A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations

Dong Huang1,2 and Yangang Liu1

1 Brookhaven National Laboratory, Upton, NY 11973, USA
2 Environmental & Climate Sciences Department Brookhaven National Laboratory 75 Rutherford Dr., Upton, NY 11973, USA

E-mail: dhuang@bnl.gov

Received 16 June 2014, revised 6 November 2014
Accepted for publication 24 November 2014
Published 18 December 2014

Abstract

Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost, allowing for more realistic representation of cloud radiation interactions in large-scale models.

Online supplementary data available from stacks.iop.org/ERL/9/124022/mmedia

Keywords: cloud structure, parameterization, radiative transfer

1. Introduction

Parameterizations in a global climate model (GCM) are designed to describe the ‘collective effects’ of processes that occur at scales smaller than GCM grid sizes (Randall et al 2003). Parameterizations of many processes such as radiation transfer and autoconversion employ the assumption of independent column approximation (ICA), i.e., there is no interaction between subcolumns and the grid-average effects depend only on the probability distribution function (PDF) of relevant variables (Pincus et al 2003). ICA approaches use one-point statistical information (e.g., PDF), called subgrid variability in this letter and structural information (e.g., spatial organization and arrangement) that can be characterized by multi-point statistics is generally ignored. However, coherent structures have been found at scales ranging from droplet clusters to organized cloud, and have complex interactions with radiation, dynamical processes, and mesoscale environment systems (Kostinski and Shaw 2001, Marshak et al 2005, Feingold et al 2010). Failure to include subgrid cloud and convection structures can lead to inadequate simulations of large-scale features (Lin et al 2011). It has been found that ignoring cloud spatial organization tends to underestimate or overestimate the domain-average radiation fluxes dependent on many factors, e.g., solar angle and cloud geometry (Zuidema and Evans 1998, Barker et al 1999, Scheirer and Macke 2003, Davis and Mineev-Weinstein 2011, Hogan and Shonk 2013).

Given the detailed cloud field, the radiation field can be found by numerically solving the 3D transport equation (Evans 1998). In many applications, the knowledge of 3D cloud field is unavailable or expensive to obtain. It is often difficult to draw any theoretical conclusion based on the 3D approach: there could be numerous configurations of 3D cloud field that will give statistically similar radiation characteristics (Anisimov and Fukhansky 1992). Besides these, numerically solving the 3D problem is too expensive to use in...
practical applications. In climate models, it is a standard practice to employ the ICA assumption, i.e., divide the domain into two (clear and cloudy) or more subcolumns (Pincus et al. 2003, Shonk and Hogan 2008) and independently calculate the radiation flux within each subcolumn.

Previous efforts on parameterization of 3D cloud-radiation interaction in large-scale models have focused on binary medium or oversimplified closure assumptions (Anisimov and Fukhansky 1992, Vainikko 1973, Titov 1990, Pomraning 1996, Tompkins and Di Giuseppe 2007, Stephens 1988, Kassianov and Veron 2011, Hogan and Shonk 2013). Here we present a new statistical physics-like simulation approach that makes a direct connection between the statistical characterization of cloud structure and the statistical moments of the radiation field by properly averaging the 3D equation. The unknowns of the resultant statistical radiative transport (SRT) equations are actually the statistical moments of the radiation field, and the model inputs are some statistical moments of the 3D medium structure. In this letter, we show that a spatial correlation function can serve as the key to statistically describing cloud–radiation interactions.

2. Basic theory and method

To examine what structural information is needed for the transport problem, let us consider radiation transfer in a cloudy atmosphere vertically confined within [0, 1] where the top is at z = 0. The monochromatic radiance at r = (x, y, z) in direction Ω = (μ, ω) is denoted by I(r, Ω), where μ is the cosine of the zenith angle and ω is the azimuth angle. The solar radiance field satisfies the 3D radiative transfer equation of integral form (Chandrasekar 1950):

\[
I(r, \Omega) + \frac{1}{\mu} \int_{E} \sigma(r') I(r', \Omega) dz' = \frac{1}{\mu} \int_{E} \sigma_0(r') \sigma(r) dz' + \int_{E} p(r', \Omega') I(r', \Omega') d\Omega' + I(r_0, \Omega),
\]

