Age-dependent leaf physiology and consequences for crown-scale carbon uptake during the dry season in an Amazon evergreen forest

Loren P. Albert1,2, Jin Wu1,3, Neill Prohaska1, Plinio Barbosa de Camargo4, Travis E. Huxman5, Edgard S. Tribuzy6, Valeriy Y. Ivanov7, Rafael S. Oliveira8, Sabrina Garcia9, Marielle N. Smith1,10, Raimundo Cosme Oliveira Junior11, Natalia Restrepo-Coupe12, Rodrigo da Silva1,13, Scott C. Stark10, Giordane A. Martins9, Deliane V. Penha14 and Scott R. Saleska1

1Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85719, USA; 2Institute at Brown for Environment and Society, Brown University, Providence, RI 02912, USA; 3Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, NY 11973, USA; 4Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, CEP 13416-000, Piracicaba, SP, Brazil; 5Ecology and Evolutionary Biology & Center for Environmental Biology, University of California, Irvine, CA 92697, USA; 6Instituto de Biodiversidade e Florestas, Universidade Federal do Oeste do Pará (UFOPA), CEP 68035-110, Santarém, PA, Brazil; 7Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA; 8Department of Plant Biology, University of Campinas (UNICAMP), CEP 13083-970, Campinas, SP, Brazil; 9Ciências de Florestas Tropicais, Instituto Nacional de Pesquisa da Amazônia, CEP 69.067-375, Manaus, AM, Brazil; 10Department of Forestry, Michigan State University, East Lansing, MI 48823, USA; 11Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Amazônia Oriental, CEP 68035-110, Santarém, PA, Brazil; 12Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia; 13Atmospheric Sciences Department & Institute of Engineering and Geosciences, Universidade Federal do Oeste do Pará (UFOPA), CEP 68035-110, Santarém, PA, Brazil; 14Society, Nature and Development Department, Universidade Federal do Oeste do Pará (UFOPA), CEP 68035-110, Santarém, PA, Brazil

Authors for correspondence:
Loren P. Albert
Tel: +1 832 266 3051
Email: labert@email.arizona.edu

Scott R. Saleska
Tel: +1 520 626 5838
Email: saleska@email.arizona.edu

Received: 16 September 2017
Accepted: 8 January 2018

New Phytologist (2018)
doi: 10.1111/nph.15056

Key words: drought, dry season green-up, leaf ontogeny, phenology, photosynthesis, scaling, tropical forests.

Summary

- Satellite and tower-based metrics of forest-scale photosynthesis generally increase with dry season progression across central Amazônia, but the underlying mechanisms lack consensus.
- We conducted demographic surveys of leaf age composition, and measured the age dependence of leaf physiology in broadleaf canopy trees of abundant species at a central eastern Amazon site. Using a novel leaf-to-branch scaling approach, we used these data to independently test the much-debated hypothesis – arising from satellite and tower-based observations – that leaf phenology could explain the forest-scale pattern of dry season photosynthesis.
- Stomatal conductance and biochemical parameters of photosynthesis were higher for recently mature leaves than for old leaves. Most branches had multiple leaf age categories simultaneously present, and the number of recently mature leaves increased as the dry season progressed because old leaves were exchanged for new leaves.
- These findings provide the first direct field evidence that branch-scale photosynthetic capacity increases during the dry season, with a magnitude consistent with increases in ecosystem-scale photosynthetic capacity derived from flux towers. Interactions between leaf age-dependent physiology and shifting leaf age-demographic composition are sufficient to explain the dry season photosynthetic capacity pattern at this site, and should be considered in vegetation models of tropical evergreen forests.

Introduction

Seasonality is a major source of natural variation in climatic variables, and is known to drive cycles of plant productivity in many ecosystems (Keeling et al., 1995; Penuelas et al., 2009; Richardson et al., 2012). Much of the Amazon rainforest – the largest tropical forest in the world – experiences seasonality of rainfall as a result of convection associated with the migration of the Intertropical Convergence Zone, coastal squall lines and other meteorological systems (Horel et al., 1989; Santos et al., 2014; Batista da Silva Ferreira et al., 2015). Evergreen forests of central Amazônia that experience wet and dry seasons show a curious pattern of dry season increase in gross primary productivity (GPP) derived from eddy covariance (EC) (Fig. 1; Saleska et al., 2003; Hutyra et al., 2007; Restrepo-Coupe et al., 2013; Wu et al., 2016), in contrast with many current land surface models (LSMs) that simulate decreasing GPP with seasonal declines in precipitation and soil water availability (Verbeeck et al., 2011;
Restrepo-Coupe et al. (2017). Landscape-scale remote sensing studies complement site-specific EC studies and show increases in vegetation indices ('green-up') during dry seasons over much of the central Amazon basin (Huete et al., 2006; Bi et al., 2015). Although the magnitude of the satellite-observed dry season green-up has been questioned (Morton et al., 2014), it is statistically significant (Saleska et al., 2016), and it suggests dry season changes in photosynthetic processes. Identifying the mechanism(s) driving the dry season GPP pattern, and developing LSMs accordingly, is important for attribution of seasonal changes to appropriate causes (Wu et al., 2016) and, ultimately, for predictions of forest response to global climate change (Restrepo-Coupe et al., 2017), as Amazônia is predicted to experience more severe dry periods in the future (Marengo et al., 2012).

