BROOKHFEAVEN

NATIONAL LABORATORY BNL-105490-2014-JA

THE EMERGENCE OF OPEN SOURCE SOFTWARE FOR THE
WEATHER RADAR COMMUNITY

M. Heistermann', S. Collis2, M. J. Dix0n3, S. Giangrande4, J.J. Helmusz,
B. Kelleys, J. Koistinené, D. B. Michelson’, M. Peuraé, T. Pfaff® , and D. B. Wolff’

[11{University of Potsdam, Institute of Earth and Environmental Sciences, Potsdam, Germany}

[2] {Argonne National Laboratory, Argonne, lllinois, USA}

[3] {National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA}

[4]{Brookhaven National Laboratory, Environmental Sciences Department, Upton, New York, USA}
[5] {NASA GSFC/Wallops Flight Facility, Wallops Island, Virginia, USA}

[6] {Finnish Meteorological Institute, Helsinki, Finland}

[7]1 {Swedish Meteorological and Hydrological Institute, Norrkdping, Sweden}

[8] {University of Stuttgart, Institut fir Wasser- und Umweltsystemmodellierung, Stuttgart, Germany}

Correspondence to: Maik Heistermann, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany; e-
Mail: maik.heistermann @uni-potsdam.de; phone: +49 331 977 2671

May 2014

For publication in
Bull. Am. Meteorol. Soc.
(e-view, doi:10.1175/BAMS-D-13-00240.1, 2014).

Environmental & Climate Sciences Dept.

Brookhaven National Laboratory
P.O. Box 5000
Upton, NY 11973-5000
www.bnl.gov

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under
Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the
manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others
to do so, for United States Government purposes.

This preprint is intended for publication in a journal or proceedings. Since changes may be made before
publication, it may not be cited or reproduced without the author’s permission.

judywms
Typewritten Text
BNL-105490-2014-JA

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

Capsule
To date, progress in the use of weather radar observations has been impeded by a lack of
community-based software development. Recently, though, several Open Source products have

demonstrated that OSS can be a real benefit to the radar community.

Abstract

Weather radar analysis has become increasingly sophisticated over the past 50 years, and
efforts to keep software up to date have generally lagged behind the needs of the users. We argue
that progress has been impeded by the fact that software has not been developed and shared as a

community.

Recently, the situation has been changing. In this paper, the developers of a number of Open
Source Software (0SS) projects highlight the potential of OSS to advance radar-related research.
We argue that the community-based development of OSS holds the potential to reduce
duplication of efforts, and to create transparency in implemented algorithms while improving the
guality and scope of the software. We also conclude that there is sufficiently mature technology to
support collaboration across different software projects. This could allow for consolidation
towards a set of interoperable software platforms, each designed to accommodate very specific

user requirements.

1 Introduction

Since the emergence of weather radar technology in the 1940s, research has sought to tap the
full potential of weather radar observations. During the digital age, improvements in radar
technology have been closely linked to advancements in computer science and software

engineering. Making use of modern radars is not possible without software.

Much progress has been, and continues to be made in the acquisition, analysis, display and use
of weather radar data. A great deal of software exists for radar data processing — some of it old
and some new, some proprietary and some freely available, some good and some not so good.
What is clear to most people who work in this field is that the amount of time spent dealing with
outdated or inadequate software significantly reduces the time available for making scientific
progress. File formats are varied and non-standard; software works on some platforms and not on
others. Good documentation is scarce. Work is repeated by multiple organizations over and over

again. Systems developed by different organizations do not interact well with each other.

In this paper, we argue that community-based Open Source Software (0OSS) development could
provide the means to reduce these inefficiencies, and to improve the standard and scope of
weather radar software. We define OSS as “software with its source code made available and
licensed in a way that provides the rights to study, change and distribute the software to anyone

and for any purpose.” (St. Laurent 2008).

In order to explore the specific role of OSS in the field of radar data processing, we address the
following topics: What is actually required from radar processing software (Section 2)? Why do we
expect OSS to better meet these requirements (Section 3)? In Section 4, we highlight five active

0SS projects, and present lessons learned from these projects in Section 5. Section 6 discusses

how the efforts of those projects might be combined such that the whole is greater than the sum

of its parts. Section 7 finally presents our overall conclusion.

2 The “radar processing chain” and its components

A prime feature of radar data processing is the large number and variety of steps that need to
be taken along the different levels of a processing chain. Such a chain begins at the digital signal
receiver and ends at one out of countless products required by different users. Basically, each of
these specific user requirements implies the design of a specific processing chain. It would be
beyond the scope of this paper to list all of the specific requirements, e. g. in radar engineering,
severe weather detection, atmospheric modeling, water resources management, agriculture,
validation of remote sensing products, TV broadcasting, or even the tracking of non-

meteorological echoes such as birds and insects.

Instead, we briefly outline typical components of a radar processing chain. Section 3 will then
introduce how OSS can improve these individual components, and to gain more flexibility in

tailoring processing chains to meet specific user requirements.

Receiver level processing

Modern digital radar receivers provide access to the time series (pulse-by-pulse) data. By
analyzing the time series and related Doppler spectra, it is possible to identify and possibly remove
clutter, echoes from anomalous propagation, and other artifacts. Radar 'moments' such as
reflectivity, Doppler velocity and spectrum width, and dual-polarization fields may then be
computed (Doviak and Zrnic 1993, Bringi and Chandrasekar 2001). On many systems this
processing is complete by the time the moments data are made available to the user, in which

case time series data are not available.

Data handling and format conversion
In working with radar data, a frequent challenge is the decoding of a multitude of different file
formats for data storage and exchange. Despite efforts towards common data models (see Section

3), different dialects still exist in addition to a large variety of legacy formats.

