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Abstract This paper focuses on the variability in

entrainment rate in individual cumulus clouds using the

entrainment rate estimated on the scale of 5 m in 186

shallow cumulus clouds from eight aircraft flights, using

in situ observations from the RACORO field campaign (the

routine atmospheric radiation measurement aerial facility

clouds with low optical water depths optical radiative

observations) over the atmospheric radiation measurement

Southern Great Plains site, USA. The result shows that the

mean entrainment rate of all the 186 clouds systematically

decreases from the cloud edge to the cloud center. Further

analysis of the fluctuation of entrainment rate shows that

the probability density function of entrainment rate in each

flight can be fitted by the lognormal, gamma, or Weibull

distributions virtually equally well, with the Weibull dis-

tribution being the best. The parameter ‘‘standard devia-

tion’’ in the lognormal distribution is weakly negatively

correlated, and the other parameters in the three distribu-

tions are positively correlated with relative humidity in the

entrained dry air and dilution effect, respectively.

Entrainment rate is negatively correlated with droplet

concentration, droplet size, and liquid water content, but

positively correlated with relative dispersion. The effect of

entrainment rate on the spectral shape of cloud droplet size

distribution is examined and linked to the systems theory

on the cloud droplet size distribution.

Keywords Entrainment rate � Shallow cumulus �
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1 Introduction

Clouds play important roles in global radiation budget and

climate change [1–7]. Cumulus parameterization in climate

models affects the simulations of precipitation, intrasea-

sonal oscillation, and climate [8–12]. Fractional entrain-

ment rate (k) is an important property widely used in the

parameterization of cumulus clouds and has been known to

influence the transport of heat, momentum, and water

vapor [13, 14]. Entrainment and the subsequent mixing

processes significantly affects cloud properties [15–18].

In the past several decades, a number of approaches

have been developed to estimate entrainment rate. Stom-

mel [19] calculated the entrainment rate from moisture and

temperature profiles inside and outside of clouds and found

that the amount of entrained dry air was about twice the
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original cloudy air. Betts [20] developed a bulk-plume

approach, whereby entrainment rate was estimated from

the difference in a conserved property between cloud and

environment. Later on, this approach was used to estimate

entrainment rate from model simulations [21, 22] and

observations [23–25]. These results indicated that entrain-

ment rate was different for different clouds. For example,

de Rooy and Siebesma [21] found entrainment rate

decreased with height while Del Genio and Wu [22] found

an opposite phenomenon. Jensen and Del Genio [26] esti-

mated entrainment rate through comparing cloud-top

height from an entraining parcel model with that from

observations. They found that, on average, entrainment rate

was approximately constant for low cloud-top height and

entrainment rate decreased with further increasing cloud-

top height. Wagner et al. [27] developed an algorithm for

estimating entrainment rate based on a mixing parcel

model and ground-based observations. They found that

shallow cumulus clouds showed significant variability in

entrainment rate in a single day and from one day to the

next. Romps [28] introduced a method for directly mea-

suring entrainment rate in a cloud-resolving simulation. It

was found that the bulk-plume method underestimates

entrainment rate by roughly a factor of 2. Dawe and Austin

[29] formulated a method for estimating entrainment rate

through the surface of an arbitrary volume in a numerical

model. They further applied this method to large eddy

simulations and found that entrainment rate was best pre-

dicted by mean cloud buoyancy and environmental buoy-

ancy lapse rate [30]. Despite the effort and progress, the

topic is still poorly understood and entrainment rate

reported in the literature continues to suffer from a large

uncertainty [24, 31, 32].