Hypothesized mechanisms for the late dry season GPP increase include: (1) increases in photosynthesis as a result of environmental changes (e.g. increased light availability; Tian et al., 2000; Goulden et al., 2004; Ichii et al., 2005); (2) increases in the quantity of leaves (leaf area index, LAI) throughout the dry season (Goulden et al., 2004; Myneni et al., 2007); and (3) an increase in average leaf-level photosynthetic capacity (Goulden et al., 2004; Doughty & Goulden, 2008; De Weeir et al., 2012; Kim et al., 2012; Wu et al., 2016). Although these hypotheses (Fig. 2) are not mutually exclusive, they have implications for the corrective features required to re-structure LSMs and the type of data required for large-scale parameterization. Seasonal changes in the environment demand greater understanding of the microclimate of complex canopies through time; shifts in LAI demand an understanding of when and where leaf birth or death dynamics are altering structure; and changes in leaf-level photosynthesis require an understanding of how the seasonality of this physiological process relates to plant strategy and the environment.

Fig. 1 Annual cycle of eddy covariance-derived gross primary productivity (GPP) and canopy-scale photosynthetic capacity (PC), averaged over years (2002–2005 and 2009–2011) at K67 in the Tapajós National Forest, Brazil. The shaded gray region indicates the dry season. GPP is derived from the net ecosystem exchange (NEE) by assuming that nighttime NEE is representative of daytime ecosystem respiration. PC, the canopy-scale rate of carbon fixation per unit of light under reference environmental conditions, is derived from averaging the measured GPP : photosynthetically active radiation (PAR) ratio when PAR, vapor pressure deficit, air temperature and cloudiness all fall within fixed narrow ranges (replotted from Wu et al., 2016). Error bars are ± 1 SE.

Previous studies comparing the hypothesized drivers of GPP seasonality have provided evidence that seasonal changes in environment or leaf quantity are insufficient to explain the observed dry season increases in EC-derived GPP (Doughty & Goulden, 2008; Wu et al., 2016, 2017b). Ecosystem scale photosynthetic capacity (PC), a metric of ecosystem carbon uptake per unit incident light that is derived from GPP under fixed environmental conditions (photosynthetically active radiation, vapor pressure deficit, air temperature and cloudiness; Restrepo-Coupe et al., 2013; Wu et al., 2016), also increases as the dry season progresses (Fig. 1), suggesting that dry season increases in photosynthesis are not simply a result of environmental factors, but of biotic factors, such as leaf quantity (Wu et al., 2016). However, changes in leaf quantity alone are also insufficient to account for GPP or PC seasonality according to modeling assessments and ground-based estimates of LAI, which show only modest seasonal variation (Doughty & Goulden, 2008; Brando et al., 2010; Wu et al., 2016).

A growing number of studies support the third hypothesis: seasonal increases in leaf-level photosynthetic capacity, with leaf phenology (the timing of leaf production and abscission) mediating the leaf-level increase (Doughty & Goulden, 2008; Restrepo-Coupe et al., 2013; Wu et al., 2016). Leaves undergo structural and biochemical changes during development, aging and senescence (Niinemets et al., 2012; Pantin et al., 2012). Any degree of synchronization of leaf phenology across crowns during the dry season would produce canopy-scale shifts in mean leaf age, which could explain the observed seasonal changes in both EC-derived GPP (Doughty & Goulden, 2008; Wu et al., 2016) and reflectance (Chavana-Bryant et al., 2017; Wu et al., 2017a) during the dry season.

However, the hypothesis that leaf phenology increases mean leaf-level photosynthetic capacity, and thus explains dry season GPP increases in central Amazon forests (the ‘leaf demography–ontogeny hypothesis’) lacks consensus, in part because of the uncertainties and limitations inherent in large-scale estimations of photosynthesis. Remote sensing of humid equatorial forests with dense canopies is challenging because of cloudiness (Asner, 2001; Samanta et al., 2010), signal saturation (Myneni et al., 2007) and sun-sensor geometry artifacts (Morton et al., 2014; Saleska et al., 2016). Partitioning EC-measured net ecosystem exchange into GPP and respiratory components assumes that unobserved daytime ecosystem respiration behaves the same as nighttime respiration (Reichstein et al., 2005; Lasslop et al., 2009), an assumption that does not always hold (Wehr et al., 2016; Oikawa et al., 2017). As the main support for the leaf demography–ontogeny hypothesis relies on estimates of PC that are themselves derived from EC-GPP (Wu et al., 2016), independent tests are needed.

To date, there have been no studies that have directly tested the leaf demography–ontogeny hypothesis across individual trees with both leaf-level photosynthesis and leaf demography data from canopy species in an Amazon forest where EC-derived GPP and PC are also observed. Most studies of photosynthesis in tropical forests have focused on fully expanded leaves that were neither immature nor showing signs of senescence (e.g. Domingues...
et al., 2014), but the rare studies of age-specific leaf traits (e.g. Chavana-Bryant et al., 2017) or photosynthesis (Sobrado, 1994; Ishida et al., 1999; Kitajima et al., 2002; Alves et al., 2014) have shown that the effects of leaf age on physiology are significant. In evergreen forests of central Amazônia, direct observations of tree crowns (Brando et al., 2010; Lopes et al., 2016) and litterfall (Doughty & Goulden, 2008) have suggested dry season changes in leaf demography. Missing are studies that integrate field-based leaf demographic surveys with photosynthesis measurements in the same individual trees, where such coupled measurements have the power to show whether the timing and magnitude of changes in tree photosynthetic capacity agree with EC-derived PC. Furthermore, there are multiple limitations on photosynthesis, including biophysical limitations (e.g. stomatal conductance) and biochemical limitations (e.g. V_{cmax}, the maximum carboxylation rate of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), and J_{max}, the maximum rate of ribulose bisphosphate (RUBP) regeneration; Sharkey et al., 2007), and so it is important to examine multiple constraints across leaves of different ages.