Translation to Cartesian coordinates, merging data from multiple radars

Raw radar observations exist in spherical coordinates, with the added complexity of earth
curvature and beam bending due to atmospheric refraction. For many applications, variables in
polar coordinates must be projected to a Cartesian reference system, a precondition for their
integration with other geo-data. If multiple radars are operated in a network, it is likely that the

data must be collated and merged onto a common grid.

Algorithms

A wide variety of algorithms may be applied in a typical weather radar processing chain. These
algorithms include e.g. Doppler-velocity dealiasing, echo and storm motion tracking, as well as
vertically-integrated liquid estimation. Often, these fields serve as primary inputs to operational
and research grade severe storm products that require single- and multi-Doppler wind retrievals,
mesocyclone or tornadic rotation identification, and echo classification such as
convective/stratiform discrimination and hail designation. Subsequent algorithms introduce
conversions from radar moment to product fields, most notably the conversion from reflectivity
factor to precipitation intensity. Challenges in quantitative precipitation estimation are addressed

in the following paragraph in more detail.

Quantitative Precipitation Estimation

For quantitative precipitation estimation, a multitude of potential error sources need to be

accounted for. These are typically inhomogeneous in space and time (Germann et al. 2006, 2009).
On the one hand, these errors are introduced through the fundamental limitations of the
measurement approach — the instantaneous, volume-integrated measurements of a quantity aloft
which is only indirectly related to precipitation. On the other hand, quantitative estimation is
impaired by a wide range of specific errors and artifacts such as calibration, ground echoes,
attenuation, bright-band echoes associated with the melting layer, uncertain Z(R) relationships,
and others (Villarini et al. 2010). Addressing these errors requires a combination of advanced
correction algorithms. It should be emphasized, though, that different users usually have different
perceptions of “data quality” that may imply different priorities in the correction of quantitative
errors. Most algorithms come with an intrinsic trade-off as they potentially introduce new errors
while removing others. For example, one user might favor an aggressive clutter elimination in
order to assimilate the radar product into a Numerical Weather Prediction model (Fornasiero et al.
2006; Peura et al. 2006), while another user might prefer a more conservative product in order to
detect small scale convective features. A single product, even if created with the best methods

currently available, will not be able to accommodate all these needs simultaneously.

Displays and visualization
One of the most important requirements for end users is the visualization of observed and
derived quantities, ideally including different varieties of horizontal and vertical cross-sections,

animated loops, and integration with data in other coordinate projections.

3 The potential benefits of Open Source Software
0SS has grown significantly over the recent decades, and has a strong presence in scientific
computing. The motivations for using and developing OSS are mixed, ranging from the

philosophical to purely practical (see e. g. WGLS 2000).

Raymond (1999) highlighted the community aspects of OSS, while Casson and Ryan (2006)
pointed out the benefits of affordability, flexibility, transparency, interoperability, and perpetuity
(or longevity). In the following, we would like to point out specific implications of these benefits

for weather radar software.

Affordability (of infrastructure)

From a software engineering perspective, the most challenging part of a radar processing chain
is the establishment of a common infrastructure that enables the implementation of advanced
processing algorithms. Building infrastructure is expensive, but if done right it enables rapid
implementation of more complex algorithms and other processing steps. Given good
infrastructure, developers can focus on making actual progress instead of redundant programming

efforts.

Flexibility (in tailoring processing chains)

As we pointed out in Section 2, different users have different notions of what constitutes “good
quality”. From the perspective of application development, specific user priorities are typically
addressed by a specific combination of algorithms in the processing chain. For that purpose, open
algorithms can be used as building blocks to facilitate tailoring such custom production chains.
More generally, OSS allows modifying the software in order to custom-tailor solutions, e. g. for

addressing specific needs towards the integration into specific infrastructures or large companies

or agencies.

Transparency (and its implications for scientific progress)

Making algorithms transparent, open and well-documented has implications for scientific and
technological progress. Scientific publications usually do not provide sufficient detail to allow
other researchers to exactly reproduce the presented results. A reference to transparent open
software code could provide the required level of detail, and thus allow for reproducibility and
comparability. Combining the benefits of community-based development with a public review of
open code could lead the way towards standardization of specific processing steps. In fact, the
innovation process of OSS in general has been related to the process of knowledge production in
science (von Krogh and Spaeth 2007). Furthermore, OSS could accelerate scientific and
technological progress by providing mechanisms for incorporating code from other software
products, e.g. as libraries, modules or code fragments. We can think of this as cross-fertilization,
the efficiency of which is determined by the level of interoperability (see next paragraph) and the
standard of documentation. The concept of Open Algorithms can be seen as a “best practice” in
this regard. Open Algorithms implement standardized documentation at a high abstraction level,
independent from any specific programming language, in order to facilitate implementation on
any platform. An exemplary collection can be found in the BALTRAD cookbook

(http://git.baltrad.eu/trac/wiki/cookbook).

Interoperability (using common and open data models)

Open data models offer transparency to both data producers and users. These models
encourage international data exchange (Viglione et al. 2010), and help to bridge gaps between
communities (e. g. academia and operational organizations). The adoption of open and common
data models simplifies software by reducing the number of formats to be supported, which in turn

9

reduces the software development costs, and increases interoperability among different software

platforms.

In the radar world, the Universal Format (Barnes 1980) was an early attempt at achieving this,
and it is still supported through RSL and Radx (see Section 4). More recent data models are mainly
based on NetCDF and HDF5 formats. The OPERA Data Information Model (ODIM) has evolved in
Europe (Michelson et al. 2014, Michelson et al. 2003), and exists in HDF5 and BUFR
representations. The ODIM_H5 representation has spread widely, being embraced by the
community to the extent that, as of February 2014, it is used by 23 of the 25 countries that
currently provide their data to the European radar composite products being produced by
OPERA's data center Odyssey. ODIM_H5 is also widely supported by industry. Similarly, the
successful development and proliferation of CF Conventions (Eaton et al, 2011), building on

NetCDF, has led to the CfRadial data format for data in polar coordinates (Dixon et al, 2013).

