Global-scale environmental control of plant photosynthetic capacity

Ashehad A. Ali,1,2,13 Chonggang Xu,1 Alistair Rogers,3 Nathan G. McDowell,4 Belinda E. Medlyn,4 Rosie A. Fisher,5 Stan D. Wullschleger,6 Peter B. Reich,7,8 Jasper A. Vrugt,2,9 William L. Bauerle,10,11 Louis S. Santiago,12 and Cathy J. Wilson1

1Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 USA
2Department of Civil and Environmental Engineering, University of California, Irvine, California 92697 USA
3Biological, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973 USA
4Hawkesbury Institute for the Environment, University of Western Sydney, Hawkesbury, New South Wales, Australia
5Climate and Global Dynamics, National Center for Atmospheric Research, Boulder, Colorado 80305 USA
6Climate Change Science Institute, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 USA
7Department of Forest Resources, University of Minnesota, St. Paul, Minnesota 55455 USA
8Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales, Australia
9Department of Earth System Science, University of California, Irvine, California, 92697 USA
10Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado, 80523 USA
11Department of Ecology, Colorado State University, Fort Collins, Colorado 80523 USA
12Department of Botany and Plant Sciences, University of California, Riverside, California 92521 USA

Abstract. Photosynthetic capacity, determined by light harvesting and carboxylation reactions, is a key plant trait that determines the rate of photosynthesis; however, in Earth System Models (ESMs) at a reference temperature, it is either a fixed value for a given plant functional type or derived from a linear function of leaf nitrogen content. In this study, we conducted a comprehensive analysis that considered correlations of environmental factors with photosynthetic capacity as determined by maximum carboxylation ($V_{c,25}$ rate scaled to 25°C (i.e., $V_{c,25}$; mmol CO$_2$ m$^{-2}$ s$^{-1}$) and maximum electron transport rate (J_{25}) scaled to 25°C (i.e., J_{25}; mmol electron m$^{-2}$ s$^{-1}$)) at the global scale. Our results showed that the percentage of variation in observed $V_{c,25}$ and J_{25} explained jointly by the environmental factors (i.e., day length, radiation, temperature, and humidity) were 2-2.5 times and 6-9 times of that explained by area-based leaf nitrogen content, respectively. Environmental factors influenced photosynthetic capacity mainly through photosynthetic nitrogen use efficiency, rather than through leaf nitrogen content. The combination of leaf nitrogen content and environmental factors was able to explain ~56% and ~66% of the variation in $V_{c,25}$ and J_{25} at the global scale, respectively. Our analyses suggest that model projections of plant photosynthetic capacity and hence land-atmosphere exchange under changing climatic conditions could be substantially improved if environmental factors are incorporated into algorithms used to parameterize photosynthetic capacity in ESMs.

Key words: climate change; climate variables; Earth System Models; leaf nitrogen content; photosynthetic capacity; plant traits.

INTRODUCTION

Our planet is experiencing the warmest temperatures in at least 2000 years (Booth et al. 2012, Friedlingstein et al. 2014) and sophisticated Earth System Models (ESMs) have been developed to simulate the trajectory of climate warming in the coming decades (Meehl et al. 2013, Taylor et al. 2013). A major component of ESMs is the land surface, where photosynthesis and respiration drive carbon fluxes between plants and the atmosphere (e.g., Sitch et al. 2003, Oleson et al. 2013). Canopy photosynthetic uptake of CO$_2$ is a key process in these models, and depends on the environmental conditions (e.g., temperature, radiation, and humidity) and the plant’s photosynthetic capacity at a reference temperature, generally 25°C. For most of the photosynthesis models within ESMs, photosynthetic capacity is represented by the leaf-level maximum carboxylation rate at 25°C ($V_{c,25}$; mmol CO$_2$ m$^{-2}$ s$^{-1}$) and the leaf-level maximum electron transport rate at 25°C (J_{25}; mmol electron m$^{-2}$ s$^{-1}$; Farquhar et al. 1980, Baldocchi and Meyers 1998, Canadell et al. 2000, Zaehle et al. 2005, Friend 2010, Bonan et al. 2011, Rogers 2014).

Vegetation is represented in ESMs as plant functional types (PFTs; White et al. 2000, Bonan et al. 2003, Sitch et al. 2003, Oleson et al. 2013), which are parameterized with traits that describe the form and function of a given PFT. $V_{c,25}$ and J_{25} of PFTs are either a fixed trait, or,
where nitrogen dynamics are simulated, a function of the
prognostic leaf nitrogen content (Haxeltine and Prentice 1996, Bonan et al. 2003, Kattge et al. 2009, Thornton et al. 2009, Zaehle et al. 2010). Many empirical studies have shown that \(V_{c,25} \) and \(J_{25} \) correlate with leaf nitrogen content (e.g., Ryan 1995, Reich et al. 1998, Medlyn et al. 1999, Kattge et al. 2009, Rogers 2014) and this relationship forms the basis of many ESM estimations of \(V_{c,25} \) (Kattge et al. 2009, Rogers 2014) and \(J_{25} \) (Kattge and Knorr 2007). Variation in \(V_{c,25} \) and \(J_{25} \) is substantial (Wullschleger 1993, Medlyn et al. 1999) and occurs with growth conditions (Reich et al. 1998, Cai et al. 2007), season (Wilson et al. 2000, Onoda et al. 2005), and among species (Wohlfahrt et al. 1999, Joel et al. 2001, Ellsworth et al. 2004). In view of these large variations, it is well recognized that current ESM parameterization of \(V_{c,25} \) and \(J_{25} \) oversimplifies the representation of this model input, and that refined representation of variables that control \(V_{c,25} \) and \(J_{25} \) is critical for improving model simulations of land–atmosphere carbon exchange (Bonan et al. 2011, Bauerle et al. 2012, Rogers 2014). \(V_{c,25} \) and \(J_{25} \) are tightly coupled, and therefore a fixed ratio of \(J_{25}/V_{c,25} \) is typically assumed in large modeling schemes, but only \(V_{c,25} \) has been measured and studied more extensively (Wullschleger 1993, Leuning 1997, Kattge and Knorr 2007).