Here, we test the hypotheses that (1) leaf physiology, particularly photosynthetic capacity, is affected by leaf age; and (2) the leaf age composition (leaf demography) of individual tree crowns varies during the dry season in a moist tropical forest of the Amazon. Then we examine the combined effects of leaf age-dependent physiology and leaf demography on branch-level photosynthetic capacity. We compare the magnitude and direction of dry season changes in aggregate branch-level PC with previously reported EC-derived estimates of the canopy-level PC (Wu et al., 2016; Restrepo-Couce et al., 2017) to evaluate the consistency of ‘bottom-up’ leaf-to-branch estimates with ‘top-down’ EC-derived estimates of photosynthetic capacity.

Materials and Methods

Site

All trees studied were within the footprint of the LBA-ECO EC tower located in the Tapajós National Forest (TNF; 54°58′W, 2°51′S, Pará, Brazil) near kilometer 67 (K67) of BR-163 (Hutyra et al., 2007). The forest is classified as moist evergreen tropical forest, receiving an average of 2022 mm yr$^{-1}$ of precipitation, and typically experiencing a 5-month dry season (months with < 100 mm precipitation) from c. 15 July to c. 15 December each year (Rice et al., 2004; Hutyra et al., 2007). The forest is on flat terrain with a mean canopy height of c. 40–45 m (Hutyra et al., 2007). During a typical dry season, canopy trees at this site generally maintain pre-dawn stem water potential above 2 MPa (Fig. 3a; Supporting Information Methods S1). For details on forest composition and structure, see Rice et al. (2004) and Vieira et al. (2004), and for information on the soil and water table, see Nepstad et al. (2002).

Tree selection and canopy access

Five canopy trees (25–44 m tall) were selected for both leaf physiology measurements and leaf demographic surveys: Erisma
Research

Leaves from E. uncinatum and T. chrysophylla were sampled from different trees during the dry season (Vieira et al., 2004; Pyle et al., 2008) with resolved species names (Boyle et al., 2013), these canopy trees belong to species accounting for 33% of the basal area at the K67 site. The crowns of the canopy trees included sun and shade microenvironments, with the exception of T. cf. chrysophylla, which had an umbrella-shaped crown with few shaded branches, and C. xinguensis, the mid-canopy tree with all branches shaded. The T. cf. chrysophylla and C. xinguensis trees had compound leaves, and all other trees had simple leaves. Leaflets from compound leaves were used for all physiological measurements and counted as leaves for the leaf demographic surveys because we observed that individual leaflets on the same compound leaf showed variation in color and degree of expansion, suggesting that individual leaflets can reach maturity at different times. For the sampling of leaves and branches for physiological measurements and leaf demography (see sections below), single rope access techniques were used to climb into individual crowns of canopy trees. Leaving climbing ropes in trees can compromise rope integrity, and so trees were rigged and de-rigged with climbing ropes on each day of sampling. Tree climbing required the setting up of two rope systems, one for access into the canopy and one for movement within the canopy (branch-walking methods with a tie-in point high in the tree in combination with a lanyard). These arborist techniques allowed us to access branches that experienced sun and shade microenvironments at heights in excess of 35 m. The mid-canopy C. paniculata tree was accessed from above using a tie-in point from a larger canopy tree nearby or sampled with pole-pruners.

Leaf-level gas exchange measurements

Leaf-level gas exchange at the K67 site was measured with a portable infrared gas exchange measurement system (LI-6400; Li-Cor Biosciences, Lincoln, NE, USA) during dry season fieldwork campaigns: August through December 2012, August 2013 and (for C. paniculata only) July 2015. Branch samples from the selected trees (Table S1) were collected via tree climbing, and included branches from both sunny and shady microenvironments if both were present. Before gas exchange measurements, branches were cut, gently lowered to the ground with ropes and recut under water within 15 min.

For each branch, leaves were then classified into age categories based on Chavana-Bryant et al. (2017), and further informed by in situ leaf tagging and photodocumentation carried out in these focal species to demonstrate leaf development (see Fig. S1 in Wu et al., 2017a). Briefly, independently for each species, leaves were assigned age categories (young, mature, old) through visual assessment of leaf color, size, rigidity and position in relation to

Fig. 3 Time series during the dry season (gray) showing progression of (a) weekly mean pre-dawn (05:30 h) stem water potential for three trees (Erisma uncinatum, Tachigali cf chrysophylla and Chamaecrista xinguensis) using available data from 2012 to 2014), (b) weekly mean net assimilation rate (A_{net}) of mature leaves only using within-tree means, and (c) weekly mean stomatal conductance (g_s) of mature leaves only using within-tree means (Supporting Information Table S9; Figs S2, S3). Within-tree means in (b, c) are for seven trees (Erisma uncinatum, Tachigali cf. chrysophylla, Chamaecrista xinguensis, Mezilaurus itauba, Coussarea paniculata and two Manilkara elata). Reference cell $[\text{CO}_2]$ was 350 μmol mol$^{-1}$ for A_{net} and g_s from Li-Cor 6400. For g_s, circles show conductance from a Li-Cor 6400, and triangles show conductance from a porometer. Net assimilation in (b) shows a decrease from early (before October 15) to late (after October 15) in the dry season when mature leaves—the age conventionally chosen for ecophysiology studies—are examined (Table S2), a contrast with canopy-scale gross primary productivity (GPP) (Fig. 1). Error bars show data range in (c), and ±1 SD of tree means in (b, c).

