10 lm and 15 lm was required. This suggests that the
high resolution 2D pore-throat distribution is overestimating small
flow-conducting pore throats as it required removing all pore
throats with a radii less than at least 10 lm to predict the perme-
ability from the pore-network model that was computed from the
Kozeny–Carman relationship for the column.
3.3.2. Sensitivity to small pores in 2D images
The smallest pore in the original Hanford column 2D distribu-

tion had a radius of 27 lm, set to correspond to a minimum con-
nectivity of 2. As the size of the smallest pore included in the
pore network was increased up to a radius of 50 lm, there was rel-
atively little change in the pore-network model-predicted perme-
ability distributions (see Fig. 7). The distributions that include all
flow-conducting pores and those with a minimum pore radii of
50 lm are only slightly different and even have some overlapping
permeability predictions. In fact, for all pore radii tested, the pore-
network model-predicted permeability distributions overlap the
original permeability predictions for the unaltered 2D distribu-
tions. This shows that the pore-network model-predicted perme-
ability is not very sensitive to the smallest pore radii.

In comparison with changing the smallest pore throats, as in the
last analysis, the sensitivity of pore-network model-predicted per-
meability to smallest pores is small. The minimum pore radius was
increased by 23 lm while in the previous analysis, the smallest
pore-throat size was effectively increased by 4.6 lm. Despite that
the increase in minimum pore radius in this analysis was five times
greater than the increase in pore-throat size in the last analysis, the
differences in the pore-network model-predicted permeability dis-
tributions are substantially less. This is further evidence that the
pore-network model-predicted permeability is much more sensi-
tive to changes in pore-throat sizes than pore radius and evidence
that the smallest pore throats control the permeability if it is pre-
dicted from a statistically-sampled pore-network model.
3.3.3. Predictions of precipitation-induced changes in permeability
The Hanford column permeability predicted from the pore-net-

work model informed from the 2D before-reaction images, i.e.
those with precipitation digitally removed, ranged from
6 � 10�14 m2 to 6 � 10�15 m2 (6 � 10�2 to 6 � 10�3 D) as shown
in Fig. 8. In comparison with the permeability predicted from the
pore-network model based on the reacted 2D SEM images of the
column, precipitation caused a decrease in permeability of up to
two orders-of-magnitude. However, as stated in Section 3.1.1, the
expected permeability range for the unreacted sediment is 10�14

to 10�11 m2 (10�2 and 10 D) and the Kozeny–Carman computed
permeability for the column before reaction is 1.8 � 10�11 m2

(18 D) and 6.3 � 10�12 m2 (6.3 D) for the 2D and 3D analyses,
respectively. Thus, as was true with the unaltered images, pore-
network model-predicted permeabilities from the digitally-altered
images is lower than the expected column permeability. Again, the
high-resolution 2D images underpredict permeability by overesti-
mating small pore throats.

To accurately predict permeability of the column, a pore-throat
threshold of 10 to 15 lm needs to be applied. Applying a pore-
throat threshold of 15 lm to the before-reaction pore-throat distri-
bution predicts permeabilities between approximately
3 � 10�12 m2 and 8 � 10�12 m2 (3 to 8 D) which is in good agree-
ment with the Kozeny–Carman computed permeability. Compar-
ing the thresholded before- and after- pore-network model-
predicted permeabilities shows a much smaller reaction-induced
decrease in permeability, within an order-of-magnitude.
4. Conclusions

We showed that permeabilities predicted from statistically-in-
formed pore-network models were very different depending on
the images that were used to determine the probability distribu-
tions of pore-throat sizes. In the Hanford column experiment, a
one order-of-magnitude difference in image resolution resulted
in over four orders-of-magnitude difference in pore-network mod-
el-predicted permeability. While the experimental permeability
for this column was not known, based on Kozeny–Carman approx-
imations we speculate that the column permeability was between



Fig. 7. Distributions of pore-network model-predicted permeabilities for the Hanford reacted column from 2D 0.4 lm resolution images with varying smallest sizes for the
pore-size distributions of 27, 30, 35, 40, 45, and 50 lm.