where r' = r + Ω[(z' - z)/μ], I(r_0, Ω) is the incoming solar radiance at the upper boundary for downward directions (μ<0) and is the surface reflection for upward directions (μ>0); σ(r) and σ_0(r) are respectively the cloud extinction coefficient and single scattering albedo; and p(r, Ω, Ω') is the scattering phase function. The second term on the left-hand side is the path extinction and the first term on the right-hand side is the source due to scattering. Note that the extinction coefficient is normalized with regard to the depth of the atmosphere layer and its integral over [0, 1] corresponds to the optical depth of the cloudy atmosphere. The interval of integral is given by E = [0, z] for downward directions and E = [z, 1] for upward directions. Here we reintroduce the ergodic hypothesis, which implies that the anisotropy processes should possess certain translational invariance in spatial coordinate and thus lead to the equality of ensemble and spatial averages (Titov 1990, Rybicki 1965). It is feasible to assume that the deterministic transfer equation is valid for each member of the ensemble system. Therefore, statistics is introduced only to account for the lack of knowledge about the detailed structure of the cloud, not about the equations governing the transport processes.

We further assume that the scattering phase function p and single scattering albedo σ_0 depend only on height z. Let ↓→ denote the horizontal or ensemble average, the vertical profile of horizontally-averaged radiance can be obtained after applying the notations

\[
\bar{I}(z, \Omega) = \langle I(r, \Omega) \rangle \text{ and } U(z', \Omega) = \langle \sigma(r') I(r', \Omega) \rangle,
\]

\[
\bar{I}(z, \Omega) + \frac{1}{\mu} \int_{E} U(z', \Omega) dz' = \frac{1}{\mu} \int_{E} \sigma_0(z') dz' \int_{E} U(z', \Omega') p(z', \Omega', \Omega) d\Omega' + \bar{I}(z_0, \Omega).
\]

This averaging process is conceptually similar to the Reynolds averaging widely used in fluid dynamics (Reynolds 1895). The domain-average radiance \bar{I} is now explicitly presented in equation (2) but the equation is not closed since a new variable \bar{U} still needs to be determined. The variable \bar{U} is the mean product of radiance and extinction coefficient and, with the assumption of horizontally-invariant single scatter albedo, radiation absorption A at any level can be readily found by A(z) = \int_{E} \bar{U}(z, \Omega) d\Omega. Multiplying equation (1) with \sigma(r) and performing the horizontal average again, we obtain an equation for \bar{U}:

\[
\bar{U}(z, \Omega) + \frac{1}{\mu} \int_{E} \sigma(r') \sigma(r) I(r', \Omega) dz' = \frac{1}{\mu} \int_{E} \sigma_0(z') dz' \times \int_{E} p(z', \Omega', \Omega) \sigma(r) \sigma(r') I(r', \Omega') d\Omega' + \bar{U}(z_0, \Omega).
\]

To solve this equation, we can either truncate the higher order terms at certain point, or introduce independent hypotheses of closure to determine the higher order terms in terms of the lower order ones. Here the second approach is used. We modified the standard Intercomparison of 3D Radiation Codes (I3RC) community Monte Carlo model (Cahalan et al. 2005, Pincus and Evans 2010) to compute and record 3D radiance field. Based on the analysis of Monte Carlo simulations with a variety of cloud cases (the supplementary material, available at stacks.iop.org/ERL/9/124022/) provides some details on how the closure is derived), the higher order term \langle \sigma(r) \sigma(r') I(r', \Omega) \rangle can be approximated in two steps:

\[
\langle \sigma(r) \sigma(r') I(r', \Omega) \rangle \approx f_1(z') \bar{I}(z', \Omega)
\]

\[
+ \left\{ \frac{\sigma^2(r') I(r', \Omega)}{\sigma^2(r')} - f_1(z') \bar{I}(z', \Omega) \right\} \int_{E} \frac{\sigma(r) \sigma(r') \bar{U}(z', \Omega)}{\sigma^2(r')} - f_1(z'),
\]

(4a)
\[\langle \sigma(r) \sigma(r') \rangle = \sigma^2(r') I(r', \Omega) \approx f_2(z') \bar{U}(z', \Omega) + f_3(z') \bar{I}(z', \Omega). \]