uncinatum Warm., Manilkara elata (Allemão ex Miq.) Monach., Mezilaurus itauba (Meisn.) Taub. ex Mez, Tachigali cf. chrysophylla (Poeppl.) Zarucchi & Herend. and Chamaecrista xinguensis (Ducke) H.S. Irwin & Barneby. Their selection was based on the criteria that they represented abundant species (Table S1), they were within the footprint of the K67 EC tower and they could be accessed using arborist tree-climbing techniques. In addition, one mid-canopy tree Coussarea paniculata (Vahl) Standl., a second Manilkara elata accessible from a walk-up tower and a Lecythis turrita (Miers) S.A. Mori tree were opportunistically sampled. According to a biomass and species survey at the site (Vieira et al., 2004; Pyle et al., 2008) with resolved species names (Boyle et al., 2013), these canopy trees belong to species accounting for 33% of the basal area at the K67 site. The crowns of the canopy trees included sun and shade microenvironments, with the exception of T. cf. chrysophylla, which had an umbrella-shaped crown with few shaded branches, and C. paniculata, the mid-canopy tree with all branches shaded. The T. cf. chrysophylla and C. xinguensis trees had compound leaves, and all other trees had simple leaves. Leaflets from compound leaves were used for all physiological measurements and counted as leaves for the leaf demographic surveys because we observed that individual leaflets on the same compound leaf showed variation in color and degree of expansion, suggesting that individual leaflets can reach maturity at different times. For the sampling of leaves and branches for physiological measurements and leaf demography (see sections below), single rope access techniques were used to climb into individual crowns of canopy trees. Leaving climbing ropes in trees can compromise rope integrity, and so trees were rigged and de-rigged with climbing ropes on each day of sampling. Tree climbing required the setting up of two rope systems, one for access into the canopy and one for movement within the canopy (branch-walking methods with a tie-in point high in the tree in combination with a lanyard). These arborist techniques allowed us to access branches that experienced sun and shade microenvironments at heights in excess of 35 m. The mid-canopy C. paniculata tree was accessed from above using a tie-in point from a larger canopy tree nearby or sampled with pole-pruners.
other leaves and/or bud scars (for examples, see Fig. S1). ‘Young’ described immature leaves (< 2 months old, not fully expanded and/or not fully green), ‘Mature’ described leaves that had recently reached maturity (fully expanded, green and 2–5 months old), ‘Old’ described leaves basal of young and mature leaves that were not yet senescent (fully expanded, attached below bud scars when bud scars were present and > 5 months old).

Gas exchange was typically measured for each age category present on the sampled branch. Measurements of net CO₂ assimilation rate vs calculated stomatal CO₂ concentration \((A/C) \) curves were conducted with an LI-6400 under a standardized set of conditions: block temperature was 31 ± 2°C, photosynthetically active radiation was saturating (999–2001 μmol m⁻² s⁻¹, estimated from a previous test for each tree) and relative humidity was controlled between 20% and 67%. Previous temperature response curves at this site showed an optimal photosynthesis temperature of c. 31°C (Tribuzy, 2005). For all samples, the leaf area for gas exchange was 6 cm² and the stomatal ratio was assumed to be 1. Oxygen concentration was not manipulated, and was assumed to be 21%. For \(A/C \) curves, the reference CO₂ concentrations were controlled as follows: 400, 100, 50, 100, 150, 250, 350, 550, 750 μmol mol⁻¹, and then increased by increments of between 200 and 500 μmol mol⁻¹ to reach saturation at around 2000 μmol mol⁻¹. We show the net assimilation \((A_{net}) \) at 350 μmol mol⁻¹ over the dry season (Fig. 3b). Before curve fitting (see the ‘Analysis’ section below), quality control for gas exchange measurements was applied to exclude values associated with instrument error and other likely outliers. It should be noted that, if initial gas exchange measurements from a candidate tree showed signs that recutting under water did not re-establish the water column, the tree was excluded from future gas exchange measurements (this was the case for the \(L. \) \(harida \) tree). After quality control, a total of 97 \(A/C \) curves were available for analysis. A subset of the \(V_{cmax} \) parameters from these curves was reported in Wu et al. (2016). (Gas exchange data are available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.h83t0.)

In situ stomatal conductance measurements

The stomatal conductance \((g_s) \) of the abaxial surface of the leaves was measured \(in situ \) in the canopy using a steady-state leaf porometer (Decagon Devices, Pullman, WA, USA) in automatic mode for five trees early in the dry season, before 15 October (Fig. S2), and nine trees late in the dry season, from 15 October to the end of the dry season (Fig. S3). From one to 29 leaves were selected for \(g_s \) measurement from each leaf age category present on branches at one to two locations within the crown that were accessible via climbing (see Table S9). When the same trees were measured both early and late in the dry season, the same leaves were measured at both time periods (if a leaf was missing, it was replaced with a nearby leaf of the original age category). Whenever possible, leaves were measured sequentially and repeatedly, such that each leaf was measured one to six times between the hours of 08:20 h and 16:55 h over 1–2 d. Multiple measurements for each leaf were averaged before meta-analysis (see the ‘Analysis’ section below).

Chlorophyll concentration

One to seven leaves from five trees (Table S1) were collected using arborist canopy access techniques on 13–15 November 2012, wrapped individually in aluminum foil, frozen in liquid nitrogen and kept frozen until chlorophyll was extracted (23 November, UFOPA campus). To determine Chl \(a \), Chl \(b \) and total (Chl \(a + Chl \) \(b \)) content of leaves, c. 0.5 g (FW) of each leaf was macerated in 7 ml of 80% acetone and then filtered. The filtrate volume was increased to a total of 20 ml. The supernatant was removed and the absorbance was measured at 663 nm and 647 nm for Chl \(a \) and Chl \(b \), respectively, using a spectrophotometer (3300 UV; Nova Instruments, Ahmedabad, India), and the absorbance was used to estimate the chlorophyll content following Lichtenthaler (1987) (see Methods S2 for equations). (Chlorophyll concentration data are available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.h83t0.)