Longevity (of community efforts)

Individual (closed-source) efforts often last only as long as their principal author remains
actively involved, and they subsequently tend to languish through lack of software maintenance
and support. Community projects can achieve longevity provided the community exceeds a critical
size. The Linux Foundation is an example of how communities have even established their own

institutions to achieve this aim.

10

4 Examples of individual Open Source Software projects

This section describes five community-based OSS projects, without claiming to be exhaustive.
We outline the history, background and intended users of these projects, and show how they
themselves have benefited from other open source software. In addition, we provide tabular
details with respect to technical features (Table 1), supported data formats (Table 2), and available

features for quality control and error correction (Table 3).

Insert Tables 1-3 within Section 4 of the manuscript

(see tables at the end of the manuscript)

LROSE / TITAN

The initial goal of TITAN (http://www.rap.ucar.edu/projects/titan) was to evaluate the

effectiveness of rainfall-enhancement experiments in South Africa in the early 1980s.
Development then moved to NCAR with the goal of thunderstorm tracking and nowcasting (Dixon
and Wiener, 1993). In 2002, TITAN was released as open source. Its permissive license “allows you
[...] to use, copy, display, perform and redistribute the Software, with or without modification, for
any legal purpose, free of charge.” Over time TITAN has grown into a relatively large system,
including a data infrastructure layer, a large suite of algorithms, multiple displays and real-time

process control.

The LIDAR RADAR Open Software Environment (LROSE) project was conceived as a follow-on to
TITAN. Seed funding for the project was obtained from the US National Science Foundation in
2012, with initial priority given to the implementation of a standardized open data model. To date,
progress has been made on the CfRadial data format and on Radx, an open source library and a

basic set of applications for manipulating radar and lidar data in polar coordinates

11

(http://www.eol.ucar.edu/software/radx). LROSE builds upon the open source code base provided

by TITAN and other legacy software developed at NCAR, as well as on the open source NetCDF and

HDFS5 libraries.

RSL

NASA's Radar Software Library (RSL) was developed in the early 1990s to support the Tropical
Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM) Ground
Validation (GV) programs. The goal of RSL was to provide a set of library functions to ingest
various formats into a well-defined radar “super-structure” that could be used with data analysis
modules in a transparent way. This “super-structure” is composed of a header containing site
information, along with a number of volume structures. Using this paradigm allows for writing
format-independent modules, and thus interoperability. RSL forms the backbone of NASA's
Ground Validation System (GVS) which provides science products (3-d Cartesian grids, rain maps,
rain type, etc.) to NASA and the science community. RSL is also used by other groups from within
and outside the United States, including government agencies, academia and other research
groups. As a library, RSL is intended for software developers. RSL has been successfully
incorporated in the Py-ART software (see below), and a high-level implementation is available for

IDL.

BALTRAD

15 partners in 12 countries are developing a system for weather radar networking and data
processing, using European structural funds. The BALTRAD project is operationally oriented, with
the objective to provide real-time infrastructure to the Baltic Sea Region in support of a multitude
of applications, including the transport sector, hydrology, radiation and nuclear safety, and
numerical weather prediction. The community-based nature of the partnership is a cornerstone

12

that stems from the reality that many small organizations do not have sufficient weather radar
expertise of their own and are therefore reliant on international cooperation to make progress

(Michelson et al. 2010, Michelson et al. 2012).

The primary goal in developing the BALTRAD software was to create and use modern data
exchange methods. Data processing is optional, recognizing that some partners already have
processing chains with which they are content. Therefore, the system is built modularly so that the
major components are independent and communicate using open TCP-based mechanisms.
Instead of enabling the management of data in various formats, the approach has been to convert
all data to the open ODIM_H5 standard (Section 3). The community has been remarkably
successful in creating translation software that is applied in each country to convert from in-house
or proprietary formats to ODIM_H5. The decentralized nature of the network implies that all
partners use the same system to exchange polar radar data, and the system can then be used by
each partner locally, using a common set of algorithms, to tailor the production chain to meet

their purposes.

The BALTRAD Toolbox forms the data processing framework (Henja et al. 2010). The real-time
focus calls for a design that uses common functionality for file I/O, and the ability to chain well-
defined processing algorithms in memory. Tools developed by different partners, some of which
pre-date the project, are integrated by combining the partners' open algorithms with the toolbox
file 1/0 functionality; examples are Ropo (Peura 2002), Rack (Peura 2012), and RADVOL-QC
(Osrédka et al. 2012). Together with asynchronous parallel processing, this allows for scaling of

the applications to the European continental level (Henja and Michelson 2012).

13

Py-ART

The Python-ARM Radar toolkit (Py-ART) is an architecture for geophysical retrievals from radial
and gridded remote sensing data. Py-ART was designed to add value to the Atmospheric Radiation
Measurement, ARM (Ackerman and Stokes 2003), Climate Facility's scanning radars (Mather and
Voyles 2013). In Py-ART, polar volumes and Cartesian grids are read into standard data objects
(the Radar and Grid objects) which are fully self-describing. The underlying Radar structure is
based on the CfRadial information model (see Section 3); however, Py-ART also supports a range

of other formats (see Table 2).

The following is an example of an application chain that has been set up within the ARM
program: (1) read in raw data from the ARM C-Band system in Oklahoma, (2) adjust for reflectivity
offsets, (3) extract the propagation component from the differential phase (Giangrande et al.
2013), (4) infer specific attenuation based on Gu et al. (2011), (5) retrieve rainfall rates as a
function of specific attenuation (Ryzhkov et al. 2014), and then (6) use a k-d or ball-tree based

objective analysis technique (Barnes 1964) to map these rates to a Cartesian grid.