\(\langle \sigma(r) \sigma(r') \rangle \) is the spatial covariance function of cloud extinction coefficients at levels \(z \) and \(z' \) along the direction \(\Omega \) and, with an appropriate normalization, it becomes the spatial autocorrelation function. For the rest of this letter, the terms covariance and autocorrelation are interchangeable. The correlation function provides a measure of the spatial structure of cloud extinction coefficient. \(f_2(z') = \inf \{ \langle \sigma(x', y', z') \sigma(x' + \Delta x, y' + \Delta y, z') \rangle : \Delta x \in [0, \infty], \Delta y \in [0, \infty] \}, \) i.e., the minimum autocorrelation at level \(z' \). The coefficients \(f_2 \) and \(f_3 \) depend only on the horizontal average (\(\bar{\sigma} \)) and variance (\(V \)) of cloud extinction coefficient in the corresponding layer: \(f_2(z') = 2 \bar{\sigma}(z'), \) and \(f_3(z') = V(z') - \bar{\sigma}^2(z') = \left\langle \sigma^2(r') \right\rangle - 2 \bar{\sigma}^2(z'). \) It can be verified that, for binary media, equations (4(a)) and (4(b)) will converge to the closure scheme of Titov (1990) that was specifically designed for binary media. To accurately calculate the direct (unscattered) radiation, knowledge about the PDF of extinction coefficient may also be needed.

The correlation function of the checkerboard medium is periodic along the horizontal dimension to the vertical dimension, varies from 0.01 to 100 for different simulations. The medium is illuminated from above by collimated light at 0° or 30° zenith angles. The lateral boundary condition is assumed to be periodic and the lower boundary is ideally black. The single scattering albedo of the medium is 1. We adopt Heney–Greenstein scattering here to represent the scattering phase function (Henyey and Greenstein 1941) and the asymmetry parameter is set to 0.85.

An aspect ratio value of 1.0 is used to obtain the two examples of spatial correlation function shown in figure 2(b); this case is notoriously challenging for 1D transport models since its exaggeration of 3D transport effects (Wiscombe 2005). The optical thickness of the black and white cells is 18 and 0. The aspect ratio of each individual cell, defined as the ratio of the horizontal dimension to the vertical dimension, varies from 0.01 to 100 for different simulations. The medium is illuminated from above by collimated light at 0° or 30° zenith angles. The lateral boundary condition is assumed to be periodic and the lower boundary is ideally black. The single scattering albedo of the medium is 1. We adopt Heney–Greenstein scattering here to represent the scattering phase function (Henyey and Greenstein 1941) and the asymmetry parameter is set to 0.85.

An aspect ratio value of 1.0 is used to obtain the two examples of spatial correlation function shown in figure 2(b); this case is notoriously challenging for 1D transport models since its exaggeration of 3D transport effects (Wiscombe 2005). The optical thickness of the black and white cells is 18 and 0. The aspect ratio of each individual cell, defined as the ratio of the horizontal dimension to the vertical dimension, varies from 0.01 to 100 for different simulations. The medium is illuminated from above by collimated light at 0° or 30° zenith angles. The lateral boundary condition is assumed to be periodic and the lower boundary is ideally black. The single scattering albedo of the medium is 1. We adopt Heney–Greenstein scattering here to represent the scattering phase function (Henyey and Greenstein 1941) and the asymmetry parameter is set to 0.85.

An aspect ratio value of 1.0 is used to obtain the two examples of spatial correlation function shown in figure 2(b); this case is notoriously challenging for 1D transport models since its exaggeration of 3D transport effects (Wiscombe 2005). The optical thickness of the black and white cells is 18 and 0. The aspect ratio of each individual cell, defined as the ratio of the horizontal dimension to the vertical dimension, varies from 0.01 to 100 for different simulations. The medium is illuminated from above by collimated light at 0° or 30° zenith angles. The lateral boundary condition is assumed to be periodic and the lower boundary is ideally black. The single scattering albedo of the medium is 1. We adopt Heney–Greenstein scattering here to represent the scattering phase function (Henyey and Greenstein 1941) and the asymmetry parameter is set to 0.85.
aspect ratio. The scene albedos by the PPA and ICA approaches are 0.383 and 0.296 for the 0° illumination, and 0.445 and 0.310 for the 30° illumination. The PPA albedos are always higher than others, owing to the Jensen’s inequality for convex functions (Jensen 1906). The resulting albedo bias from PPA and ICA varies with aspect ratio and is up to 70% of the true albedo of the checkerboard medium.