Furthermore, entrainment-mixing can be treated as a

stochastic process, and probability density function (PDF)

of entrainment rate is important to improve cumulus

parameterizations [33, 34]. Unfortunately, observational

studies on the PDF of entrainment rate are rare. Lately, Lu

et al. [35] studied cloud-mean entrainment rate for 186

growing cumulus clouds based on aircraft observations and

examined PDF of entrainment rate. However, in that study,

only cloud-mean entrainment rate was investigated. It is

desirable to know the spatial variation and statistics of

entrainment rate within individual clouds because

entrainment-mixing is a local phenomenon and is expected

to vary within individual clouds. To the best of our

knowledge, there have been no observational studies on the

spatial variation and PDF of entrainment rate in individual

clouds on a scale smaller than cloud itself. Likewise, the

effects of entrainment rate on cloud microphysical prop-

erties have been hardly examined on a sub-cloud scale.

The objective of this work was to fill these gaps using

the 5-m-resolution data collected during the Routine AAF

[atmospheric radiation measurement (ARM) aerial facility]

clouds with low optical water depths (CLOWD) optical

radiative observations (RACORO) field campaign, which

operated over the ARM Southern Great Plains (SGP) site

near Lamont, Oklahoma, US, from January 22 to June 30,

2009 [36, 37]. We investigate the spatial variability and

PDF of entrainment rate, and the relationship between

entrainment rate and cloud microphysical properties on the

scale of 5 m.

2 Observational data and approach

2.1 Observational data

The same dataset from RACORO in Lu et al. [35, 38] is

analyzed here. A total of 186 growing cumulus clouds in eight

flights (May 22, May 23, May 24, June 11, June 19, June 23,

June 24, and June 26, 2009) [36] are examined. Comprehen-

sive measurements of radiation, cloud, atmospheric state

parameters, and aerosol were made by the Twin Otter aircraft

from the Center for Interdisciplinary Remotely Piloted Air-

craft Studies (CIRPAS). Cloud droplet size distributions were

measured by Cloud and Aerosol Spectrometer (CAS) at a

sampling rate of 10 Hz. The CAS probe measures aerosol

particles and cloud droplets from 0.29 to 25 lm (20 bins in

radius). Only the bins with a bin-averaged radius larger than

1 lm are employed to calculate cloud microphysical quanti-

ties. The criteria of number concentration (n) [ 10 cm-3 and

liquid water content (LWC) [ 0.001 g m-3 are employed to

select cloud droplet size distributions [39]. According to

Baumgardner et al. [40], the CAS probe has a time response of

0.1 ls and utilizes a first-in, first-out buffer that eliminates any

dead time losses until number concentration exceeds

13,000 cm-3. Thus, the CAS probe is fast enough to measure

cloud droplet size distributions at the aircraft speed of

50 m s-1. Furthermore, the sampling area of the CAS is

11.1 mm 9 120 lm, so the sampling volume at 10 Hz is

11.1 mm 9 120 lm 9 50 m s-1 9 0.1 s, i.e., 6.66 cm-3.

The number concentration in this study is mainly on the order

of 100 cm-3. Assume that the number concentration is

100 cm-3, the number of droplets in the sampling volume is

666. Even for the number concentration threshold in this

study, 10 cm-3, the number of droplets in the sampling vol-

ume is 66.6. Thus, the observations of each cloud droplet size

distributions and microphysical properties should be reliable

based on a large number of droplets. The cloud imaging probe

(CIP) measured droplets in the range of 7.50 to 781 lm

(radius) at a sampling rate of 1 Hz. The criterion that the in-

cloud mean drizzle LWC (radius[25 lm from the CIP) over

the observation period smaller than 0.005 g m-3 is used to

identify non-drizzling clouds. Water vapor and temperature

were measured at 10 Hz, respectively, with Diode Laser
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Hygrometer (DLH) and a Rosemount probe [41, 42]. Vertical

velocity was measured with a 5-hole gust probe on the nose of

the aircraft.