Py-ART is available on GitHub as a community code base and has already received contributions
from users within and outside the ARM program. In addition to various open-source scientific
Python libraries (NumPy, SciPy, matplotlib), Py-ART incorporates radar-specific open-source
libraries such as RSL (see above) and the Four-D Doppler dealiasing scheme (James and Houze

2001).

wradlib
The development of wradlib (Heistermann et al. 2013) was initiated in 2011 by the Universities

of Potsdam and Stuttgart, Germany. wradlib aims to facilitate interactive analysis of radar data

14

and off-line processing in research environments. Operational applications might be possible, but
are, so far, not the main development goal. Basic processing offers access to a wide range of
national and international file formats, georeferencing, gridding and compositing, as well as high-
level visualization on the polar and Cartesian levels. Other modules address the detection and
correction of major error sources as well as differential phase processing (Table 3). In this way,
wradlib allows the user to customize workflows in order to meet various requirements. Among the
users and the developers, there is a strong focus on hydrological applications. wradlib is designed
to support Windows, Linux and Mac OS platforms. This is facilitated by using Python as the
principal programming and interface language. wradlib also makes use of various open scientific

Python libraries (e. g. NumPy, SciPy, matplotlib), as well as the open OPERA BUFR software.

Another motivation for wradlib was to provide a community platform to develop and share
code across institutional boundaries. Given that it has no dedicated funding, wradlib's
development is actually driven by its (as yet small) user community. Therefore, extensive steps
have been undertaken to facilitate collaboration and exchange between users and developers,
including distributed version control and public code hosting, mailing lists for users and

developers, and extensive on-line documentation (http://wradlib.bitbucket.org), with an

infrastructure to keep code and documentation synchronized. This documentation not only
provides a detailed APl reference, but also allows newcomers to get started with tutorials, recipes
and worked examples which also demonstrate how to combine the different functions in order to

create complete workflows.

5 Lessons learned
In Section 3, we pointed out the promises of the Open Source paradigm to the field of radar

data processing. The recent emergence of several OSS platforms provides evidence that some of

15

these promises might just come to fruition: Five active OSS community projects were reviewed in

Section 4, and some distinct lessons can be learned from their comparison:

First, most projects are very specific with respect to their background and their intended users.
Py-ART and wradlib are similar in their intention to facilitate convenient, interactive tool-sets in
typical research environments. This implies a focus on rapid prototyping of new algorithms, and is
achieved by using a high-level language such as Python and correspondingly high-level libraries for
scientific computing and visualization. In contrast, BALTRAD's prime feature is the operational,
real-time exchange and processing of data in large radar networks. LROSE is somewhere in
between, as it aims to suit both operational system requirements and research environments.

Finally, RSL focuses entirely on its role to provide a uniform interface for legacy formats.

Second, we have shown how some of the projects have benefited from the incorporation of
code from other OSS projects (both specific and unspecific to radar), supporting our hypothesis
that OSS speeds up scientific progress in the field of radar data processing. In Section 3, we
established that interoperability enhances the potential for “cross-fertilization” effects among
different platforms. The interaction between the BALTRAD exchange system and the BALTRAD
Toolbox as well as the incorporation of the RSL library in Py-ART are excellent examples. It is
interesting to note, though, that strategies to ensure interoperability differ among platforms.
BALTRAD entirely relies on the ODIM data model and leaves it to the community to decide how to
convert local data to achieve ODIM compliance. LROSE, Py-ART, RSL, and wradlib also support the
modern open data models; however, their strategy is to include as many legacy formats as

possible, to meet the requirements of their respective user communities.

Third, the role of “community” deserves some clarification. So far, we have mainly focused on

16

the role of 0SS, but the projects presented all have a substantial community involvement. This is a
typical feature of OSS projects, but not a prerequisite. Furthermore, the notion of community in
0SS is necessarily fuzzy. Traditionally, we distinguish between user and developer communities,
but for 0SS, these communities interact at multiple levels. According to Robles (2004), users
should rather be considered as co-developers. This concept is very real in all of the
aforementioned 0SS projects where the developer communities actually form part of the user
communities. Users contribute feedback in terms of bug reports and feature requests. Most of the
projects undertook extensive measures to encourage user feedback (e. g. by issue tracking and
mailing lists). As a side effect of mailing lists, active user communities are typically eager to

provide support to fellow users.

The experiences with community involvement in BALTRAD deserve some special attention.
BALTRAD is not only unique from a technical point of view, but also with respect to the scale of
funding, the size of the partnership, and the operational ambition. Following its public release, the
software has been downloaded widely and deployed in some cases by organizations outside the
partnership. The incubator nature of the EU structural funds has obviously succeeded in creating a
critical mass and momentum that is set to continue. The funds have been helpful in establishing a
large community, but it has been a challenge to efficiently implement the concepts of community-
based development. In particular, it proved difficult to combine the two aims of (a) establishing a
central, sustainable and operationally viable architecture, and (b) integrating the interests of the
partners, some with significant legacy code bases. This conflict has the potential to impede the
implementation of OSS concepts, particularly if issues of distrust among partners are not

addressed, and if partners feel that their own interests do not align with community interests.

It might be obvious that such tensions are inevitable in large consortia. However, for scientists

17

and OSS enthusiasts it might be a new and perhaps disillusioning experience that the Open Source
sector is not immune to such issues. The lesson learned at least from BALTRAD is that working as a
community with Open Source requires making an extra effort, that must not be underestimated,

to understand how each partner can both contribute and benefit.