In contrast, the SRT albedos follow closely with the 3D Monte Carlo curves over the entire range of aspect ratio, suggesting that the SRT faithfully represents the dependence of horizontal transport effects on aspect ratio. For the 0° illumination, the SRT solutions successfully reproduce the reduction of albedo that is due to radiative channeling and often found at small illumination angles, i.e., horizontal transport enhances the domain-average transmission (and suppresses reflection) relative to the ICA solutions (Davis and Marshak 2010). For a higher illumination angle, the net effect of horizontal transport is to reduce transmission (and enhance reflection) and as a result both the 3D and SRT solutions asymptote the PPA solutions at small aspect ratio limit. The horizontal transport effects are most evident when the aspect ratios are small and the discrepancy between SRT and ICA results decreases with increasing aspect ratio. When the horizontal dimension of each cell is much larger than its vertical dimension, the net effect of horizontal transport become negligible and the SRT solutions asymptote those of the ICA regardless of illumination angle. We find that whether horizontal transport enhances or suppress the scene albedo depends on many factors, including vertical and horizontal arrangement, horizontal fluctuation of optical properties of the medium, scattering phase function, and illumination angle.

The second group of simulations are for a cumulus cloud system simulated by the DARMA model (Ackerman et al 1995) shown in figure 3(a). Figure 3(b) shows the spatial autocorrelation functions of the cloud extinction at level \(z = 0.5 \) for two horizontal directions. It can be seen that the cumulus cloud appears to be statistically isotropic despite its large spatial variability. Using the more realistic cloud field may provide a better estimate of 3D effects in real world clouds. The single scattering albedo of cloud droplet is 1.0 and the scattering phase function is the same as the first case. Boundary conditions are the same as in the first case. To illustrate the dependence of horizontal transport on cloud structure, we vary the cloud aspect ratio from 0.01 to 100 to represent different levels of horizontal transport effects and keep other cloud properties fixed. Apparently, the PPA and ICA results do not depend on cloud aspect ratio. For the 0° illumination, the SRT solutions successfully reproduce the reduction of albedo with increasing horizontal transport but the SRT approach seems to slightly overestimate the scene albedo compared to the 3D results (figure 3(c)). For the 30° illumination, horizontal transport tends to enhance the scene.

Figure 1. Spatial autocorrelation function of a stratocumulus cloud. (a) 3D rendering of the isosurface at extinction coefficient value of 20; (b) a horizontal cross section of the 3D cloud extinction coefficient field at \(z = 0.6 \); and (c) the spatial autocorrelation function of this cross section along the \(x \) direction.
albedo, as suggested by figure 3(d). As expected, both the SRT and 3D results converge to the ICA results when cloud aspect ratio becomes very large.

The third group of simulations are for the stratocumulus cloud system shown in figure 1. The single scattering albedo of cloud droplet is 0.98 and the scattering phase function is the same as the first case. The incidental radiation is collimated light of 0° zenith angle. Boundary conditions are the same as in the first case. The scene albedos calculated using the SRT and the reference 3D Monte Carlo approaches are respectively 0.230 and 0.229, while the cloud absorptance from the SRT and 3D approach is 0.223 and 0.225. The accuracy of the SRT calculation is within 1% of the reference value, while the ICA and PPA result in −5% and 10% errors for this stratocumulus case. It can be seen from these three examples that the magnitude of 3D transport effects varies with many factors, including illumination angle, horizontal fluctuation, and shape of the spatial correlation function (Barker et al. 1999).

To evaluate if SRT is able to accurately simulate the dependence of radiative fluxes on illumination angle, we compute the reflectance (normalized upward fluxes at the upper boundary) as a function of solar zenith angle. The result for transmittance (normalized downward fluxes at the lower boundary) is not shown here since it complements with reflectance for a non-absorptive medium. It can be seen from figure 4 that, for the checkerboard case, the SRT agrees extremely well with the full 3D calculations. The difference between 3D and ICA indicates the magnitude of 3D effects. At small solar angles (<18°), the 3D effects reduce the domain-average reflectance by up to 20%, primarily due to photon leaking from clouds to the clear region. For large solar angles, the 3D effects actually enhance the domain-average reflectance by up to 80%. The enhancement of reflectance increases with solar angle and is mainly due to cloud side illumination effects (Hogan and Shonk 2013). The SRT approach very accurately reproduces the 3D effects for all the examined solar angles.

