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Despite recent advances in monitoring nucleation from a vapor at close-to-molecular resolution, the
identity of the critical cluster, forming the bottleneck for the nucleation process, remains elusive.
During past twenty years, the first nucleation theorem has been often used to extract the size of
the critical cluster from nucleation rate measurements. However, derivations of the first nucleation
theorem invoke certain questionable assumptions that may fail, e.g., in the case of atmospheric new
particle formation, including absence of sub-critical cluster losses and heterogeneous nucleation on
pre-existing nanoparticles. Here, we extend the kinetic derivation of the first nucleation theorem to
give a general framework to include such processes, yielding sum rules connecting the size dependent
particle formation and loss rates to the corresponding loss-free nucleation rate and the apparent
critical size from a naïve application of the first nucleation theorem that neglects them. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4905213]

First-order phase transformations via nucleation are
encountered in a variety of natural and technological processes.
The vapor-phase synthesis of nanoparticles with prescribed
properties for subsequent assembly into novel nanostructures
is one application.1 In the Earth’s atmosphere, the formation of
new particles and their growth into cloud condensation nuclei
gives rise to feedback processes that modulate cloudiness,
precipitation, and climate.2,3 The reliable modeling of such
processes requires going beyond classical phenomenology
towards a molecular-level description. To this end, the devel-
opment of so-called nucleation theorems has been particularly
effective,4 however, in their current form, these theorems rely
on restrictive assumptions that limit their use mainly to inter-
pretation of carefully controlled laboratory measurements.
Here, we derive extended forms of the first nucleation theorem,
and related sum rules, to include loss of molecular clusters
from a prescribed nucleation and growth sequence. Loss can
be due to scavenging by background aerosol and/or container
walls, or removal from the nucleation volume by diffusion or
phoretic forces. We also include the possibility that clusters,
especially ones of sub-critical size, are lost due to their serving
as heterogeneous condensation sites in a way that opens up
new off-sequence channels for new particle formation. These
results have direct consequences for the interpretation of
atmospherically relevant field and laboratory measurements.

As demonstrated by Bowles et al.,5 these theorems—with
emphasis on the first nucleation theorem,(

∂Wg∗

∂µ

)
V ,T

=−∆g∗+1 (1)
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—are a direct consequence of the law of mass action for nucle-
ation from an ideal vapor. Wg∗ is the work needed to form a
cluster of critical size, ∆g∗ is the excess number of molecules
in the nucleus over that present in the same volume of parent
phase, and µ is the chemical potential of nucleating species
present in the parent phase. Under typical laboratory and atmo-
spheric conditions, ∆g∗ can be approximated by the thermo-
dynamic critical size g∗, which is given in the classical nucle-
ation theory by the minimum of the constrained equilibrium
distribution of g-mers (clusters containing g monomeric units
of condensed phase), ng = n1e−Wg /kT , where n1 is the number
concentration of monomers. The connection with nucleation
rate measurements is achieved by expressing the nucleation
rate in Arrhenius-form, J = Ke−Wg ∗/kT , where the prefactor
K should take into account the law of mass action. These
relations, involving the reversible work of cluster formation,
can be described as thermodynamic nucleation theorems. Al-
ternatively, kinetic nucleation theorems can be derived directly
from the master equation approach to nucleation kinetics using
the law of mass action and detailed balance.6,7

A detailed kinetic treatment of homogeneous nucleation
was presented by Farkas,8 following Szilárd’s suggestion that
clusters grow or decay by absorbing or evaporating a monomer.
This simplification does not usually compromise the accuracy
of the theory, as in a typical case of vapor–liquid nucleation,
the collisions with monomers dominate the total number of
collisions encountered by g-mers. Letting fg denote the actual
population of g-mers, the net forward flux between adjacent
sizes, say g and g+1, is given as

Jg = βg f1 fg −αg+1 fg+1, (2)
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where βg is the addition rate of a monomer to a g-mer, and
αg is the evaporation rate of a monomer from a g-mer. The
detailed balance condition, βgng f1 = αg+1ng+1, where f1 is
the actual monomer concentration, which we hold as constant
equal to n1, is used to eliminate the evaporation rate

Jg = βg f1ng

(
fg
ng
−

fg+1

ng+1

)
≡ pg

�
ug −ug+1

�
. (3)

The new variables pg and ug are introduced for subsequent
use. Dividing both sides of Eq. (3) by pg and summing
for g = 1,. . .,G, where G is a sufficiently large integer with
boundary conditions uG = 0 and u1= 1, and noticing that Jg is
constant (J) for all g when no losses are present, we arrive at
the Becker–Döring9 result

J = *.
,

G−1
g=1

1
pg

+/
-

−1

. (4)

The remarkable fact of this well-known result is that it depends
only on βg—determined from kinetic theory—and ng .