However, this is not the only area of conflict. Other issues emerged from Section 4 that indicate

trade-offs and the need for compromises:

(a) Real-time operations vs. research lab: performance is a fundamental issue in any real-time
operation that involves large radar networks. In settings where performance is a priority, we
traditionally find dense software code written mostly in low level languages, at the cost of clarity
and transferability. In contrast, researchers often prefer high level programming languages which
allow for rapid prototyping and legible code, however, at the cost of performance. Good coding
practices can minimize this trade-off, but probably not resolve it. Likewise, good system design can

reduce the effort required to migrate code from research to operations.

(b) Linux vs. Microsoft: Many operational services traditionally rely on UNIX/Linux systems. This
also holds true for many scientists from the meteorological community. Nonetheless, Microsoft
Windows is widely used in research environments. Therefore, platform support (including
Windows) is a substantial criterion for some users. Platform independence is easier to achieve via
high-level programming languages, but again, somewhat at the cost of performance. So far,

wradlib is the only package that explicitly supports both Linux and Microsoft Windows.

(c) Enterprise vs. community support: There is no definite distinction between proprietary and
open-source products with respect to support and maintenance strategies. There may be

substantial community support available for commercial products. Then again, developers or third

18

parties often provide commercial support and maintenance packages for community-based OSS
products. The same fuzziness applies to long-term support: users generally expect long-term
stability and support from commercial vendors; however, this expectation falters if a company
leaves the weather radar business, or if key developers leave the company. Community-based OSS
products usually come without guarantees; however, long-term viability can be achieved if the
size of the community reaches a critical mass. While this critical mass is certainly exceeded for
BALTRAD, LROSE and RSL, wradlib and Py-ART are currently in the process of expanding their

community base.

(d) Turn-key solutions vs. flexibility: A common feature of the OSS tools presented in Section 4 is
that successful application requires advanced computational skills for system configuration or
application development. In contrast, proprietary software often comes as a complete “turn-key”
solution which closely integrates radar hardware, control software, as well as data processing,
visualization and dissemination. Often, users without the expertise necessary to use such OSS
solutions do not have a choice but to start with the proprietary product. Only after a while, users
might recognize that the solution does not meet their specific needs. It should be possible,
though, to develop more “user-friendly” and complete OSS solutions. Yet, insufficient support of
transparent and open data models can be considered as a main barrier. Furthermore, the tools
presented in Section 4 are, with the exception of BALTRAD, mainly rooted in academic
environments. It might just be a matter of time until these tools will be streamlined for broader

user communities.

6 Combining individual projects into a true community effort

In the previous sections, we have discussed five OSS projects that have been successful, each in

19

their own way, in providing software tools to the weather radar community.

Each project on its own, however, falls short of the goal of a true community-wide effort.
Funding is limited, development teams are small and the problem domain is large. No single
project has the resources to meet the diverse needs of the whole community. What is needed is a
way of combining the efforts such that the whole is greater than the sum of the parts. To do so
requires interoperability between the systems so that development in one project can save time

and effort in another. As the following points show, we have good reason to be optimistic.

Enhanced communication between the project teams

Team members from each of these projects are included in the author list of this paper. That in
itself has raised the awareness of what the other projects are doing, and will lead to improved
communication, collaboration and decision-making in the near future. As a first direct result,
members of BALTRAD, Py-ART and wradlib are jointly organizing a workshop on Open Source
Radar Software within the 8™ European Conference on Radar in Meteorology and Hydrology

(ERAD) on August 31* 2014 (http://www.pa.op.dir.de/erad2014), including a first attempt of

demonstrating interoperability.

Advances in common data formats

Table 2 lists 17 actively-used radar data formats, and this list is not exhaustive. Dealing with so
many variants is inefficient and costly. However, two modern formats (ODIM_H5 and CfRadial) are
emerging as having wide support and are becoming de-facto standards. ODIM_H5 is based on the
NASA HDF5 framework, while CfRadial is based on NetCDF. Both are therefore self-describing and

readily accessible via any language that has HDF5 and NetCDF support.

20

Improvements in language tools

The growth of Python as a scientific computing platform has resulted in a proliferation of tools
on which to build radar processing packages (Lin 2012). Many legacy modules are, however, in C
and C++. Fortunately, Python tools can easily be layered on top of C and C++ modules, thereby
permitting reuse of legacy code that has been thoroughly tested and debugged. So Py-ART can, as
previously mentioned, use code from RSL and LROSE. And BALTRAD could, in principle, import

modules from TITAN.

Improvements in collaborative tools

While we would generally expect an increase in the number of developers to speed up the rate
of scientific and technological progress, a large developer community also poses challenges in
achieving efficient collaboration. Py-ART, wradlib and BALTRAD have all chosen a uniform
approach, and LROSE will soon follow suit. They are maintained by a limited number of lead
developers, and make use of Distributed Version Control systems (such as Git). Collaborative
community contributions are managed via the so-called Fork and Pull model (see

http://help.github.com/articles/using-pull-requests): Any user is allowed to fork from the main

branch, any user can propose changes, any user can review these changes, but the final decision
about whether a requested change is actually included into the main branch is made by the lead
developers. This approach has been successfully applied to many OSS efforts, including the very

large but collaborative Linux kernel project for which Git was originally developed.

7 Conclusion

This article is only a snapshot of developments that are ongoing. We discussed the specific
benefits of the Open Source paradigm for the weather radar community, and presented the
activities of five disparate OSS projects in the field of radar data processing. We found that these

21

projects have been remarkably successful in addressing the needs of specific user groups.