Leaf chemistry

A subsample of 6–95 leaves per leaf age category per tree from branch demography surveys, including almost all leaves used for gas exchange, were also analyzed for leaf chemistry (percentage nitrogen and carbon-to-nitrogen ratio). Leaves were placed into labeled envelopes and dried for at least 72 h at c. 60°C in a drying oven. Leaf carbon and nitrogen composition were determined in a combustion analyzer coupled to a mass spectrometer for carbon isotopic analysis at the Centro de Energia Nuclear na Agricultura (CENA-USP), Piracicaba, Brazil. A standard of known isotopic content was run every 11 samples. (Leaf chemistry data are available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.h83t0.)

Assessing leaf demography of branches

We coupled the above measurements of leaf physiology with branch-level leaf demography surveys of co-occurring leaves on the same focal trees (Table S1). Field-based surveys of the number of leaves of different ages on individual branches (leaf demography of branches) can be a useful way to estimate leaf demography of crowns (Chavana-Bryant et al., 2017). Leaf demography was assessed for each tree during the dry season in 2012 (August–December), 2013 (November) and 2014 (March for all trees, and again in July–August for three trees). To survey leaf demography for each tree, c. 1-m-long branches were collected from sun and shade microenvironments within the crown, depending on the microenvironments present as a result of crown structure (i.e. only sun branches for \(T. \) \(chrysophylla \)). For each branch, leaves were then classified into age categories and counted. Leaves were categorized by age as described in the ‘Photosynthetic gas exchange’ section. Sometimes multiple (one to five) 1-m branches from similar microenvironments were surveyed on the same date, and averaged by combination of light.
environment (sun or shade) and sample date for each tree before analysis. (Leaf demography data are available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.h83t0.)

Analysis

We fitted the photosynthesis model developed by Farquhar et al. (1980), with triose phosphate use (TPU) limitation (Harley et al., 1992), to the A/CI response curve data using a curve-fitting routine in the R computing environment (R Core Team, 2016) based on minimum least-squares (Domingues et al., 2010). We report the following parameter estimates normalized to 25°C using the temperature dependences summarized in Sharkey et al. (2007): V_{cmax} (maximum carboxylation capacity), j_{max} (maximum rate of photosynthetic electron transport) and TPU.

Because not all trees exhibited leaves of all age categories during our sampling periods, and because the timing of sampling was constrained by conditions safe for tree-climbing, datasets had unequal sample sizes and/or did not include all possible combinations of time, tree and leaf age category. Meta-analysis, often used for pooling results from multiple independent datasets (Hedges et al., 1999), therefore provided a useful method of summarizing the effect size of leaf age across multiple trees in our study. For each tree, we calculated the mean and variance of each physiological variable for each leaf age category (Tables S2–S13), and then used log-transformed response ratios (L) and associated variance (v) of photosynthetic characteristics to contrast mature leaves – the default for measurement in most ecophysiological studies – with young leaves and with old leaves for each tree (see Methods S3 for equations). We calculated L and v for the parameters from A/CI curves, stomatal conductance and physiological trait data (total chlorophyll, Chla : b ratio, percentage nitrogen and carbon-to-nitrogen ratio), and then used fixed effect models fitted by weighted least-squares with the metafor package (Viechtbauer, 2010) in R (v.3.3.1). We evaluated the robustness of each meta-analysis by removing individual trees one at a time from the overall analysis to examine changes in statistical significance. We report the tree sample size (n), unlogged response ratio (RR), z-score (z) and P value.

Meta-analysis of the log response ratios was also used to contrast the number of leaves in different age categories early in the dry season compared with late in the dry season. Demographic survey data (the number of leaves in each age category and the total number of leaves) for all branches (sun and shade together) before 15 October (day of year, DOY = 288) for each tree were binned together as ‘early’ dry season, and leaf demographic surveys after 15 October were binned together as ‘late’ dry season. The wet season demographic surveys from 2014 were not included in this analysis as there was only one wet season survey date for each tree.

Upscaling to estimate branch-level V_{cmax}

To examine how leaf-level changes in carboxylation capacity could affect ecosystem PC, we examined the combined effect of leaf aging and leaf demography. We estimated V_{cmax} weighted by leaf demography (referred to as ‘branch-level V_{cmax}’ in this study) for sun-exposed branches, shaded branches and all branches (sun and shade pooled) for each tree and sampling date (Methods S4). To estimate the magnitude of the change in branch-level V_{cmax} for sun and shade branches of each tree during the dry season, we fitted linear regressions of branch-level V_{cmax} vs DOY for the dry season period well constrained by data (DOY 200–350, see later Fig. 7a,b). To estimate the magnitude of the dry season shift in branch-level V_{cmax} across our focal trees, we calculated the mean slope and intercept for sun, shade and all branches, and tested whether the mean slope was significantly different from zero using two-sided t-tests (Methods S4).