Many studies have explored environmental control of photosynthetic capacity (von Caemmerer and Farquhar 1984, Evans and Poorter 2001, Wilson et al. 2001, Ainsworth and Long 2005, Missou et al. 2006, Bauerle et al. 2012, Maire et al. 2012, Xu et al. 2012). However, they generally consider one or two environmental factors (e.g., \(CO_2 \), radiation) or are limited to a specific region or continent. As far as we know, only one study has evaluated the multi-environmental control of photosynthetic capacity at the global scale (Reich et al. 2007); however, that study had key limitations. It did not consider important environmental factors such as day length (Bauerle et al. 2012), nor did it consider radiation levels at different canopy locations (Meir et al. 2002, Niinemets et al. 2007). Most importantly, it focused on the light-saturated photosynthetic rate (i.e., \(A_{\text{max}} \)) but not on \(V_{c,25} \) or \(J_{25} \). \(A_{\text{max}} \) is not a good measure of photosynthetic capacity, in view that \(V_{c,25} \) and \(J_{25} \), and other physiological properties such as stomatal conductance combined with environmental conditions are used to determine \(A_{\text{max}} \). Thus, \(A_{\text{max}} \) is generally not used in ESMs as a parameter of photosynthetic capacity. Furthermore, Reich et al.’s (2007) study predicted photosynthetic capacity at a global scale by using annual climate conditions. Long-term averages of climatic conditions (Reich et al. 2007) may not represent the conditions (such as peak growing season) that most influence the achieved rates of photosynthetic capacity. Given that we cannot account for very short-term fluctuations (both due to lack of day-to-day observations and a lack of theory about short-term variation in photosynthetic capacity), in this study, we focus on the intermediate time scale (monthly). In agreement with the half-life time of rubisco at seven days (Suzuki et al. 2001), we assume that photosynthetic capacity varies with the monthly mean environmental conditions during plant growth (Medlyn et al. 2002a, Kattge and Knorr 2007, Maire et al. 2012).

In order to identify environmental factors that could be incorporated in ESMs to predict photosynthetic capacity (i.e., \(V_{c,25} \) and \(J_{25} \)), we assembled data that included variation in plant growth conditions resulting from seasonal cycles, latitudinal gradients, and different canopy locations, and then conducted a comprehensive analysis of photosynthetic capacity across the globe using monthly mean environmental conditions that included temperature, radiation, humidity, and day length. Environmental factors could potentially affect \(V_{c,25} \) or \(J_{25} \) in many ways, including the mass-based leaf nitrogen content (Maire et al. 2012), the specific leaf area (Poorter and Evans 1998), leaf age (Escudero and Mediavilla 2003), and nitrogen allocation through photosynthetic apparatus and specific activity of photosynthetic enzymes (Poorter and Evans 1998). In this study, we define \(V_{c,25} \) as the product of \(\text{NUE}_{c,25} \) (\(\mu \text{mol CO}_2/\text{g N} \cdot \text{mol}^{-1} \cdot \text{s}^{-1} \)) and area-based leaf nitrogen content (\(\text{LNC}_{a} \) g N/m\(^2\)), where \(\text{NUE}_{c,25} \) is the \(V_{c,25} \) per unit of leaf nitrogen. Similarly, we define \(J_{25} \) as the product of \(\text{NUE}_{j,25} \) (\(\mu \text{mol electron}/\text{g N} \cdot \text{mol}^{-1} \cdot \text{s}^{-1} \)) and \(\text{LNC}_{a} \), where \(\text{NUE}_{j,25} \) is the \(J_{25} \) per unit of leaf nitrogen and is denoted as a measure of nitrogen use efficiency of \(J_{25} \).

Based on these definitions, environmental factors could affect \(V_{c,25} \) or \(J_{25} \) through two pathways, either by modifying the absolute nitrogen content, or by modifying the photosynthetic nitrogen use efficiency. We explored the relative importance of these two pathways to better understand how environmental factors affect \(V_{c,25} \) and \(J_{25} \).

Methodology

Overview

We obtained individual values of \(V_{c,m} \), \(J_{m} \), and area-based leaf nitrogen content by digitizing data from the literature. The values of \(V_{c,m} \) and \(J_{m} \) were first standardized to common kinetic parameters and photosynthetic functions and then scaled to 25°C using a reference temperature response function. The corresponding mean monthly temperature, incident radiation, day length, and relative humidity at the time of the measurements were obtained from the CRUNCEP.v4 data set (Mitchell and Jones 2005). We assume that at the short-term time scales (e.g., daily basis), photosynthetic rates change due to environmental conditions (Reich et al. 1991a, Sullivan et al. 1996, Porté and Loustau 1998), but there is little change in photosynthetic capacities as determined by \(V_{c,25} \) and \(J_{25} \) (e.g., Xu and Baldocchi 2003). In contrast, at the intermediate time scales (e.g., monthly basis), \(V_{c,25} \) or \(J_{25} \) could change due to plant acclimations to environmental
conditions (Medlyn et al. 2002b, Meir et al. 2002, Kattge and Knorr 2007). Therefore, in this study, we used the monthly mean data to investigate how much environmental variables and leaf nitrogen content could contribute to variations in observed $V_{c,25}$ and J_{m} using a linear mixed-effects model.

Data and observations

We conducted a literature search on Google Scholar to locate publications that included the key words $V_{c,m}$ or J_{m} and also contained leaf nitrogen content, maximum carboxylation capacity, or maximum electron transport rate. We identified several more publications from the references cited in these studies. Some of the data sets used in our study are deposited in the global database of plant traits via the TRY initiative (Kattge et al. 2011). To ensure that our literature review was comprehensive, we also searched the bibliographic resources from Curtis (1996), Wullschleger (1993), and Ainsworth and Rogers (2007), and included the studies that met our basic requirements. We identified a lack of data from the Arctic region and therefore incorporated unpublished data (A. Rogers, unpublished data) collected in Barrow, Alaska, USA as part of the Department of Energy’s Next Generation Experiment in the Arctic (NGEE-Arctic). We want to point out that different data sets are used for the analyses of $V_{c,25}$ and J_{25} because not all the studies report both $V_{c,25}$ and J_{25}.