Individual growing cumulus clouds are identified based on

the criteria: (1) when the distance between two CAS cloud

droplet size distributions is less than 50 m, they are considered

to be within the same cumulus cloud (the data were collected

on the scale of 5 m because of the 10-Hz CAS sampling rate

and the aircraft speed of 50 m s-1); (2) 80 % of vertical

velocity in an individual cloud is positive [25, 43]; (3) cloud

has more than 30 cloud droplet size distributions. Only the

entrainment rate in cloud cores is estimated here. The edge of

the cloud core is defined as the point where vertical velocity

changes from negative to positive for the first time, along the

direction from the cloud edge toward the interior of the cloud

(see Fig. 1a in Lu et al. [35] for details). Lu et al. [35]

examined the dependence of calculated entrainment rate on

the above arbitrary thresholds for selecting growing clouds

and found that the effects of these thresholds were minor.

2.2 Approach

The approach for estimating entrainment rate was described

by Lu et al. [43]. As shown in Fig. 1, aircraft penetrates clouds

at the height of z, collecting cloud data at a spatial resolution of

5 m. It is assumed that each cloud droplet size distribution

corresponds to a 5-m-long cloud parcel and a cloud core is

composed of tens or hundreds of cloud parcels. Assume that

all these cloud parcels grow adiabatically from the cloud base

to the level of z. Dry air at that level is assumed to be entrained

into each adiabatic cloud parcel; after mixing and evaporation,

adiabatic liquid water mixing ratio in each cloud parcel

decreases to the observed liquid water mixing ratio.

Two quantities are needed to estimate entrainment rate.

The first one is the mixing fraction of adiabatic cloud (v),

which can be calculated based on the conservations of total

water and energy during the entrainment-mixing at z; the

same method was widely used in other studies [25, 44–46].

See the Electronic Supplementary Material for details. The

quantities needed for the calculation of v are qLa, qL, qvs(Ta),

qve, and Te. The qLa is derived from the adiabatic liquid water

content (LWCa), which is assumed to be the maximum LWC

measured in an individual cloud. qL is mean liquid water

mixing ratio in each cloud. qvs(Ta) is the water vapor mixing

ratio at the point of LWCa and is measured with DLH, and Ta

is calculated from qvs(Ta) under the assumption of saturated

cloud air. qve and Te are, respectively, water vapor mixing

ratio and temperature of the entrained dry air.

The second quantity needed to calculate entrainment

rate is the height (h) of penetration level (z) above the

cloud base height (z0): h = z - z0. The cloud base height

z0 is estimated by adiabatically moving the cloud parcel

with LWCa from the measurement level downwards and z0

is the height where LWCa = 0. With v and h, entrainment

rate is calculated by [43]

k ¼ � ln v
h

: ð1Þ

The entrained mass is assumed to be distributed at the

mid-level (hm) above z0:

hm ¼
z� z0

2
: ð2Þ

A sensitivity test in Lu et al. [35, 38] by assuming LWCa

was 1.25 times the maximum LWC showed that the

uncertainty in entrainment rate due to the uncertainty in

LWCa was small, because of some cancelation between the

numerator and denominator in Eq. (1).

Similar to Lu et al. [35, 38], dry air is assumed to be

entrained from the distance ranging from D to 2D from the

edge of a cloud core on both sides along a horizontal

penetration (Lu et al. [35] for more explanations on D).

3 Results

3.1 Dependence of entrainment rate on distance

from cloud edges

Entrainment rate is estimated for each 5-m-cloud droplet size

distribution in 186 growing cumulus clouds of eight flights

during RACORO. The mean entrainment rate is 0.84 km-1,

and the 5 %, 50 %, and 95 % percentiles are 0.07, 0.58, and

2.5 km-1, respectively. The entrainment rates are comparable

to the results estimated from large eddy simulations [21] and

from remote sensing data [27].