There may be a natural desire to consolidate these efforts into a single uniform community
platform. Based on our findings, though, we conclude that a single solution will not be able to
accommodate the diverse needs of the entire community. Furthermore, there are priorities
(national, institutional, personal) that will most likely prevent such a consolidation. Instead, we
expect different projects to co-exist, and to interact in a dynamic collaboration. The guiding
principle of such a cross-project collaboration will be interoperability, allowing not only for the
platforms to exchange data, but also to exchange code (e. g. as shared libraries, code fragments,
and Open Algorithms), and thus speed up technological and scientific progress through cross-
fertilization. In particular, this development will facilitate the transfer of mature algorithms from
the research domain to operational applications. But while the standardization of algorithms is an
important concern of the radar community, we should also be aware that diversity of approach is

an important aspect of scientific endeavor.

In order to foster active communication within the community, we have created a community

resource to present and discuss radar-related OSS tools: http://theradarcommunity.wikidot.com.

We invite the BAMS audience — as a subset of both the developer and user community — to use
this site as a resource to help decide which software to use for their specific requirements, or

which software effort to support through development collaboration.

22

Acknowledgments

The development of TITAN was funded by the US Federal Aviation Administration. The
development of LROSE is funded by the US National Science Foundation. BALTRAD software has
been developed as part of the BALTRAD and BALTRAD+ projects that have been partly financed by
the European Union (European Regional Development Fund and European Neighbourhood and
Partnership Instrument). Argonne National Laboratory's work was supported by the U.S.
Department of Energy, Office of Science, Office of Biological and Environmental Research, under
Contract DE-AC02-06CH11357. This work has been supported by the Office of Biological and
Environmental Research (OBER) of the U.S. Department of Energy (DOE) as part of the ARM
Program. The development of wradlib was partly funded by the German Federal Ministry for
Research and Education within the PROGRESS project. The development of RSL and RSL-in-IDL
were supported by NASA's Precipitation Measurement Missions program. The authors would like

to thank three anonymous referees whose comments substantially contributed to improve this

paper.

23

References

Ackerman, T. P., and G. M. Stokes, 2003: The Atmospheric Radiation Measurement Program.

Physics Today, 56, 38-44.

Barnes, S. L., 1964: A Technique for Maximizing Details in Numerical Weather Map Analysis. J.

Appl. Meteorol., 3, 396-409.

Barnes, S., 1980: Report on a meeting to establish a common Doppler radar data exchange

format. Bull. Amer. Meteor. Soc., 61(11), 1401-1404.

Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. Cambridge

University Press, 636 pp.

Casson, T., and P. S. Ryan, 2006: Open Standards, Open Source Adoption in the Public Sector,
and Their Relationship to Microsoft’s Market Dominance. Standards Edge: Unifier Or Divider?, S.

Bolin, Ed., Sheridan Books, 2006. Available at SSRN: http://ssrn.com/abstract=1656616.

Dixon, M., and G. Wiener, 1993: TITAN - Thunderstorm Identification, Tracking, Analysis, And

Nowcasting - A Radar-Based Methodology. J. Atmos. Ocean. Technol., 10(6), 785-797.

Dixon, M., W.-C. Lee, B. Rilling, C. Burghart, 2013: CfRadial Data File Format — Proposed CF-
compliant netCDF Format for Moments Data for RADAR and LIDAR in Radial Coordinates. URL

http://www.eol.ucar.edu/system/files/CfRadialDoc.v1.3.20130701.pdf

Doviak, R. J., and D. S. Zrnic, 1993: Doppler Radar and Weather Observations, Second Edition.

Dover Publications, Mineola, New York, 562 p.

24

Eaton, B., J. Gregory, B. Drach, K. Taylor, S. Hankin, J. Caron, R. Signell, P. Bentley, G. Rappa, H.
Hock, A. Pamment, and M. Juckes, 2011: NetCDF Climate and Forecast (CF) Metadata Conventions

Version 1.6. URL: http://cf-pcmdi.linl.gov/documents/cf-conventions/1.6/cf-conventions.pdf

Fornasiero, A., J. Bech, P. P. Alberoni, 2006: Enhanced radar precipitation estimates using a

combined clutter and beam blockage correction technique, NHESS, 6(5), 697-710, 2006.

Gabella, M., and R. Notarpietro, 2002: Ground clutter characterization and elimination in
mountainous terrain. Second European Conference on Radar Meteorology (ERAD), Delft University
of Technology, The Netherlands, Copernicus Gesellschaft, pp. 305-311. URL:

http://www.copernicus.org/erad/online/erad-305.pdf.

German Weather Service, 2004: Projekt RADOLAN — Routineverfahren zur Online-Aneichung
der Radarniederschlagsdaten mit Hilfe von automatischen Bodenniederschlagsstationen, Final

Report, Offenbach, Germany. URL: http://www.dwd.de/RADOLAN (in German).

Germann, U., G. Galli, M. Boscacci, M. Bolliger, 2006: Radar precipitation measurement in a

mountainous region. Q. J. R. Meteor. Soc., 132, 1669-1692.

Germann, U., M. Berenguer, D. Sempere-Torres, and M. Zappa, 2009: REAL — Ensemble radar
precipitation estimation for hydrology in a mountainous region. Q. J. R. Meteor. Soc., 135, 445—

456.

Giangrande, S. E., R. McGraw, and L. Lei, 2013: An Application of Linear Programming to

Polarimetric Radar Differential Phase Processing. J. Atmos. Ocean. Technol., 30, 1716-1729.

Gill R. S., M.B. Soerensen, T. Boevith, J. Koistinen, M. Peura, D. Michelson, and R. Cremonini,
2012: BALTRAD dual polarization hydrometeor classifier. ERAD 2012 - The Seventh European

Conference On Radar In Meteorology And Hydrology, Toulouse, France, Meteo France.

25

Gu, J.-Y., A. Ryzhkov, P. Zhang, P. Neilley, M. Knight, B. Wolf, and D.-l. Lee, 2011: Polarimetric
Attenuation Correction in Heavy Rain at C Band. J. Appl. Meteor. Climatol., 50, 39-58,

doi:10.1175/2010JAMC2258.1.