The $V_{c,m}$ and J_{m} values were standardized to 25°C using reference temperature dependence functions so that a comparison across data could be made at a common temperature. We recognize that this is a highly nontrivial task and that there are a number of formulations to choose from. Some of these temperature functions show weaker correspondence with the experimental data (Harley and Baldocchi 1995), while other temperature functions do not provide accurate modeled temperature responses of rubisco-limited photosynthetic rate. We want to point out that different temperature functions do not provide accurate modeled temperature responses of rubisco-limited photosynthetic rate (McMurtrie and Wang 1993). To ensure that our conclusions are not dependent on the choice of temperature response function (TRF), we explored four alternative functions. The first temperature response function (TRF1) had temperature dependence of rubisco kinetic parameters and temperature sensitivity of $V_{c,m}$ based on the Q_{10} concept (Collatz et al. 1991, Sellers et al. 1996). The second temperature response function (TRF2) had temperature dependence of rubisco kinetic parameters (K_{c}, K_{o}, τ) based on an Arrhenius function taken from Bernacchi et al. (2001), with the temperature sensitivity of $V_{c,m}$ using an Arrhenius function as in Leuning (2002). The kinetic properties of rubisco that depend on temperature include rubisco specific factor (τ; Jordan and Ogren 1984), and the Michaelis-Menten constants for CO$_2$ (K_{c}) and O$_2$ (K_{o}). Since relationships of kinetic parameters could acclimate to variation in growth temperature (Yamori et al. 2005, 2006), the third temperature response function (TRF3) considered Kattge and Knorr’s (2007) formulation of acclimation, where temperature optimum was a function of growth temperature. Finally, the fourth temperature response function (TRF4) was taken from Kattge and Knorr’s (2007) formulation but had limited temperature acclimation, where the plant’s growth temperature was constrained between 11°C and 35°C (see Appendices D–G for details). Exemplary response of $V_{c,m}/V_{c,25}$ to temperature for all TRFs is presented in Fig. 1. To save space, we only included the figures for TRF4, and placed the figures for other TRFs in Appendix A. The reason we focus on TRF4 is that it has a medium level of temperature acclimation and is currently utilized in one of the ESMs; Community Land Model (CLM4.5; Oleson et al. 2013).

In this study, we have data for 127 species from a total of 58 studies on $V_{c,m}$, including six studies that specifically considered seasonal cycles of $V_{c,m}$ (see Appendix A: Table A1 for details). We have 636 data points of J_{m} values, which were reported by 50 studies. Studies which reported $V_{c,m}$ or J_{m} over four or more consecutive months were considered seasonal studies, while the remaining studies were classified as nonseasonal (see Appendix A: Table A1 for details). Ten of the nonseasonal studies explored relationships with light attenuation through the canopy profile (see Appendix A: Table A1 for details) and were classified as vertical canopy layer studies. In our study, we have a total of 833 data points that encompass $V_{c,25}$ under different leaf nitrogen contents and environmental conditions (see Supplement for details).

We used freely available digitization and data extraction software to extract data from figures for a number of studies when they were not reported in text or tables (Engauge Digitizer 5.1; available online). If the climate covariates (temperatures, radiation, and/or specific humidity) were not reported, they were extracted from the CRUNCEP.v4 data set with a resolution of one-half a degree (Mitchell and Jones 2005). Specifically, the climate covariates were obtained every 6 h within a day using the latitudes, longitudes, and the year in which the photosynthesis measurements were made for each study site based on a bilinear interpolation. Bilinear interpolation is used to estimate the climate conditions of each study site from the gridded climate data. We assumed that species experienced the mean monthly environmental conditions when photosynthetic measurements were made, instead of using mean annual climatic conditions (Wright et al. 2004, Reich et al. 2007). We expect that monthly summaries of environmental conditions would potentially characterize plant growth conditions better than annual means in view that photosynthetic capacity responds to changing environments due to enzyme turnover (estimated between 1 and 7 d; Holaday et al. 1992, Piques et al. 2009, Suzuki et al.

14 http://digitizer.sourceforge.net
2010). Leaf temperatures were usually reported, but plant growth temperature was rarely given. Because we needed the radiation conditions, if the study reported the canopy location (i.e., provided the canopy profile) and hence radiation levels, we used all of the data. For studies that did not report the canopy locations explicitly, we only used the upper 25% of the $V_{c,25}$ and J_m data, in view that higher $V_{c,25}$ and J_m are generally associated with higher canopy locations (Ninemets 1997) and our climate data from the CRUNCEP.v4 data set is only for the top of the canopy.

Specific humidity was used to calculate the relative humidity and vapor pressure deficit using the saturated water vapor pressure equation. The saturated vapor pressure and its derivative, as a function of temperature, were calculated from the eighth-order polynomial fits of Flatau et al. (1992). In this study, we do not consider atmospheric CO$_2$ concentration as one of the environmental variables because we only have a limited number of studies for the effects of elevated CO$_2$ on species (Medlyn et al. 1999, Ainsworth and Rogers 2007), which could lead to potential bias of the CO$_2$ impact in the analysis given the large amount of variation in $V_{c,25}$ and J_m across different species.

We did not consider row crops in this study because agricultural practices could confound analysis of the relationships we were exploring. In this study, we focus on C$_3$ species only because they comprise the bulk of plant species on Earth. We acknowledge that leaf lifespan has been shown to be an important correlate of plant traits such as leaf nitrogen content and photosynthesis per unit leaf mass (Wright et al. 2004). We did not consider leaf lifespan because only a handful of studies reported its values, and therefore we posit that leaf lifespan is still poorly quantified (but see Reich et al. 2014); however, we do consider evergreen vs. deciduous habit, which accounts for variation in leaf lifespan, albeit in a crude fashion. Our database covers latitudes from 45.5° S to 71.5° N and longitudes from 157.2° W to 176.3° E. Appendix A: Table A1 lists references to observations and leaf nitrogen content of natural vegetation. The months and years in which the photosynthesis measurements were made and the location of the study sites (latitudes and longitudes) were specified in the published studies.