For an ideal vapor, incorporating the law of mass action
µg = gµ, or ng ∝ ng

1 , the following result is obvious:

∂ ln(n1ng)
∂ lnn1



T

= g+1. (5)

As defined here, βg does not depend on n1 [see Eq. (3)] and
substitution of this last result into Eq. (4), with pg = βgn1ng ,
gives the kinetic version of the first nucleation theorem,6,7(

∂ ln J
∂ lnn1

)
T

= ḡ+1, (6)

where the kinetic critical size is defined as an expectation
value ḡ =

G−1
g=1 P(g)g with respect to the normalized 1/pg

distribution

P(g)= 1
pg

*.
,

G−1
g=1

1
pg

+/
-

−1

. (7)

Although the first nucleation theorem has been tested
well in cloud chamber studies of single-component and
binary nucleation,10 recent atmospherically relevant field11 and
laboratory12–14 studies of sulfuric acid driven nucleation have
produced inconsistent results; suggesting, for example, that
new particle formation may occur via activated (with barrier)
or purely kinetic (without barrier) mechanisms under nearly
identical experimental conditions. Several possible reasons for
this behavior have been suggested, including problems related
to the experimental detection of freshly nucleated clusters12

and the influence of other trace vapors13–15 on the new particle
formation rate.16 Recent simulation studies have underlined the
effect of wall and coagulation losses—and alternative growth
paths including addition of clusters containing several H2SO4
molecules17—on the interpretation of the first nucleation
theorem,18,19 an effect that has not been yet fully accounted
for when applying the first nucleation theorem to laboratory
or atmospheric measurements.3

To extend the kinetic nucleation theorem for cases with
losses, we apply the discrete model of McGraw and Mar-
low,20 which is more appropriate at small cluster sizes than

corresponding continuum presentations21 and allows cluster
grow by condensation, evaporation, and size-dependent cluster
losses. Net fluxes between g-mer and (g + 1)-mers are still
given by Eq. (3), but each g-mer is additionally scavenged
at rate Lg . The assumption of linear dependence of Lg on fg ,
Lg = qg fg , where qg is the rate coefficient that can apply to each
of the loss mechanisms mentioned above, but not to removal
by self-coagulation or production of smaller clusters through
fragmentation, allows derivation of a closed-form solutions for
the relative sensitivities of rates Jg with respect to n1.22

Prior to consideration of more complex systems, it is
worthwhile comparing the thermodynamic and kinetic ap-
proaches underlying derivation of Eqs. (1) and (6), respec-
tively. Both approaches are extendable to multicomponent
nucleation with the kinetic approach having advantage of
working with a directly measurable quantity, nucleation rate.
The essential difference is that thermodynamic nucleation
theorems focus on extrema of the free-energy surface whereas
the kinetic approaches work with rate coefficients and the
(possibly multiple) pathways over which nucleation can occur
(cf. Ref. 23). From the kinetic viewpoint, the overall rate
sensitivity for a complex system can often be expressed simply
as a flux-weighted average of sensitivities over dominant
paths.7

Using now the model described in Fig. 1, we derive two
sum rules for the nucleation rates: first, from Eq. (3), we get

G−1
g=1

Jg
pg
=

G−1
g=1

(ug −ug+1)= u1−uG = 1. (8)

Multiplying both sides by J =
(G−1

g=1 1/pg
)−1

from Eq. (4)
yields the first sum rule

G−1
g=1

P(g)Jg = J̄g = J, (9)

that is, at steady state, the P(g)-averaged transition rate equals
the homogeneous nucleation rate without losses. As the fluxes
in Fig. 1 are conserved, at each size g,

Jg = Jg−1−Lg . (10)

Equations (9) and (10) imply that the net forward rates at
small sizes are larger than the corresponding loss-free rates and
smaller at large sizes.24 The addition of cluster loss tends to
promote the assumption of steady state used in the derivation of
Eqs. (9) and (10). This is because cluster losses actually drive
the system towards steady state faster than would otherwise
happen without the loss.25 Additionally, it has been shown that
background aerosol, which increases scavenging loss, widens