Haase G. and T. Landelius, 2004: Dealiasing of Doppler Radar Velocities Using a Torus Mapping.

J. Atmos. Oceanic Technol., 21, 1566—-1573.

Heistermann, M., S. Jacobi, T. Pfaff, 2013: Technical Note: An open source library for processing

weather radar data (wradlib). Hydrol. Earth Syst. Sci., 17, 863-871.

Henja A., M. Szewczykowski, S. Ernes, and D. Michelson, 2010: The BALTRAD technical

platform. Proc. ERAD 2010. Meteo-Romania, Sibiu, Romania.

Henja A. and D. Michelson, 2012: Improving the quality of European weather radar composites
with the BALTRAD toolbox. ERAD 2012 - The Seventh European Conference On Radar In

Meteorology And Hydrology, Toulouse, France, Meteo France.

Hitschfeld, W., and J. Bordan, 1954: Errors Inherent in the Radar Measurement of Rainfall at

Attenuating Wavelengths. J. Atmos. Sc., 11, 58-67.

Hubbert, J. C., M. Dixon, S. M. Ellis, 2009: Weather Radar Ground Clutter. Part IlI: Real-Time

Identification and Filtering. J. Atmos. Oceanic Technol., 26, 1181-1197.

Jacobi, S., M. Heistermann, and T. Pfaff, 2012: Evaluation and improvement of C-band radar

attenuation correction for operational flash flood forecasting, IAHS Publ., 351, 33-38.

James, C. N., and R. A. Houze, 2001: A Real-Time Four-Dimensional Doppler Dealiasing Scheme.

J. Atmos. Oceanic Technol., 18, 1674-1683.

26

Kraemer, S., H. R. Verworn, 2009: Improved radar data processing algorithms for quantitative

rainfall estimation in real time. Water Sci. Technol., 60(1), 175-184.

Lin, Johnny Wei-Bing, 2012: Why Python Is the Next Wave in Earth Sciences Computing. Bull.

Amer. Meteor. Soc., 93, 1823-1824.

Mather, J. H., J. W. Voyles, 2013: The Arm Climate Research Facility: A Review of Structure and

Capabilities. Bull. Amer. Meteor. Soc., 94, 377-392.

Michelson D., 2006: The Swedish weather radar production chain. Proceedings of ERAD 2006 —
Fourth European Conference on Radar in Meteorology and Hydrology, Barcelona, Spain, CRAHI,

URL: http://www.crahi.upc.edu/ERAD2006/proceedingsMask/00101.pdf [Accessed October 2013].

Michelson D., R. S. Gill, M. Peura, and J. Szturc, 2010: Community-based weather radar networking
with BALTRAD. Proceedings of ERAD 2006 — Fourth European Conference on Radar in Meteorology
and Hydrology, Sibiu, Romania, Meteo-Romania. URL:

http://www.erad2010.org/pdf/oral/wednesday/dataex/01_ERAD2010 0170.pdf

Michelson D. B., |. Holleman, H. Hohti, and M. Salomonsen, 2003: HDF5 information model and
implementation specification for weather radar data. COST 717 Working Document

WDF_02_200204_1. 27 pp., URL: http://www.smhi.se/cost717/doc/WDF_02_200204_1.pdf

Michelson D., J. Koistinen, T. Peltonen, J. Szturc, and M. R. Rasmussen, 2012: Advanced
weather radar networking with BALTRAD+. ERAD 2012 - The Seventh European Conference On
Radar In Meteorology And Hydrology, Toulouse, France, Meteo France. URL:

http://www.meteo.fr/cic/meetings/2012/ERAD/extended_abs/NET_073_ext_abs.pdf

27

Michelson D. B., R. Lewandowski, M. Szewczykowski, H. Beekhuis, and Haase G., 2014:
EUMETNET OPERA weather radar information model for implementation with the HDF5 file
format. Version 2.2. EUMETNET OPERA Deliverable.

URL: http://www.eumetnet.eu/sites/default/files/OPERA2014 04 ODIM_H5-v2.2.pdf

Michelson, D., and A. Henja, 2013: Implementation of hit-accumulation clutter filter in

BALTRAD toolbox. EUMETNET OPERA Working Document WD_2012_02p, 8 pp.

Osrédka K., J. Szturc, and A. Jurczyk, 2012: Chain of data quality algorithms for 3-D single-
polarization radar reflectivity (RADVOL-QC system). Met. Apps., early online release, doi:

10.1002/met.1323.

Peura, M., 2002: Computer vision methods for anomaly removal. Second European Conference
on Radar Meteorology (ERAD), Delft University of Technology, The Netherlands, Copernicus

Gesellschaft, pp. 312—317, URL: http://copernicus.org/erad/online/erad-312.pdf.

Peura, M., J. Koistinen, and H. Hohti, 2006: Quality information in processing weather radar
data for varying user needs, Proceedings of the Fourth European Conference on Radar in

Meteorology (ERAD2006), Copernicus, pp. 563-566.

Peura, M., 2010: The living composite, Proceedings of the Sixth European Conference on Radar

in Meteorology and Hydrology (ERAD2010), Vol. 1 (Advances in Radar Applications), pp. 350—-354.

Peura, M., 2012: Rack - a program for anomaly detection, product generation, and compositing,
7th European Conference on Radar in Meteorology and Hydrology. ERAD 2012 - The Seventh
European Conference On Radar In Meteorology And Hydrology, Toulouse, France, Meteo France.

URL: http://www.meteo.fr/cic/meetings/2012/ERAD/extended _abs/DQ_304 ext_abs.pdf

28

Raymond, E. S., 1999: The Cathedral and the Bazaar, O'Reilly Media, 241 pp., URL:

http://www.unterstein.net/su/docs/CathBaz.pdf.