Linear mixed-effects model

Our data were not independently sampled. Instead, a hierarchical sampling regime was used to collect the data. Namely, observations were first selected based on location. Within each location, there were samples based on time or species. Observations are likely to be correlated because data from the same location and time could have similar conditions (e.g., soil properties and hydrological conditions) that are not perfectly quantified by the available environmental variables. Thus, simple linear regression assuming independence among observational records was not appropriate for our study. Instead, we applied a linear mixed-effects model (Laird and Ware 1982, Lindstrom and Bates 1988) to account for this correlation among observations, where there were three random effects; the location of the photosynthesis measurement site, plant species, and time (months).

The linear mixed-effects model used in this study considered both the area-based leaf nitrogen content and the environmental variables (E), including day length (D), relative humidity (RH), temperature (T), and radiation (R). The form of the model is as follows:

$$V_{c,25} = \alpha + \beta_1LNC + E + \epsilon_1 + \epsilon_s + \epsilon_m + \epsilon$$ (1)

where

$$E = \beta_2R + \beta_3D + \beta_4T + \beta_5RH$$ (2)

and α is the constant term, β is the slope, and the error terms are denoted by ϵ. In Eq. 1, the variance of ϵ is σ^2. The random errors resulting from spatial location, species, and month are ϵ_1, ϵ_s, and ϵ_m, respectively. The estimated variance of different error terms is listed in Appendix A: Table A4. We used a similar linear mixed-effects model for J_{25} (see Appendix A: Table A5 and Appendix B for different error terms).

We used the proportion of variance in observed $V_{c,25}$ and J_{25} explained by a certain model (i.e., r^2) to test the strength of the model. To ascertain how much all of the environmental variables contributed to variations in observed $V_{c,25}$, we first determined the proportion of variation in $V_{c,25}$ explained by the full model (using all of the environmental variables and leaf nitrogen content as the explanatory variables), which is denoted as r^2_{00}. Then we obtained the proportion of variation in $V_{c,25}$ explained by using only leaf nitrogen content as the explanatory variable, which is denoted as r^2_{10}. The difference between r^2_{00} and r^2_{10} was the proportion of variation in $V_{c,25}$ explained by all of the environmental variables (Xu and Gertner 2008). Similarly, the proportion of variation in $V_{c,25}$ uniquely explained by a single variable (e.g., leaf nitrogen content or temperature) is calculated by the difference in r^2 between the full model and the submodel that includes all variables except for the variable of interest. For example, the proportion of variation in $V_{c,25}$ contributed by leaf nitrogen content is calculated by subtracting the r^2 of the submodel that includes all the environmental factors from the r^2 of the full model. In a similar fashion, we calculated the impact of environmental variables and leaf nitrogen content on J_{25}.

Plant functional types (PFTs) and biome regions

Many ESMs simplify the representation of vegetation by dividing species into several simple PFTs (White et al. 2000, Bonan et al. 2003, Sitch et al. 2003, Oleson et al. 2013), due to computational limitations and our limited understanding of physiological properties of a comprehensive list of species. In
these models, each PFT has a particular set of traits and makes up a particular proportion of vegetation at a site. Reich et al. (1997) and Wright et al. (2004) suggested possibilities for building new vegetation schemes that are conceptually cleaner, computationally easier, and that consider trait variation. In this study, we used a common set of plant traits (e.g., growth form, leaf form, and leaf status) and site properties (e.g., region and soil type; Reich et al. 2007, Kattge et al. 2009, Van Bodegom et al. 2012, van Ommen Kloeke et al. 2012) to our linear mixed-effects model. We grouped species in different combination of PFTs by growth form (herbaceous, shrubs, and trees), leaf form (needleleaf and broadleaf), leaf status (evergreen and deciduous), region (tropical, temperate, boreal, and artic) and soil type (oxisol or non-oxisol) as an index of soil fertility (Kattge et al. 2009). We stratified the terrestrial vegetation with four levels of PFT definition with increasing complexity. The first PFT definition (PFTD1) consisted of three growth forms only with a total of three PFTs. The second PFT definition (PFTD2) included three growth forms, two leaf forms, and two leaf statuses with a total of nine PFTs. Based on a simple combination, PFTD2 would have contained a maximum of 12 PFTs. Our data has nine PFTs for PFTD2 instead of 12 because other combinations of PFTs do not exist in our data, and the same reasoning holds for the other PFT definitions. The third PFT definition (PFTD3) was comprised of three growth forms, two leaf forms, two leaf statuses, and four regions, with a total of 19 PFTs. The last level of PFT (PFTD4) was comprised of three growth forms, two leaf forms, two leaf statuses, four regions, and two soil types, with a total of 21 PFTs.

To explore the global pattern of $V_{c,25}$ and J_{25}, we divided the globe into different regions, following Spurr and Barnes (1980). Tropical was between 23.5° S and 23.5° N. The temperate region was between 23.5° N and 50° N and between 23.5° S and 50° S. The boreal region was between 50° N and 66.5° N, while the Arctic was from 66.5° N to the North Pole.
RESULTS

Global variability of photosynthetic capacity

Our results showed that, at the global scale, species from tropical zones tend to have low $V_{c,25}$ and J_{25} while species from higher latitudes tend to have high $V_{c,25}$ and J_{25} for all four different temperature response functions we used (Fig. 2a, d; Appendix A: Figs. A1a, d, A2a, d, A3a, d). The high photosynthetic capacity generally results from a higher photosynthetic nitrogen use efficiency of $V_{c,25}$ or a higher photosynthetic nitrogen use efficiency of J_{25} rather than a higher leaf nitrogen content (Fig. 2b, c, e, f; Appendix A: Figs. A1b, c, e, f, A2b, c, e, f, A3b, c, e, f).