FIG. 1. A schematic description of the Szilárd process with losses.
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the stability range of steady-state conditions in dynamical
systems involving coupled nucleation and growth.26

Taking the derivatives of both sides of Eq. (9), completing
the logarithms of differentials, and applying Eqs. (5)–(7) to
evaluate the derivatives of pg , J, and P(g), we get after some
algebra the second sum rule

G−1
g=1



(
∂ ln Jg
∂ lnn1

)
T ,{qg }

−g


P(g)Jg = J. (11)

This sum rule involving both rates and rate sensitivities can be
seen as a generalization of the kinetic first nucleation theorem,
as Eq. (11) reduces to Eq. (6) for the loss-free case with J = Jg .
It should be noted that Eqs. (9) and (11) do not depend on the
nature of losses as long as self-coagulation and fragmentation
of clusters can be neglected.

To illustrate the new sum rules, we perform calculations
for a model condensable vapor—a proxy to ethanesulfonic
acid that facilitates comparison with previous work.20,21,27–29

Table SIII lists properties of the model compound.22 Losses
of clusters are taken to be due to Brownian coagulation
with background aerosol with specific surface area density
A varying from particle-free conditions (A= 0 m−1) to a high
value of A typical of a severe duststorm; an intermediate value
A = 0.072 m−1, which gives a loss rate comparable to the
diffusion loss from the nucleation zone in a thermal diffusion
cloud chamber,27 was used in earlier work.20 Fuchs surface
areas30 are implied throughout. Results are shown in Figs.
2 and 3. Figure 2 shows that the net growth rates can be
considerably larger with loss than without for clusters of sub-
critical size. This behavior can be rationalized by the fact
that the loss channel is more important for clusters that are,
in effect, trapped by the thermodynamic barrier and thus have
more time to experience loss. Super-critical clusters are able to
grow much faster and thus do not get loss that efficiently at any
given size. Similar behavior is seen in continuous models for
nucleation with loss.28,29 As can be seen by comparing Figs. 2
and 3(a), qualitatively similar behavior is observed whether
the loss rate is increased by increasing A at fixed S (Fig. 2)

FIG. 2. Normalized formation rates of a g -mer as a function of g and A at
S = 10. Dashed line denotes Jg = J . Inset shows in linear scale how in the
case of large losses Jg ≤J for large g .

or the saturation ratio is decreased at fixed A [Fig. 3(a)]. This
similarity is related to the importance of a non-dimensional
loss parameter, L = A/(A1 f1), where A1 is the surface area
of monomer, introduced independently in slightly different
contexts in Refs. 20 and 30. In what follows, only the effect of
a varying saturation ratio at fixed background aerosol surface
area is considered.

Figure 3(b) shows size dependent sensitivities of ln Jg with
respect to lnn1 at constant T [term in parenthesis in Eq. (11)]
as a function of g (filled symbols). The result, if naïvely
interpreted, would indicate an apparent critical size (g̃) that
can differ appreciably from the kinetic critical size determined
in the loss-free case (ḡ), which, in turn, is very close to the
actual number of molecules in the critical nucleus, g∗, of
homogeneous nucleation theory. For the smallest clusters, the
apparent critical size depends linearly from the size at which
the rate is determined, i.e., g̃ ≈ g.22 For clusters larger than ḡ,
slight overestimates are obtained. Thus, it is possible to obtain
estimates g̃ biased into either direction, if the effect of loss is
neglected. The quantitative deviation depends in a complicated
manner on pg and qg [Eq. (S6)].

An interesting feature that is apparent from Figs. 2 and
3 is that the first nucleation theorem seems to approximately
hold if applied to the rate Jḡ determined at the loss-free kinetic
critical size ḡ. However, it is premature to say whether this
behavior is of general nature or a consequence of the model
system; the effect of losses on the gradient ug−ug+1 is mainly
important at sizes smaller than ḡ [see, e.g., Fig. S1(b)]. It
would also be possible to define a kinetic critical size for the
lossy case, ĝ, by averaging g with respect to the generalized
distribution P(g)Jg/J: in such case, the second sum rule could
be written as22

ĝ+1=
G−1
g=1

JgP(g)
J

(
∂ ln Jg
∂ lnn1

)
T ,{qg }

. (12)