Results

Leaf-level gas exchange

Mature leaves showed a c. 14% average A_{net} decrease from early to late in the dry season (Fig. 3b; n = 4 trees, RR = 1.32, z = 2.80, $P < 0.01$; although the significance is driven by one tree: Table S2). However, contrasting A/CI parameters from gas exchange for leaves of different ages revealed an age dependence (Fig. 4). Sun and shade leaf A/CI parameters showed a similar age dependence, and so were pooled for the analysis of leaf age means. Of the three age classes, mature leaves had the highest value for all A/CI parameters. The average V_{cmax} of mature leaves was c. 60% greater than that of young leaves (n = 6 trees, RR = 0.51, z = −7.47, $P < 0.01$; Fig. 4a) and c. 46% greater than that of old leaves (n = 6 trees, RR = 0.80, z = −3.44, $P < 0.01$). j_{max} of mature leaves was, on average, c. 60% greater than that of young leaves (n = 6 trees, RR = 0.53, z = −8.72, $P < 0.01$; Fig. 4b) and c. 40% greater than that of old leaves (n = 6 trees, RR = 0.73, z = −6.73, $P < 0.01$). TPU of mature leaves was, on average, c. 34% greater than that of young leaves (n = 6 trees, RR = 0.61, z = −7.70, $P < 0.01$; Fig. 4c) and c. 27% greater than that of old leaves (n = 6 trees, RR = 0.76, z = −5.42, $P < 0.01$).

In situ stomatal conductance

Examination of weekly mean stomatal conductance (g_s) using tree-level means for mature leaves for seven trees qualitatively showed no clear trend with dry season progression (Fig. 3c). Yet, contrasts between g_s for mature vs old leaves revealed that g_s depends on leaf age (Fig. 5a; Table S9). Late in the dry season, after 15 October, mature leaves had 34% greater g_s than old leaves (n = 7, RR = 0.77, z = −5.50, $P < 0.01$). Although there were insufficient contrasts of young and mature leaves within the same tree to perform a meta-analysis, qualitative examination of partial diurnal cycles for trees that had young and mature leaf ages present suggested that g_s was higher in mature leaves than in young leaves in M. itauba and E. uncinatum (Figs S2, S3). Thus, conductance may follow a similar pattern with respect to age as the biochemical limitations, with mature leaves exhibiting higher conductance than old or young leaves.
Leaf chemistry

Leaf chemistry showed differences between mature and old, but not mature and young, categories. The percentage nitrogen in leaves was similar between mature and young leaves (\(n = 5\), \(RR = 1.00\), \(z = 0.09\), \(P = 0.92\); Fig. 5d), but, on average, 8% higher in mature leaves than in old leaves (\(n = 6\), \(RR = 0.93\), \(z = -7.75\), \(P < 0.01\)). The ratio of leaf carbon to nitrogen was also similar between mature and young leaves (\(n = 5\), \(RR = 1.02\), \(z = -0.94\), \(P = 0.35\); Fig. 5e), but C:N of old leaves was, on average, 9% higher than that in mature leaves (\(n = 6\), \(RR = 1.09\), \(z = 8.66\), \(P < 0.01\)).

Leaf demography

Dry season leaf demography on 1-m branches showed that leaf age composition varied across the dry season as young leaves became mature leaves and old leaves senesced and abscised (Fig. 6; Tables S18–S20). The difference between ‘early’ (23 July–15 October) and ‘late’ (15 October–5 December) dry season leaf number was significant for all leaf age categories. On average, the number of young leaves decreased by 78% from early to late dry season (\(n = 5\) trees, \(RR = 3.05\), \(P < 0.01\)), mature leaves increased by 65% from early to late dry season (\(n = 5\) trees, \(RR = 0.58\), \(z = -2.97\), \(P < 0.01\)) and old leaves decreased by 68% from early to late dry season (\(n = 5\) trees, \(RR = 2.01\), \(z = 4.79\), \(P < 0.01\)). These changes in composition occurred despite relatively constant total leaf number on 1-m branches. The total number of leaves showed a subtle and insignificant 6% increase from early to late dry season (\(n = 5\) trees, \(RR = 0.85\), \(z = -1.21\), \(P = 0.23\)).

Branch-level \(V_{cmax}\)

Linear regression slopes for branch-level \(V_{cmax}\) for individual trees were significantly positive or near zero during the dry season (Table S21). Aggregate branch-level \(V_{cmax}\) increased significantly during the dry season for all leaves sampled (slope = 0.056, slope SE = 0.0113, \(t\) statistic = 4.88, \(n = 5\), \(P < 0.01\)) and for sun branches (Fig. 7a, slope = 0.071, SE = 0.0101, \(t\) statistic = 7.05, \(n = 5\), \(P < 0.01\)), but not for shade branches (Fig. 7b), as the shade mean slope was high (0.051), but not detectably different from zero (SE = 0.0371, \(t\) statistic = 1.38, \(n = 4\), \(P = 0.26\)).

Using the aggregate slope and intercept to calculate the percentage increase in monthly average branch-level \(V_{cmax}\) between August and November yielded an increase of 24.1% for sun branches (significant) and 18.5% for shade branches (not significant). We compared branch-level \(V_{cmax}\) for sun and shade leaves
with the ecosystem PC reported in Fig. 1 (from Wu et al., 2016) and found a similar rate of increase as the dry season progressed (Fig. 7c).