Environmental factors vs. leaf nitrogen effects on photosynthetic capacity

Environmental variables contributed to an about two times larger amount of variation in observed $V_{c,25}$ than that of leaf nitrogen content for TRF2 and TRF3 (Fig. 3a). For TRF1 and TRF4, environmental variables contributed to a ~2.5 times larger amount of variation in observed $V_{c,25}$ than that of leaf nitrogen content (Fig. 3a). Leaf nitrogen content explained ~17% of the variation in $V_{c,25}$ for TRF1, TRF2, TRF3, and TRF4, while environmental variables jointly explained 36–41% of the variation in $V_{c,25}$ (Fig. 3a). The percentage of variation in $V_{c,25}$ explained by the environmental variables using temperature functions with acclimation
(36–41%) was similar to those without acclimation (39–41%; Fig. 3a). The primary environmental factors for $V_{c,25}$ were day length, radiation, temperature, and relative humidity, in order of decreasing importance (Fig. 4a; Appendix A: Figs. A5a, A7a, A9a, A11a). Based on our linear mixed-effects model, day length, radiation, relative humidity, and leaf nitrogen had positive effects on $V_{c,25}$, while temperature had negative effects on $V_{c,25}$ (Fig. 4b–f; Appendix A: Figs. A4b–f, A6b–f, A8b–f).

Environmental variables contributed to an about six times larger amount of variation in observed J_{25} than that of leaf nitrogen content for TRF3 and TRF4 (Fig. 3b). For TRF1 and TRF2, environmental variables contributed to an about nine times larger amount of variation in observed J_{25} than that of leaf nitrogen content (Fig. 3b). Leaf nitrogen content explained $\sim 6\%$ of the variation in J_{25} for temperature response functions without acclimation (TRF1 and TRF2), while it explained $\sim 9\%$ of the variation in J_{25} for temperature response functions with acclimation (TRF3 and TRF4). Environmental variables jointly explained $\sim 61\%$ of the variation in J_{25} when TRF2 and TRF4 were used (Fig. 3b). The percentage of variation in J_{25} explained by the environmental variables was relatively low for TRF1 and TRF3 ($\sim 55\%$; Fig. 3b). The key environmental factors for J_{25} were day length, temperature, radiation, and relative humidity, in order of decreasing importance (Fig. 5a; Appendix A: Figs. A5a, A7a, A9a). Based on our linear mixed-effects model, day length, radiation, relative humidity, and leaf nitrogen had positive effects on J_{25}, while temperature had negative effects on J_{25} (Fig. 5b–f; Appendix A: Figs. A5b–f, A7b–f, A9b–f).

In terms of the relative importance of the two pathways through which environmental factors can affect $V_{c,25}$, our results showed that environmental variables jointly contributed a small amount of variation in observed leaf nitrogen content for different temperature response functions (4.5–5%); Fig. 6a) compared to their contribution to photosynthetic nitrogen use efficiency of $V_{c,25}$ (42–49%); Fig. 6a). The largest amount of variation in photosynthetic nitrogen use efficiency of $V_{c,25}$ (NUE$_{c,25}$) was explained by day length (33–39%; Fig. 7a; Appendix A: Figs. A10a–A12a). Radiation, relative humidity, and temperature had smaller impacts on NUE$_{c,25}$ (0.6–10%; Fig. 7a; Appendix A: Figs. A10a–A12a). Together, environmental variables had much more control over photosynthetic nitrogen use efficiency of J_{25} than leaf nitrogen content (Fig. 6b). We want to point out that the difference in the explained amount of variation for leaf nitrogen content is slightly different because different data sets were used for $V_{c,25}$ and J_{25}, as not all the studies reported both $V_{c,25}$ and J_{25}.

Photosynthetic capacity for plant functional types (PFTs)

Our results showed that, across all of the temperature response functions, the model that used the most comprehensive classification of PFTs (PFT definition 4 with 21 PFTs in Table 3; $r^2 = 40–47\%$) explained less of the variation in observed $V_{c,25}$ than the model that only used leaf nitrogen content and environmental variables (Fig. 8a; $r^2 = 54–58\%$). For TRF1, TRF2, TRF3, and TRF4, and depending on the PFT grouping methodology, PFT explains 10–47\% of the variation in photosynthetic capacity of $V_{c,25}$ (Fig. 9; Appendix A: Figs. A13, A15, A17). The addition of environmental variables increased the explanation of variation to 40–54\% (Fig. 9; Appendix A: Figs. A13, A15, A17). Finally,
the addition of leaf nitrogen content resulted in a total of 55–64% of variation explained (Fig. 9; Appendix A: Figs. A13, A15, A17). This indicates that the addition of both environmental variables and leaf nitrogen content to PFTs substantially improves the predictive power of the empirical model of $V_{c,25}$. Since PFT definitions 3 and 4 considered growth regions, both definitions implicitly contain the climate information, explaining why including environmental factors with these PFT definitions does not greatly improve the proportion of variation explained (Fig. 9; Appendix A: Figs. A13, A15, A17). We want to highlight that for every temperature response function (TRF1, TRF2, TRF3, and TRF4), the explained variance of $V_{c,25}$ by the most comprehensive classification of PFTs (PFT definition 4 with 21 PFTs in Fig. 9; Appendix A: Figs. A13, A15, A17; $r^2 = 40–46\%$) and by the most comprehensive classification of PFTs combined with environmental variables (Fig. 9; Appendix A: Figs. A13, A15, A17; $r^2 = 49–54\%$) is lower than the model that only uses leaf nitrogen content and environmental variables (Fig. 9; Appendix A: Figs. A13, A15, A17; $r^2 = 54–58\%$). This suggests that we will be able to use environmental variables and leaf nitrogen content to make reasonable predictions about the photosynthetic capacity of $V_{c,25}$ at the global scale, without distinguishing individual PFTs.