As discussed in Sect. 1, it is important to study the spatial

variation in entrainment rate in individual clouds on a scale
Fig. 1 (Color online) Schematic diagram of the mixing fraction

approach used to estimate entrainment rate for the scale of 5 m
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smaller than cloud itself. Here, only entrainment rates

estimated for D = 500 m are shown because using the

other D values (10, 20, 30, 40, 50, 100, and 300 m) does not

affect the conclusions drawn in this study. Figure 2a shows

entrainment rate as a function of normalized cloud core

width for all the 186 clouds. Note that in this figure, ‘‘x = 0’’

represents the cloud core centers and ‘‘x = ±0.5’’ represents

the cloud core left and right edges, respectively. As shown

in Fig. 3, the cloud core width, estimated by multiplying the

aircraft speed (*50 m s-1) and the time for penetrating a

cloud core, has a wide range of values with the mean core

width and standard deviation being 416 and 258 m,

respectively. The PDF has a peak at *200 m and is skewed

to the left. For majority of clouds, probability density

decreases with increasing cloud core width. This result is

consistent with previous observations [47]. It is clear that

the mean entrainment rate decreases from the cloud core

edge to the cloud center. The standard deviation of

entrainment rate exhibits a similar trend, but the trend is not

as significant as the mean entrainment rate itself.

The above analyses combine all the data from different

heights, because the aircraft horizontal penetrations had dif-

ferent heights above cloud bases in different clouds. As

pointed out by many previous studies, cloud microphysics [4,

48, 49] and entrainment rate [24, 28] have significant vertical

variations. Thus, it is important to examine the entrainment

rate variation in individual clouds at different height levels.

Here, hm from Eq. (2) is used instead of h. As shown in

Fig. 2b–d, entrainment rate also decreases from the cloud core

edges to the cloud core centers even for different ranges of

heights above cloud bases (hm = 0–50, 50–100, 100–550 m).

The above variation in entrainment rate inside clouds is

consistent with the expectation that dry air dilution

decreases from cloud edges to cloud centers. This expec-

tation is further confirmed by Fig. 4, in which the dilution

effect is measured by ‘‘1-LWC/LWCa.’’ The dilution factor

1-LWC/LWCa decreases from the cloud core edge to the

cloud center, and there is a positive correlation between

entrainment rate and 1-LWC/LWCa.

3.2 Optimal functions for describing the PDF

of entrainment rate

Lu et al. [35] found that PDF of cloud-mean entrainment rate

in the 186 clouds can be well fitted by the lognormal distri-

bution. The 5-m-resolution entrainment rate data provide an

Fig. 2 Entrainment rate (k) as a function of normalized cloud core width in the eight cumulus flights during RACORO for different ranges of

height above cloud base: a all heights, hm = 0–550 m, b hm = 0–50 m, c hm = 50–100 m and d hm = 100–550 m. hm is defined in Eq. (2). The

bars represent standard deviations of entrainment rate
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opportunity to study the PDF of entrainment rate in individual

clouds. Most flights sampled more than 15 clouds and 1,000

cloud droplet size distributions. In one flight (June 23, 2009),

there are five clouds, but they have 262 cloud droplet size

distributions, still statistically significant. In addition to the

lognormal distribution, this study further explores whether or

not the other commonly used PDF functions, gamma and

Weibull, can describe the observed PDF of entrainment rate

(Table 1 summarizes the three PDF distributions and the key

associated parameters). Figure 5 compares all the PDFs fitted

with the three commonly used PDF distributions. It is inter-

esting to note that the three distributions describe the obser-

vations virtually equally well, with the coefficients of

determination (R2) ranging between 0.83 and 0.98 for log-

normal distribution, between 0.91 and 0.98 for gamma dis-

tribution, and between 0.91 and 0.98 for Weibull distribution.