Discussion

We investigated whether leaf physiology varies with leaf age in tropical trees, and whether leaf demography (the proportion of young, mature and old leaves) varies during the dry season at a moist tropical site. Then, we coupled field-based measurements of leaf V_{max} and leaf demography for the first ‘bottom-up’ test of the hypothesis – which arises primarily from remote observations – that the combination of leaf age-dependent physiology and leaf demography drives the dry season increase in GPP and PC in central Amazonian forests (the leaf demography–ontogeny hypothesis; Wu et al., 2016). We found evidence that leaf physiology
Fig. 6 Leaf demography time series focusing on the dry season (gray) in the Tapajós National Forest (TNF) for five trees surveyed in 2012, 2013 and 2014. Sun branches are shown for five trees and shade branches are shown for four of the trees (Mezilaurus itauba had few shade branches because of the shape of its crown). The proportions of young (yellow circles), mature (green circles) and old (brown circles) leaves are shown for 1-m branches from Erisma uncinatum sun (a) and shade (b), Manilkara elata sun (c) and shade (d), Chamaecrista xinguensis sun (e) and shade (f), Mezilaurus itauba sun (g) and shade (h), and Tachigali cf. chrysophylla shade (i). Colored lines are polynomials fitted to the demography proportion data for the purpose of visualization. The lower right-hand panel (j) shows a time series of leaf area index (LAI) for this forest from Brando et al. (2010) with error bars showing ± 1 SE.
depends on leaf age, such that recently mature leaves have a higher capacity for photosynthesis than either young or old leaves (Figs 4, 5). On average, the total number of leaves on sampled branches did not vary significantly across the dry season, consistent with observations of only minor variations in canopy-scale LAI (Fig. 6), but the age composition of these leaves did vary, giving direct evidence to support previous inferences from simple models (Wu et al., 2016, 2017c) that trees exchange old leaves for young leaves via leaf turnover during the dry season (Fig. 6). Combining the age dependence of leaf physiology results with the leaf demography results, we found that branch-level V_{cmax} of branches with sun-exposed leaves increased by 24.1% between August and November means, consistent with the 26.5% average increase independently observed over the same period in ecosystem-level PC estimated from EC (Fig. 7c). Shade leaf dynamics may also cause an increase in shade branch-level V_{cmax} (average increases were 18.5%), but high variation in shade branch-level V_{cmax} prevented us from statistically resolving the signal. We emphasize that measuring mature leaves only—the convention in most ecophysiological studies—neglects leaf demography and could lead to the conclusion that canopy photosynthesis does not increase with dry season progression (e.g. A_{net} time series of mature leaves only; Fig. 3b).

Although the five trees sampled represent a small fraction of the taxonomic diversity in this tropical evergreen forest, our samples represented five species accounting for a substantial portion (c. 33%) of tree basal area (Table S1). Our results suggest that leaf physiology impacts ecosystem-level carbon exchange in this evergreen forest. This implies that: (1) LAI alone should not be used as an indicator of leaf phenology in tropical evergreen forests (Fig. 6j); (2) LSMs seeking to incorporate leaf phenology in tropical evergreen forests should include the age dependence of limitations on photosynthesis that they represent, such as $V_{\text{cmax}}, f_{\text{max}}, TPU$ and g_{c}; and (3) the replacement of old leaves with new leaves early in the dry season by tropical evergreen trees could represent a strategy to optimize carbon gain by aligning peak photosynthetic capacity of crowns with the period of high light during the dry season, a hypothesis warranting future investigation.

Leaf physiology depends on leaf age

Our finding of the age-dependent development of leaves in tropical trees is consistent with the general paradigm of leaf ontogeny from temperate zone studies (Reich & Walters, 1991; Wilson et al., 2001; Niinemets et al., 2012; Pantin et al., 2012), and also with the limited studies from trees of the Amazon basin on how leaf age affects photosynthesis (Doughty & Goulden, 2008; Alves et al., 2014) and functional traits (Chavana-Bryant et al., 2017; Wu et al., 2017a). In this paradigm, carbon assimilation in young, developing leaves ‘ramps up’ with time as leaves reach maturity as a result of ontogenetic processes involving the light reaction machinery (Welsch et al., 2000; Niinemets et al., 2012), the Calvin–Benson cycle (Wilson et al., 2001; Eichelmann et al., 2004) and stomatal conductance (Willmer & Fricker, 1996; Pantin et al., 2012). Mature leaves have the highest capacity for photosynthesis (Wilson et al., 2001), which remains at a high level for a certain amount of time (depending on the total leaf lifespan and other factors) before declining as leaves approach senescence. In this study, support for the hypothesis that leaf photosynthetic capacity peaks in recently mature leaves before declining in old leaves was found in the A/C_{c} parameters ($V_{\text{cmax}}, f_{\text{max}}$ and TPU; Fig. 4) and also in total chlorophyll content (Fig. 5c). Percentage nitrogen was higher in mature leaves than in
old leaves (Fig. 5d), perhaps because trees were beginning to resorb nitrogen for use in new leaf buds and developing leaves (Hikosaka, 2004). Old leaves in this study also showed physiological changes that may be specific to tropical forests. In general, the Chla : b ratio is lower in shade leaves, enabling them to absorb more light in the wavelengths less absorbed by sun leaves above (Boardman, 1977). Thus, the shift in Chla : b ratio with leaf age (Fig. 5b) could represent a strategy to harvest more light in older leaves as they become increasingly self-shaded by younger (and more apical) leaves in tropical evergreen trees. Epiphyll colonization, common in tropical forests, also increases in old leaves (Coley et al., 1993; Roberts et al. 1998). Epiphylls probably influence photosynthesis via light absorption, nitrogen fixation and perhaps even hormones (Coley & Kursar, 1996; Anthony et al., 2002). Although we observed less epiphyll cover on the canopy leaves we studied compared with longer lived understory leaves in the TNF, more studies of epiphyll effects on photosynthesis are needed in Amazônia.

Importantly, leaf photosynthetic capacity, as indicated by metrics of efficiency related to the light reactions and the Calvin–Benson cycle (e.g. chlorophyll concentration, Jmax and Vcmax), does not solely determine apparent photosynthesis. Stomata may influence the intercellular concentration of CO2 by opening or closing. Our data suggest that mature leaves have higher stomatal conductance than old leaves co-occurring on the same tree (Figs 5a, S2, S3), and therefore higher photosynthetic capacity should indeed manifest as higher apparent photosynthesis. We speculate that, during drought, stomatal closure might limit photosynthesis and outweigh the leaf age effect.