Our results also showed that, across all of the temperature response functions, the model that uses the most comprehensive classification of PFTs (PFT definition 4 with 21 PFTs in Fig. 8b; $r^2 = 59–69\%$) explained less of the variation in observed J_{25} than the model that only uses leaf nitrogen content and environmental variables (Fig. 8b; $r^2 = 63–69\%$). For TRF1, TRF2, TRF3, and TRF4, and depending on the PFT grouping methodology, PFT explains 33–69% of the variation in photosynthetic capacity of J_{25} (Fig. 10; Appendix A: Figs. A4, A6, and A8 for other temperature response curves).
Appendix A: Figs. A14, A16, A18). The addition of environmental variables increased the explanation of variation to 56–72% (Fig. 10; Appendix A: Figs. A14, A16, A18). Finally, the addition of leaf nitrogen content resulted in a total of 66–76% of variation explained (Fig. 10; Appendix A: Figs. A14, A16, A18). This indicates that the addition of both environmental variables and leaf nitrogen content to PFTs substantially improved the predictive power of the empirical model of J_{25}. Since PFT definitions 3 and 4 considered growth regions, both definitions implicitly contain climate information, explaining why including environmental factors with these PFT definitions does not greatly improve the proportion of variation explained (Fig. 10; Appendix A: Figs. A14, A16, A18). For each temperature response function, the explained variance of J_{25} by the most comprehensive classification of PFTs (PFT definition 4 with 21 PFTs in Fig. 10; Appendix A: Figs. A14, A16, A18; $r^2 = 59–69\%$) and by the most comprehensive classification of PFTs combined with environmental variables (Fig. 10; Appendix A: Figs. A14, A16, A18; $r^2 = 64–68\%$) is similar to the model that only uses leaf nitrogen content and environmental variables (Fig. 10; Appendix A: Figs. A14, A16, A18; $r^2 = 63–69\%$). This suggests that we will also be able to use environmental variables and leaf nitrogen content to make reasonable predictions about the photosynthetic capacity of J_{25} at the global scale, without distinguishing individual PFTs.

DISCUSSION

Variation in photosynthetic capacity with latitude

Our results showed that species from tropical zones tend to have relatively low V_{cm} and J_{25} values. This finding is consistent with Kattge et al. (2009). There are three important hypotheses about photosynthetic capacity that could explain why V_{cm} and J_{25} increase with latitude. Firstly, plants from high latitudes need to
invest more nitrogen in rubisco to offset the marked reduction in carboxylation at low temperatures. Without increased investment in rubisco, these plants could not sustain a positive carbon balance at low temperatures (Kerkhoff et al. 2005). This hypothesis is supported by our data showing that a higher NUEc,25 is associated with plants from high latitudes. Secondly, plants from lower latitudes may need to retain leaves for a longer period in order to both endure shade (Reich et al. 2004) and to invest more nitrogen in traits associated with leaf toughness, longevity, and resistance to pests and pathogens, rather than in tissues associated with high productivity (Kikuzawa et al. 2013). Therefore, for a given nitrogen content, plants from lower latitudes may have a lower photosynthetic capacity (Reich et al. 1991b, Prior et al. 2003, Hikosaka 2005). Finally, the growing season day length could be another important factor contributing to the latitudinal pattern, in view that longer day length at high latitudes could lead to higher Vc,25 and higher J25. Longer day length could be associated with longer photoperiod, which has been demonstrated by previous studies to alter Vc,25 and J25 (Comstock and Ehleringer 1986, Bauerle et al. 2012). The mechanism of this acclimation could be related to photoperiod sensing and regulation, which may modify gene expression in plants (e.g., Song et al. 2013). Previous studies have shown that photosynthetic capacity of *Pinus banksiana* seedlings was reduced by instituting a short-day treatment in the fall, but maintaining high summer growth temperatures (Busch et al. 2007, 2008).
Causes of variability in photosynthetic capacity

In our global-scale study, we found that environmental factors affected photosynthetic capacity mainly through the impact on photosynthetic nitrogen use efficiency, rather than through leaf nitrogen content. This result is in agreement with previous studies showing large variation in the relationship between leaf nitrogen content and photosynthesis (Evans 1989). However, it is in disagreement with Niinemets et al.’s (1998) finding that the change in area-based leaf nitrogen content resulting from leaf morphological plasticity (e.g., leaf mass per unit area) contributes much more to the photosynthetic capacity under light gradients than the variations in nitrogen use efficiency resulting from changes in nitrogen investment. This discrepancy could be attributed to the fact that at the global scale, there is a large amount of variation in leaf nitrogen content with a large number of species (>100 species in this study compared to four species in Niinemets et al. [1998]) and thus the impact of leaf nitrogen content on $V_{c,25}$ became weaker, especially compared to variation within a single species where changes in leaf mass per area explain the vast majority of vertical variation in leaf nitrogen (e.g., Ellsworth and Reich 1993). This argument is supported by Feng and Dietze’s (2013) recent finding that relationships between leaf traits and photosynthesis established at broad scales, such as across biome relationships, may not be captured at finer scales. Furthermore, if we only consider the radiation impact on $V_{c,25}$, our results suggest that radiation explained little of the variation in leaf nitrogen and in NUE$_{c,25}$ (~2%; Fig. 7a). We want to point out that variations in nitrogen use efficiency can be caused by several different factors, including leaf age (Escudero and Mediavilla 2003), nitrogen allocation to photosynthetic apparatus.
(Xu et al. 2012), and specific activity and activation states of photosynthetic enzymes (Poorter and Evans 1998). Currently, we do not have data on these factors to point out the specific mechanistic process contributing to variation in nitrogen use efficiency.