Robles, G., 2004: A Software Engineering Approach to Libre Software. In: Gehring, R. A.,
Lutterbeck, B. (Eds.): Open Source Jahrbuch 2004, Technical University of Berlin, Germany. URL:

http://www.opensourcejahrbuch.de/download/jb2004/chapter _03/111-3-Robles.pdf

Ryzhkov, A., M. Diederich, P. Zhang, C. Simmer, 2014: Potential Utilization of Specific
Attenuation for Rainfall Estimation, Mitigation of Partial Beam Blockage, and Radar Networking. J.

Atmos. Oceanic Technol., 31, 599-619.

St. Laurent, A. M. (2008): Understanding Open Source and Free Software Licensing. O'Reilly

Media, Sebastopol, CA, USA.

Szturc J., D. Michelson, J. Koistinen, G. Haase M. Peura, R. Gill, M. Sgrensen, K. Osrédka, and A.
Jurczyk, 2012: Data quality in the BALTRAD+ Project. ERAD 2012 - The Seventh European
Conference On Radar In Meteorology And Hydrology, Toulouse, France, Meteo France. URL:

http://www.meteo.fr/cic/meetings/2012/ERAD/extended_abs/DQ_374 ext_abs.pdf

Viglione, A., M. Borga, P. Balabanis, and G. Bloeschl, 2010: Barriers to the exchange of
hydrometeorological data across Europe - results from a survey and implications for data policy. J.

Hydrol. 394, 63-77.

Villarini, G., W. F. Krajewski, 2010: Review of the Different Sources of Uncertainty in Single

Polarization Radar-Based Estimates of Rainfall. Surveys in Geophysics, 31(1), 107-129.

Vivekanandan, J., D. S. Zrnic, S. M. Ellis, R. Oye, A.V. Ryzhkov, and J. Straka, 1999: Cloud
Microphysics Retrievel Using S-Band Dual-Polarization Radar Measurements. Bull. Amer. Meteor.

Soc., 80, 381-388.

29

Von Krogh, G., and S. Spaeth, 2007: The open source software phenomenon: Characteristics

that promote research. J. Strat. Inf. Sys., 16(3), 236-253.

Vulpiani, G., M. Montopoli, L. D. Passeri, A. G. Gioia, P. Giordano, F. S. Marzano, 2012: On the
Use of Dual-Polarized C-Band Radar for Operational Rainfall Retrieval in Mountainous Areas. J.

Appl. Meteor. Climatol., 51, 405-425.

Wang, Yanting, V. Chandrasekar, 2009: Algorithm for Estimation of the Specific Differential

Phase. J. Atmos. Oceanic Technol., 26, 2565—-2578.

WGLS (2000): Free Software / Open Source: Information Society Opportunities for Europe?

Report of the Working group on Libre Software, Version 1.2, URL: http://eu.conecta.it/paper.pdf

30

Tables

Table 1: Technical features of the different software systems.

BALTRAD LROSE / TITAN Py-ART RSL wradlib
Supported Linux Linux, Mac Linux, Mac Linux, Mac Windows, Linux,
platforms Mac
Programming C/C++, Java, Python C++, Java, Python Python, C, Fortran C, IDL Python, C,
language Fortran
API C, Java, Python C++, Python Python C, IDL Python
Stand-alone DEX (data exchange Many apps are Set of example - -
components subsystem), stand-alone apps

BALTRAD Toolbox

(data processing

framework)
Version control Git Git Git - Mercurial
Public code Dedicated Git server Available GitHub Available Bitbucket
hosting
Issue tracking Trac Jira GitHub - Bitbucket
Forums and BALTRAD Cookbook, Available soon Pyart-users, - wradlib-users,
maling lists Google Apps Facebook, Twitter wradlib-dev
Documentation Online, Doxygen Online Online, Sphinx Online Online, Sphinx

31

Table 2: Supported radar file formats.

BALTRAD LROSE / TITAN Py-ART RSL wradlib
ARM NetCDF v v
CfRadial v v
DORADE v
DWD-DX v
DWD-RADOLAN v
EDGE NetCDF v
GAMIC HDF5 v v
Lassen v v
McGill v v
MDV v v
ODIM_H5 v v v
ODIM_BUFR v v
RAINBOW v. 5 v
RAPIC v
Sigmet v v v
UF - Universal v v v
Format
WSR-88D v v v

32

Table 3: Algorithms available.

BALTRAD LROSE / TITAN Py-ART RSL wradlib
Echo Peura 2002 Vivekanandan et Wolff and Kelley Gabella and
classification Osrdodka et al. 2012 al. 1999 2009 Notarpietro 2002,
and clutter Szturc et al. 2012 Hubbert et al.2009 Vulpiani et al..
Gill et al. 2012 2012
Michelson and
Henja 2013
Advanced Z/R Ryzhkov et al. German Weather
transformatio 2014 Service 2004
n
Phase Gill et al. 2012 Wang and Giangrande et al. Vulpiani et al.
processing Chandrasekar 2013 2012, Wang and
2009 Chandrasekar
2009

Attenuation

Osrodka et al.

Gu et. al. 2011

Hitschfeld and

correction 2012, Bordan 1954,
Gill et al. 2012 Kraemer 2009,
Jacobi et al. 2011,
Vulpiani et al.
2012
VPR Networked VPR Average VPR
correction
Advanced Peura 2010 Barnes 1964 Weighted
compositing Henja & Michelson composition based
2012 on quality
Gauge Michelson 2006 Additive,
adjustment multiplicative, and
mixed error model
Dealiased Haase and James and Houze James and Houze

radial winds

Landelius 2004

2001

2001

Partial beam
blocking

Szturc et al. 2012,
Henja and
Michelson 2012

33