The R2 metric is for an individual PDF; however, one

also often needs to know which distribution function

(lognormal, gamma, and Weibull) is the best to fit a family

of the observed PDFs. Liu et al. [50] developed such an

approach based on the relationship between skewness (s)

and relative dispersion (d) of the PDFs. Briefly, for the

lognormal and gamma distributions, the relationships

between s and d are

s ¼ d3 þ 3d; ð3Þ
s ¼ 2d; ð4Þ

respectively. For the Weibull distribution, s and d are

uniquely related to each other, but the relationship cannot

be expressed in an analytical form. Instead, s and d are

given by

s ¼ 3q2Cð3=qÞ � 6qCð1=qÞCð2=qÞ þ 2C3ð1=qÞ
2qCð2=qÞ � C2ð1=qÞ
� �3=2

; ð5Þ

d ¼ 2qCð2=qÞ
C2ð1=qÞ

� 1

� �1=2

; ð6Þ

respectively. Figure 6a shows the theoretical relationships

between s and d from the three distributions and the results

from the PDFs of entrainment rate in each flight for different

D values (10, 20, 30, 40, 50, 100, 300, and 500 m). Note that on

this d–s diagram, each point represents an individual PDF,

whereas the different curves correspond to the different family

of PDFs. The distance of the measurement points to the the-

oretical curves can be thus used to determine which distribu-

tion function fits the PDFs the best. It is evident from the figure

Fig. 4 a 1-LWC/LWCa as a function of normalized cloud width and

b entrainment rate (k) in the eight cumulus flights during RACORO.

LWC and LWCa are liquid water content and adiabatic liquid water

content in individual clouds, respectively. The bars represent standard

deviations of 1-LWC/LWCa

Table 1 Three PDFs for entrainment rate (k)

Name Formula Parameters

Lognormal f ðkÞ ¼ 1

kr
ffiffiffiffi
2p
p e

�ðln k�lÞ2

2r2 l and r are mean value and

standard deviation of ln(k),

respectively

Gamma f ðkÞ ¼ 1
baCðaÞ k

a�1e�
k
b a and b are shape and scale

parameters, respectively

Weibull f ðkÞ ¼ q
c
ðk

c
Þq�1

e�ðk=cÞq c and q are scale and shape

parameters, respectively

Fig. 3 Probability density function of cloud core width in the eight

cumulus flights during RACORO
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that the data points from the observed PDFs fall the closest to

the line for Weibull distribution on average, suggesting that

Weibull distribution is better than lognormal and gamma

distributions to describe the family of PDFs of entrainment

rate on the scale of 5 m in each flight. However, it is interesting

to note that if using the cloud-mean entrainment rate

calculated in Lu et al. [35], the points appear to fall closer to

the line for lognormal distribution (Fig. 6b). The difference in

the best theoretical distribution for fitting PDFs of 5-m

entrainment rate and cloud-mean entrainment rate may be

related to the scale dependence of entrainment-mixing

mechanisms. Data with different sampling resolutions could

Fig. 5 Probability density functions of entrainment rate (k) for each cumulus flight during RACORO: a May 22, 2009, b May 23, 2009, c May

24, 2009, d June 11, 2009, e June 19, 2009, f June 23, 2009, g June 24, 2009, and h June 26, 2009. The k bin width for the PDFs is 0.15 km-1.

Each panel provides the coefficient of determination (R2), the mean (l), and standard deviation (r) of ln(k) for the lognormal fit, numbers of

clouds, and 5-m entrainment rate samples in each flight; also provided are the R2, the shape parameter (a), scale parameter (b) for the gamma fit,

and the R2, the scale parameter (c), shape parameter (d) for the Weibull fit
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result in different estimated entrainment rates. Haman et al.

[51] showed that filaments of droplet-free and cloudy air were

ubiquitous in clouds. A cloud sample of droplet size distri-

bution at a lower sampling frequency (e.g., 100 m) is expected

to have more droplet-free filaments than that at a higher

sampling frequency (e.g., 5 m). As a result, LWC could be

smaller at a lower sampling frequency, which further causes

smaller v and k.