Lastly, the computational cost for the new approach is evaluated and compared with the conventional 1D approaches. To assure fair comparisons, the PPA and ICA approaches also use the same solver as the SRT, in other words, \(\tilde{\Omega} (z, \Omega) \) is set to be \(\sigma (z) \tilde{I} (z, \Omega) \) in equation (2) for the PPA and ICA approaches. The computational cost of the ICA approach is linearly proportional to the number of sub-columns used to represent the horizontal heterogeneity. For the tested cloud cases, the SRT approach is 2–3 times more expensive than the PPA approach while the ICA approach with 100 sub-columns is 30–50 times more expensive than the SRT approach. Depended on the number of photon used in the Monte Carlo simulation, the computational cost of the full 3D approach can be several orders more than the PPA approach.
4. Summary

In this letter a new approach is presented to represent unresolved cloud structure in the radiation parameterization. By using a statistical-physics-like concept, we develop a simple 1D statistical transport theory that naturally utilizes a two-point spatial correlation function to describe subgrid-scale interactions that are traditionally only captured by computationally expensive 3D models. The proposed spatial correlation function encodes the most important information about the spatial arrangement and morphology of clouds and therefore introduces the dependence of radiation field on the 3D structure. Comparison studies of three types of transport media representing checker board, cumulus clouds, and stratocumulus clouds show that the statistical theory is capable of quantitatively capturing the properties of 3D transport models with several orders less computational costs, e.g., enhancement or suppression of reflection by allowing horizontal transport. In practice the 1D stochastic transport transfer approach are expected to lead to a reduction of the computational burden compared to the brute-force Monte Carlo approach, and a significant increase of accuracy compared to the widely used approximation methods. Also noteworthy is that the spatial correlation function appears to be much smoother than the cloud field, indicating that the correlation function should be readily parameterized using point process models or stochastic geometry (Stoyan et al 1995).

It is also important to account for other sources of error such as unresolved temporal variability and spectral resolution in order to develop an accurate cloud radiative transfer...
parameterization (Pincus and Stevens 2013). Further simplification and evaluation of this approach at other spectral regions and broadband calculations will be the topic of our future work. It should be noted that the new approach developed in this study holds great promise to account for cloud structure in other cloud-related parameterizations.

Acknowledgments

This work is supported by the US Department of Energy’s Earth System Modeling (NSM) and Atmospheric Science Research (ASR) programs, and the Laboratory Directed Research & Development program of Brookhaven National Laboratory. We are grateful to Drs Yuri Knyazikhin, Anthony Davis, Warren Wiscombe, and Robert McGraw for their encouragement and insightful advice.

References

Chandrasekhar S 1950 Radiative transfer in the presence of clouds into two-stream multilayer radiative models J. Atmos. Sci. 56 93–70

Hogan R and Shonk J P 2013 Incorporating the effects of 3D radiative transfer in the presence of clouds into two-stream multilayer radiation schemes J. Atmos. Sci. 70 708–24

Jensen J L W V 1906 Sur les fonctions convexes et les inégalités entre les valeurs moyennes Acta Math. 30 789–806

Liu J L et al. 2011 Parameterizing convective organization to escape the entrainment dilemma J. Adv. Model. Earth Syst. 3 M00604

Pincus R and Evans K F 2010 Computational cost and accuracy in calculating three-dimensional radiative transfer: results for new implementations of Monte Carlo and SHDOM J. Atmos. Sci. 66 3131–46

Pincus R and Stevens B 2013 Paths to accuracy for radiation parameterizations in atmospheric models J. Adv. Model. Earth Syst. 5 225–33

Reynolds O 1895 On the dynamical theory of incompressible viscous fluids and the determination of the criterion Phil. Trans. R. Soc. A 186 123–64

Rybicki G B 1965 Transfer of Radiation in Stochastic Media (Boston, MA: Harvard University) p 184

Shonk J and Hogan R J 2008 Tripleclouds: an efficient method for representing horizontal cloud inhomogeneity in 1D radiation schemes by using three regions at each height J. Clim. 21 2352–70

Tompkins A M and Di Giuseppe F 2007 Generalizing cloud overlap treatment to include solar zenith angle effects on cloud geometry J. Atmos. Sci. 64 2116–25

Zuidema P and Evans K F 1998 On the validity of the independent pixel approximation for boundary layer clouds observed during ASTEX J. Geophys. Res. 103 6059–74