Hypotheses on environmental control of \(V_{c,25} \)

Our result supports some of the hypotheses on environmental control of \(V_{c,25} \) at the global scale. Firstly, our study supports the hypothesis that \(V_{c,25} \) is higher at a lower growth temperature. This could be attributed to temperature acclimation due to changes in photosynthetic enzyme properties (Bunce 1998, Hikosaka et al. 2005) or in nitrogen investment (Onoda et al. 2005). Using a nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration to maximize photosynthesis, Xu et al. (2012) predicted that plants tend to invest higher amounts of nitrogen for \(V_{c,25} \) and lower amounts of nitrogen for \(J_{25} \) and storage. Secondly, our study supports the hypothesis that \(V_{c,25} \) is higher at a higher irradiance, which is in agreement with the results from Maire et al. (2012). This finding is also in agreement with the optimization hypothesis proposed by Haxeltine and Prentice (1996) and Dewar (1996), who suggested that in theory, plants may have a high photosynthetic capacity due to increased leaf nitrogen content under elevated radiation levels. Haxeltine and Prentice (1996) developed a general model based on Farquhar’s model of photosynthesis for light use efficiency of primary production, which linked photosynthetic capacity and area-based leaf nitrogen content. Their approach was based on the optimization theory that maximized net assimilation (photosynthesis minus leaf respiration) against incoming radiation. Dewar (1996) did similar work to Haxeltine and Prentice (1996), except that he maximized net photosynthesis at each canopy level. The results of Haxeltine and Prentice (1996) and Dewar (1996) imply that once the photosynthetic properties of leaves have adjusted to a given (and constant) daily pattern of radiation, then their daily light use efficiency is constant.

Uncertainties in data analysis and mechanistic interpretation

One potential uncertainty can result from the temperature responses that we used to scale \(V_{c,m} \) and \(J_m \) to \(V_{c,25} \) and \(J_{25} \), respectively. We used four versions of temperature dependence functions of \(V_{c,m} \) (see Methodology) to assess the effects of potential bias in temperature response estimation on our analyses. Specifically, we used temperature response functions from (1) Collatz et al. (1991) and Sellers et al. (1996), which were based on the \(Q_{10} \) concept, (2) a temperature response function proposed by Leuning (2002), (3) a temperature response function based on Kattge and Knorr (2007)’s formulation of acclimation, where temperature optimum was a function of growth temperature, and (4) a temperature response function based on Kattge and Knorr’s (2007) formulation but with limited temperature acclimation, where the plant’s growth temperature was constrained between 11°C and 35°C. The main difference between these four functions is that the temperature response diverges at temperatures greater than 30°C (Fig. 1).

Environmental variables contributed to a relatively lower amount of variation in observed \(V_{c,25} \) and \(J_{25} \) for TRF3 than for TRF1, TRF2, and TRF4. When Kattge and Knorr’s (2007) formulation of temperature acclimation was used (TRF3 and TRF4), a lower \(V_{c,25} \) and \(J_{25} \) were generally associated with plant growth temperatures less than 15°C and more than 25°C relative to the formulation without acclimation (TRF2; Appendix A: Fig. A19a). The temperature acclimations did not substantially change the standardized values of \(V_{c,25} \) or \(J_{25} \) at relatively high growth temperatures because most of the relatively high measurement temperatures were around 25°C (Appendix A: Fig. A19b). Meanwhile, the temperature acclimations can lead to lower values of \(V_{c,25} \) or \(J_{25} \) at lower measurement temperatures. Therefore, the temperature acclimations can lead to a smaller variations in \(V_{c,25} \) and \(J_{25} \) across the environmental gradient (e.g., day length; Appendix A: Figs. A19c, d). As a result, temperature response functions that assumed unlimited temperature acclimation (TRF3) fit the data a little more poorly than temperature response functions that did not assume acclimation (TRF1 and TRF2). The temperature responses function with limited acclimation (TRF4) fit the data almost as well as TRF1 and TRF2 because it limited temperature acclimation to the range between 11°C and 35°C. Overall, our result of the relative impact of environmental factors and leaf nitrogen on photosynthetic capacity holds for different types of temperature response functions.

While we have analyzed the most comprehensive data set currently available, we are aware that the data set needs improvement. For example, the data set lacks information on various mechanistic processes, which might explain the relationships we observed in the data set. Our proposed method is purely correlational. It does not mechanistically explain the acclimation, phenotypic plasticity, and turnover processes behind the statistical relationships between \(V_{c,25} \) or \(J_{25} \) and environmental variables, nor does it account for trait trade-offs. Still, in our opinion, it is an important and necessary step as it reflects the observed correlations between traits and climate drivers (Wright et al. 2005, Martin-StPaul et al. 2012). Importantly, we quantified the key environmental predictors for \(V_{c,25} \) or \(J_{25} \) using a linear mixed model that captures a large part of observed trait variation despite large variations among species. Furthermore, our study shows that leaf nitrogen and environmental conditions alone are equally good predictors of photo-
synthetic capacity as functional type classifications or even functional type classification combined with leaf nitrogen. This is an important step for future progress toward developing models that can be used to more reliably predict future photosynthetic capacities.

Implications for dynamic global vegetation modeling

It has been suggested that we should improve the representation of $V_{c,m}$ and J_m in ESMs by using more or different groupings of PFTs; however, simply increasing the number of PFTs is challenging both for computational reasons and because our understanding of the mechanisms governing the distribution of even the most broad definitions of PFTs is poor. Our findings about the environmental controls on photosynthetic capacity are consistent with the findings from Verheijen et al. (2012). Verheijen et al. (2012) illustrated that allowing traits within PFTs to vary with plant trait–climate relationships yielded a closer match to some types of observational data. The results of our study could be incorporated into a similar modeling framework to improve prediction of future global carbon dynamics.

One important result from our study is that when we included leaf nitrogen content and environmental variables, depending on the temperature response function used, all four groupings of PFTs explained a similar amount of variation in $V_{c,25}$ (Fig. 9; Appendix A: Figs. A13, A15, A17). The same was true for J_{25} (Fig. 10; Appendix A: Figs A14, A16, A18). These suggest that, with the inclusion of environmental variables and leaf nitrogen content, we should be able to successfully predict the photosynthetic capacity with relatively few PFTs. Our findings demonstrate functional convergence, that is, even across contrasting PFTs, at the scale of the leaf, fundamental physiological constraints apply (Schulze et al. 1994, Reich et al. 1997, Meinzer 2003). Reich et al. (1997) demonstrated the concept of functional convergence, whereby universal constraints, or trade-offs, among fundamental leaf traits such as nitrogen content, lifespan, photosynthetic capacity, and leaf mass per area were found to apply across hundreds of species native to a wide range of biomes from the tropics to tundra. Our findings provide a clear physiological reason why we can simplify some of our models and therefore have important implications for interpreting and modeling vegetation properties such as productivity across a broad range of scales.