Fig. 8. Distributions of pore-network model-predicted permeabilities for the Hanford reacted column and before-reaction column from 2D image analyses (with no pore-
throat threshold). Also shown are permeabilities before- and after-reaction predicted from 2D pore-throat distributions with a pore-throat threshold, or minimum flow-
conducting pore-throat size, of 15 lm.
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these two endpoints. That is, the high-resolution 2D image analysis
resulted in underestimation of the permeability and the lower-res-
olution 3D image analysis resulted in slight overestimation of the
permeability. For the 3w4 sandstone sample, there was a relatively
good agreement between the experimentally-measured perme-
ability and that predicted by the pore-network model informed
by information from 2D images with resolution of 3 to 4 lm. How-
ever, there was a huge discrepancy when predictions were based
on 2D images with the highest resolution, 1.8 lm.
Collectively, this suggests that at high resolution, porosity fea-
tures are misinterpreted as permeability-controlling features, and
at low resolution, important permeability-controlling features
may be missed. This is in agreement with prior work by Caubit
et al. who found limitations in X-ray CMT voxel resolutions missed
some important small-scale features resulting in over-estimating
permeability values [22]. The analyses presented in the sections
above also revealed that 2D and 3D analysis at comparable
resolutions may result in relatively equivalent predictions of
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permeability, as was the case for the sandstone sample. This sug-
gests that the discrepancy in pore-network model-predicted per-
meability is not a result of 2D versus 3D image analysis, but a
result of differences in image resolution. This was examined in a
series of analyses designed to explore the sensitivity of permeabil-
ity predictions to image resolution. For the 2D images, the result-
ing pore-throat size distributions were thresholded, which served
as a proxy to reducing the resolution of the 2D image as the size
of the smallest features captured would increase as resolution
was decreased. Contrary to what was expected, for the Hanford
column case, a 4 lm thresholded 2D image is not equivalent to a
4 lm resolution 3D image set in terms of pore-throat size distribu-
tion and the resulting pore-network model permeability predic-
tion. A resolution threshold of 15 lm was needed to match the
pore-network model permeability prediction from the 3D image
analysis. As pointed out in Caubit et al. [22], decreasing the image
resolution also introduces imprecisions in determining the pore
and pore-throat sizes. Therefore, the discrepancy between the 2D
4 lm thresholded predictions and the 3D 4 lm predictions may
be due to the combined effects of missing small pores and pore
throats and imprecisions in pore and pore-throat sizes.

This work has shown that the permeability predicted by pore-
network modeling is controlled by the smallest pore-throat size
and is not very sensitive to changes in small pores. It is therefore
necessary that small pore throats are accurately determined from
the imaging and analysis method. In terms of predicting the effects
of geochemical reactions, small changes in pore-throat size due to
mineral precipitation or dissolution may result in large changes in
permeability. It is most important to understand how mineral dis-
solution and precipitation reactions alter the smallest pore throats
to predict the corresponding changes in permeability. It is also
worth noting that several other bulk rock properties beyond sin-
gle-phase permeability may be affected by variation in small
pore-throat sizes as well but these effects are not considered here.

Much of the analysis presented in this paper focused on 2D
images because this enabled an investigation of the effects of fine
image resolution. However, it remains the case that 3D imaging is
essential for informing pore-network models because the only way
to characterize pore-network structure and pore connectivity is
from 3D imaging. Nonetheless, the findings from this work have
important implications for interpretation of 3D scans, as it is inev-
itable that as imaging technologies improve, the resolution capa-
bilities of 3D imaging will improve as well. While we are
inclined to favor increasingly higher resolutions as superior, we
demonstrated that a higher image resolution does not necessarily
improve permeability predictions. In fact, a higher image resolu-
tion may actually underestimate permeabilities. This underestima-
tion may be a result of misinterpreting flow-conducting small pore
throats or misinterpreting surface-roughness features as small
pore throats. To separate no-flow small pore throats from flow-
conducting pore throats would require selecting a threshold for
the minimum flow-conducting pore-throat size. However, in sta-
tistically-based pore-network models, predicted permeabilities
are highly sensitive to the smallest pore throats and selecting a
pore-throat threshold a priori is not a trivial matter as small
changes in the threshold can result in order-of-magnitude changes
in predicted permeability. For the samples studied here, a resolu-
tion threshold between 3 and 15 lm was effective in accurate per-
meability prediction, but more work would need to be done to
determine if these results are applicable beyond these samples.
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