As can be interpreted from Fig. 3(c), at least for our model
cases, ĝ is well approximated by ḡ. However, there is no
unambiguous physical interpretation of ĝ, as there is no single
rate limiting step corresponding the bottleneck for the observed
nucleation rate, though the thermodynamic critical size g∗

appears in the theoretical estimates for the transient time scale
of nucleation also in such case.25,31

Figures 3(c) and 3(d) demonstrate the first and second
sum rules, respectively. In panel (c), the distribution P(g)Jg/J,
generalizing Eq. (7), is given together with its cumulative
sum. These cumulative sums are given for the cases with
loss only: under loss-free conditions, it is clear that the
cumulative distributions approach unity as the distribution
P(g) is normalized, in the case of panel (c), and the second
sum rule, demonstrated in panel (d), reduces to Eq. (6). These
figures show the effect of applying the first nucleation theorem
to the formation rates of clusters of different size, and illustrate
the validity of Eqs. (9) and (11) for a realization of the flux
network model illustrated in Fig. 1.

In a recent simulation study with qualitatively similar
findings, Ehrhart and Curtius18 used the SAWNUC sulfuric
acid–water nucleation32 model to study sensitivity of nucle-
ation rate to changes in vapor phase sulfuric acid concentration
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FIG. 3. (a) Normalized formation
rates of a g -mer as a function of g at
different saturation ratios with a fixed
A = 0.0072 m−1. (b) Apparent results
g̃ of naïvely applied first nucleation
theorem as a function of cluster size
g , note the linear regime for small
g . Open and filled symbols refer to
loss-free and lossy cases, respectively.
(c) and (d) Distributions P(g )Jg/J and�
∂ ln Jg/∂ ln n1

�
T ,{qg } − g


P(g )Jg/

J (markers and values at left axes) and
their cumulative sums (for lossy cases
only; histograms and values at right
axes). In all panels, yellow vertical lines
indicate the locations of the loss-free
critical sizes ḡ from Eq. (6).

as a function of cluster size and scavenging rate. Similar
behavior was also seen in simulations of the binary sul-
furic acid–ammonia system using another modeling approach
(ACDC).19 However, for an even more nonideal system of
sulfuric acid and dimethylamine, a more complicated behavior
was observed,19 which is likely due to kinetic effects and/or
breakdown of the Szilárd mechanism.

Yet another loss process that can be approximately cast
into linear form is the heterogeneous nucleation on the small
sub-critical clusters in the presence of, e.g., an organic vapor.33

This is essentially a new channel for growth that opens
up, thereby effectively removing clusters from the growth
sequence illustrated in Fig. 1. Conversely, collisions of sub-
critical clusters with existing ambient nanoparticles, for which
we can also consider single large organic molecules,34 can
also result in crossing of the heterogeneous nucleation barrier.
Earlier applications of the (kinetic) first nucleation theorem
on such cases have produced meaningless estimates for ḡ.17,35

However, when considering some fraction of each loss rate Lg

actually resulting in a channel contributing to the observed new
particle formation, an extension of the first kinetic nucleation
theorem can be derived [Eq. (S21)]. In this case, the resulting
apparent critical size g̃ is smaller than the corresponding ḡ,
being either characteristic size for the heterogeneous nucleus,
if only one path is available, or a flux-weighted average
over possible homo- and heterogeneous pathways.36 This
mechanism, together with the observation of the linear estimate
for the apparent critical size at small sizes, also casts some
doubts on the interpretation of measurements from particle
size magnifiers when used to detect critical clusters at low
nucleation rate (e.g., Ref. 12). In reality, the working fluid
may be condensing on clusters of sub-critical size leading to
too small an estimate of ḡ.

As demonstrated by our results, —as well as recent
simulation studies18,19—a naïve application of the first nucle-
ation theorem when sub-critical cluster losses are expected
can lead to seriously biased estimates on the critical cluster

size, and consequently on the mechanism behind the new
particle formation, even if the other known deficiencies19

of the analysis have been appropriately considered. The
fundamental concepts behind nucleation theorems, like mass
action and detailed balance, still apply but the theorems
themselves need correction to yield physically meaningful
results. Here, we have provided sum rules that can be used
to identify and/or correct these biases. Besides applications
to analysis of field and laboratory measurements of new
particle formation, derived sum rules can also find applications
in control of chemical vapor deposition and vapor-phase
synthesis of nanomaterials in inhomogeneous medium,29 and
also in a broader context to other types of nucleation processes
that can be described using the Szilárd model.
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