Another important result is that the addition of leaf nitrogen content and environmental variables to any one of the four groupings of PFTs explained a similar amount of variation in $V_{c,25}$ (depending on the temperature response function used) as the model that considered environmental variables and leaf nitrogen content without PFTs (Fig. 9; Appendix A: Figs. A13, A15, A17). The same was true for J_{25} (Fig. 10; Appendix A: Figs. A14, A16, A18). These suggest that environmental variables and leaf nitrogen content can predict most of the variation in photosynthetic capacity, and therefore we do not need to consider PFTs for $V_{c,25}$ and J_{25} estimation.

The environmental control of $V_{c,25}$ and J_{25} could have important implications for predicting vegetation dynamics and carbon fluxes. Some ESMs have already incorporated the effect of seasonal variation in relative day length at the pixel level on $V_{c,25}$ and J_{25} (Bauerle et al. 2012); however, as far as we know, most ESMs have not incorporated effects of temperature, radiation, day length, and humidity on $V_{c,25}$ and J_{25} at the global scale. For the high latitudes (boreal and arctic), where the most dramatic warming is predicted to occur (Bonan 2008, Bader 2014, Ding et al. 2014), the temperature effects on $V_{c,25}$ (Xiang et al. 2013) could be important to predict vegetation responses to warming. Our analysis suggests that as high latitudes warm, $V_{c,25}$ should decrease. Therefore, not accounting for the correlation between temperature and $V_{c,25}$ would lead to an overestimation of photosynthetic capacity and thus an overestimation of gross primary production in future warmer high-latitude ecosystems. With a $V_{c,25}$ of 91.6 μmol CO$_2$·m$^{-2}$·s$^{-1}$ and a J_{25} of 205.7 μmol electron·m$^{-2}$·s$^{-1}$, based on our arctic data, acclimation in $V_{c,25}$ and J_{25} due to a 5°C increase in temperature would reduce photosynthesis by 36% (see Appendix C) relative to what would occur in the absence of downregulation. Regardless of whether plants acclimate to temperature or not, warming increased photosynthesis. The increment of photosynthesis was lower when acclimation was assumed than without acclimation. We want to point out that CO$_2$ is a key environmental factor that could affect $V_{c,25}$ and J_{25} (Medlyn et al. 1999, Ainsworth and Rogers 2007). In this study, we do not examine the importance of atmospheric CO$_2$ concentration due to potential bias as a result of a limited number of studies on species under elevated CO$_2$. Future studies that link atmospheric CO$_2$ concentration with temperature, radiation, and humidity to assess their impact on $V_{c,25}$ and J_{25} could be critical for our prediction of photosynthesis rates under climatic change.

Future work and caveats

The results of our study suggest that at the global scale, environmental variables have much stronger control on plant photosynthetic capacity than area-based leaf nitrogen content. Our normalized data set could be used as a basis for development and parameterization of more mechanistic models (e.g., Xu et al. 2012). Such models can be very useful for understanding carbon–nitrogen coupling at the leaf scale and simulating the acclimation of photosynthetic capacity to temperature in ESMs. However, there are still caveats that should be considered. First, although environmental and leaf nitrogen content values explained a large amount of variability in photosynthetic capacity, there is still significant uncertainty that cannot be explained, which could be attributed to other constraints such as leaf lifespan (Wright et al. 2004,
Reich et al. 2007), phosphorus limitation (Lewis et al. 1994, Warren 2011), leaf thickness (Wright and Westoby 2002), leaf development (Wilson et al. 2000, Xu and Baldocchi 2003, Grassi et al. 2005), leaf nonstructural carbohydrate content (Misson et al. 2006), soil water content (Nogues and Alegre 2002), soil temperature (Misson et al. 2006), and pH of the soil or rooting depth (Canadell et al. 1996). To our knowledge, only a few studies have looked at the effects of these factors on photosynthetic capacity and therefore, at this time, it is not possible to examine how these factors would control plant photosynthetic capacity at the global scale.

Second, in this study, we used mean monthly environmental variables. Thus, our results are focused on an intermediate time scale. A different interpretation of the impacts of these environmental variables on photosynthetic capacity could result from considering short-term (daily basis) or long-term (yearly or decadal) scales. In the short term, variation in environmental variables may explain only a small amount of the variation in photosynthetic capacity (Xu and Baldocchi 2003). In the long term, environmental variables could cause up to twofold interannual variations in photosynthetic capacity (Grassi et al. 2005, Kitaoka and Koike 2005, Iio et al. 2008). Because the response of photosynthesis to these environmental drivers is nonlinear, the response derived from monthly mean environmental conditions could be very different from the mean of the daily responses. For example, strong seasonal and diurnal variability in the magnitude of temperature increases may shift the photosynthesis–temperature relationships of plants by altering the balance between $V_{c,m}$ and J_{m} and changing temperature optima (Billings et al. 1971, Berry and Björkman 1980, Wilson et al. 2000, Onoda et al. 2004, 2005).

Acknowledgments
This work is funded by the UC Laboratory Fees Research Program (Grant ID: 237285) and the NGEE-Tropics program at the office of Biological and Environmental Research, DOE Office of Science. This submission is under public release with the approved LA-UR-13-27167. Conflict of interest: none declared.

Literature Cited

Verheijen, L. M., V. Brovkin, R. Aerts, G. Bönisch, J. H. C. Cornelissen, J. Katge, P. B. Reich, I. J. Wright, and P. M. van Bodegom. 2012. Impacts of trait variation through observed trait–climate relationships on performance of a

SUPPLEMENTAL MATERIAL

Ecological Archives

Appendices A–G and the Supplement are available online: http://dx.doi.org/10.1890/14-2111.1.sm