For the application of developing a PDF parameterization,

we further estimate the parameters in the three distribution

functions (l and r in lognormal distributions, a and b in gamma

distributions, and c and q in Weibull distributions) and examine

the factors that affect these parameters. As shown in Fig. 7a, l
increases with increasing mean relative humidity in the dry air

of the eight flights. When relative humidity is larger, evapo-

ration is weaker and more dry air needs to be entrained into

clouds for the same decrease in LWC; so the calculated

entrainment rate is larger if dry air with larger relative humidity

is assumed to be entrained. This is consistent with the conclu-

sion in Lu et al. [35] that both entrainment rate and relative

humidity increase with decreasing D due to the effect of humid

shells around cloud cores. The result is further substantiated by

Fig. 7b, which shows that l is positively correlated with

1-LWC/LWCa. Different from l, r is weakly negatively cor-

related with relative humidity in dry air and 1-LWC/LWCa.

Figure 7c and d shows that both a and b are positively corre-

lated with relative humidity in dry air and the dilution 1-LWC/

LWCa, respectively. Theoretically, the mean entrainment rate

from the gamma distributions is the product of a and b. As

explained above for l in lognormal distributions, larger relative

humidity and 1-LWC/LWCa correspond to larger mean

entrainment rate, and generally also larger a and b. Similar to

the shape and scale parameters in gamma distributions (i.e.,

a and b), the shape and scale parameters in Weibull distribu-

tions (q and c) also increase with increasing relative humidity

and 1-LWC/LWCa (Fig. 7e, f). The behavior of r is different

from those of a and q, which is consistent with theoretical

expectations in general. These three parameters are a unique

function of the PDFs’ relative dispersion (the ratio of the

standard deviation to the mean value). r is positively correlated

with relative dispersion, while a and q are negatively correlated

with relative dispersion, respectively.

3.3 Relationships between entrainment rate

and microphysics

The relationships between entrainment rate and cloud

microphysical properties are underexplored, especially on the

scale of 5 m. Figure 8a–c shows that entrainment rate is

negatively correlated with number concentration, volume-

mean radius, and mean radius. As studied by Lu et al. [38]

using cloud-mean entrainment rate and microphysical prop-

erties, these negative correlations are due to the dominance of

homogeneous entrainment-mixing mechanisms; this conclu-

sion was also quantitatively confirmed by calculating homo-

geneous mixing degree [52]. The results in Fig. 8a–c indicate

that the conclusion holds on the scale of 5 m. Most of standard

deviations are in the range of*0.75 to*1 lm, and there is a

positive correlation between entrainment rate and relative

dispersion for the 5-m-scale data (Fig. 8d, e). The positive

correlation between entrainment rate and relative dispersion is

caused by a nearly constant standard deviation and a negative

correlation between entrainment rate and mean radius, since

relative dispersion is the ratio of standard deviation to mean

radius. As shown in Fig. 8f, the negative correlation between

entrainment rate and LWC arises because stronger entrain-

ment leads to more dilution and evaporation.

To examine the effect of entrainment rate on the cloud

droplet size distributions, the cloud droplet size distribu-

tions are partitioned according to the entrainment rate and

Fig. 6 a Skewness of probability density functions (PDFs) of

entrainment rate (k) on the scale of 5 m as a function of relative

dispersion of the PDFs in each flight for different D values. The dry

air is assumed to be from D to 2D away from the edge of the cloud

core. The three lines are theoretical results for lognormal, gamma, and

Weibull distributions, respectively. b Same as a but for the PDFs of

cloud-mean k from 186 cumulus clouds in eight flights. Each point

corresponds to the PDF for one specific D value (10, 20, 30, 40, 50,

100, 300, and 500 m)

Sci. Bull. (2015) 60(7):707–717 713

123



plotted in a similar dispersion–skewness diagram as Fig. 6,

except for the droplet size distribution instead of entrain-

ment rate PDF (Fig. 9). It is noteworthy that when

entrainment rate is smaller than 2 km-1, the data points

(blue) fall mainly between the lines of gamma and Weibull

distributions. When entrainment rate is larger than 2 km-1,

the data points (cyan, yellow, and red) scatter widely from

below the line of Weibull distribution to above the line of

lognormal distribution. The change in the spectral shape of

the droplet size distribution with entrainment rate warrants

further inspection. Liu et al. [53–57] developed a systems

theory by integrating into cloud physics the ideas from

statistical physics and information theory. Two conclusions

derived from the systems theory are particularly relevant to

the results shown in Fig. 9. First, the most probable size

distribution in turbulent clouds tends to follow the Weibull

distribution, which is supported by the blue points. Second,

observed droplet size distributions in real clouds tend to

Fig. 7 (Color online) a–b Mean (l) and standard deviation (r) for the lognormal fit of probability density function of entrainment rate (k) as a

function of relative humidity in dry air and 1-LWC/LWCa for each flight during RACORO, respectively. c–d Same as a–b but for the shape

parameter (a) and scale parameter (b) for the gamma fit of probability density function of k. e–f Same as a–b but for the scale parameter (c) and

shape parameter (q) for the Weibull fit of probability density function of k

714 Sci. Bull. (2015) 60(7):707–717
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depend on the sampling (averaging) scale, with a saturation

scale beyond which the averaged size distribution approa-

ches the most probable Weibull distribution; clouds with

stronger fluctuations tend to have larger saturation scale

and higher dispersion. The difference between the observed

droplet size distributions shown here and the theoretical

expectation from the systems theory could be due to the

data in this study may not reach the saturation scale for the

most probable size distribution. From the viewpoint of the

systems theory, a stronger entrainment leads to a stronger

fluctuation in clouds, which in turn leads to a larger satu-

ration scale and stronger scale dependency of droplet size

distributions [58]. This dependency on the fluctuation

degree provides a qualitative explanation why the droplet

size distributions deviate from the Weibull distributions

significantly when entrainment rate is larger than 2 km-1.

Fig. 8 Joint probability density functions of entrainment rate (k) versus a number concentration (n), b volume-mean radius (rv), c mean radius

(rm), d standard deviation (sd), e relative dispersion (e = sd/rm), and f liquid water content (LWC) in the eight cumulus flights during RACORO

Sci. Bull. (2015) 60(7):707–717 715
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4 Conclusions

Entrainment rates are estimated on the scale of 5 m using the

mixing fraction approach for a total of 186 cumulus clouds

collected during RACORO. The high-resolution data are

examined for statistical features of the entrainment rate in

individual clouds. It is found that on average, entrainment

rate systematically decreases from the cloud core edge to the

cloud center in the 186 clouds. The traditional curve fittings

to individual PDFs show that entrainment rate PDF can be

fitted almost equally well with lognormal, gamma, and

Weibull distributions, with most of R2 larger than 0.90. A

further analysis with the skewness–dispersion diagram

shows that the Weibull distribution is the most appropriate

for 5-m entrainment rate but the lognormal distribution is the

most appropriate for cloud-mean entrainment rate.

For the parameters in lognormal distributions, l increases

with increasing mean relative humidity in the dry air and

dilution (1-LWC/LWCa); r is weakly negatively correlated

with relative humidity and 1-LWC/LWCa. For the parameters

in gamma and Weibull distributions, both shape and scale

parameters have positive correlations with relative humidity in

dry air and dilution, respectively. Entrainment rate is negatively

correlated with n, rv, rm, and LWC; positively correlated with e;
and not significantly correlated with sd. Cloud droplet size

distributions are significantly affected by entrainment rate.

When entrainment rate is small, the distributions are stable,

mainly between gamma and Weibull distributions. When

entrainment rate is large, the distributions spread widely from

Weibull distributions to gamma distributions, and to lognormal

distributions. The variation in droplet size distributions with

entrainment rate is generally consistent with the systems theory

on the cloud droplet size distribution.
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