Leaf demography reveals dry season leaf turnover

This study found evidence of leaf turnover, the exchange of old leaves for new leaves, during the dry season within evergreen crowns at K67 (Fig. 6). As old leaves senesced and abscised, the average number of old leaves on 1-m branches decreased from 101 to 32, from early in the dry season (pre-15 October) to late in the dry season (post-15 October). Meanwhile, the average number of mature leaves across trees increased from 191 to 315, a 65% increase, as newly produced leaves reached maturity. This leaf turnover occurred even though the total quantity of leaves on 1-m branches did not change significantly from early in the dry season to late in the dry season (z = -1.21, P = 0.23). This finding is consistent with the leaf demography–ontogeny hypothesis that many evergreen trees exchange old leaves (with low photosynthetic capacity) for recently mature leaves (with high photosynthetic capacity) during the dry season whilst maintaining high LAI (Doughty & Goulden, 2008; Wu et al., 2016). Our findings for this evergreen Amazon forest are in stark contrast with broadleaf deciduous forests, where LAI changes in canopy photosynthetic capacity (e.g. Wilson et al., 2001). Instead, the branch photosynthetic capacity in this forest tracks leaf age demographics rather than total leaf area, a finding that agrees with ecosystem-scale analyses at this site (Wu et al., 2016).

The finding of leaf turnover within evergreen crowns does not indicate that all species or individuals behave similarly. As a result of the intensive effort required to survey leaf demography in tall evergreen trees, our study was limited to a small percentage of trees in one diverse tropical forest, and thus needs to be interpreted as a subsample of phenological behaviors present in evergreen tropical forests. Although all of the trees studied were evergreen (new leaves were produced before old leaves dropped), multiple phenological patterns co-occur in many tropical forests (Rivera et al., 2002; Lopes et al., 2016; Chavana-Bryant et al., 2017). Furthermore, the Manilkara elata tree we examined showed signs of more constant leaf production than other trees examined in this study, suggesting that some tree species have more constant leaf age distribution than others (Fig. 6c,d). Another likely source of variation in leaf phenological behavior is the range of leaf lifespans found in tropical forests (Reich et al., 2004). The present study focused on canopy trees, but understory plants account for c. 50% of LAI in this forest (Stark et al., 2012) and generally have longer leaf lifespans (Reich et al., 2004); therefore, leaf turnover in understory plants may affect a small fraction of understory leaves.

In addition to species diversity within a site, there is environmental variation across sites that could impact leaf phenology. The Amazon basin includes a gradient in precipitation seasonality from the northwestern Amazon, which is consistently wet, to the south and east, which experience dry seasons up to 5 months long (Sombroek, 2001; Restrepo-Coupe et al., 2013). Satellite-based remote sensing studies suggest that there is a threshold amount of precipitation below which productivity in tropical forests is driven by moisture seasonality (Guan et al., 2015). Average precipitation at the K67 site slightly exceeds this 2000 mm yr⁻¹ precipitation threshold, and so productivity may not be limited by water availability during non-drought years. Field studies of leaf demography and photosynthesis should be conducted at more tropical forest sites with various rainfall regimes to further describe the relationship between wet/dry seasonality, leaf phenology and productivity across tropical forests.

Implications of evergreen leaf phenology for LSMs

Our findings suggest that recent incorporations of leaf demography and leaf age dependence of physiology into LSMs represent progress towards the accurate representation of evergreen tropical forests. Studies with ORCHIDEE, a global process-based vegetation model (Krinner et al., 2005), have shown that, when Vcmax is parameterized as a function of leaf age (four age classes), and LAI is more or less constant, the model produces seasonality in litterfall, leaf age and Vcmax (De Weerdt et al., 2012). In the Ecosystem Demography model v.2 (ED2; Medvigy et al., 2009), a phenology module that linearly related leaf turnover to incoming shortwave radiation, and then related leaf lifespan to photosynthetic capacity using the empirically based relationship from the leaf economic spectrum (Wright et al., 2004; Kim et al., 2012), created seasonality in LAI and litterfall, and generally improved the ability of ED2 to simulate the carbon fluxes at the K67 site.

© 2018 The Authors
New Phytologist © 2018 New Phytologist Trust
New Phytologist (2018)
www.newphytologist.com
Here, we attribute the observed seasonal GPP patterns to phenological mechanisms, and the next step is to resolve and model the eco-evolutionary constraints that give rise to these patterns. One such constraint could be carbon acquisition. A recent model that optimizes carbon acquisition as a function of leaf lifespan, when used to analyze 49 species across tropical and temperate forests (including data from this study), successfully predicted leaf lifespan and the rate of decline in PC with age in many tropical species, offering an approach useful for LSMs (Xu et al., 2017). The current study reinforces the argument that providing more mechanistic detail relating tropical vegetation responses to climate variability, including seasonal variation, could help to improve earth system model projections of Amazon forests under climate change scenarios (Malhi et al., 2009; Good et al., 2011; Huntingford et al., 2013; Restrepo-Coupe et al., 2017; Wu et al., 2017c), a long-standing modeling challenge (White et al., 2017c), a long-standing modeling challenge (White et al., 2017c), and also for enhancing carbon gain. Tropical evergreen trees with sufficient water supply that experience wet–dry seasonality may align their period of maximum photosynthetic capacity (when they have many recently mature leaves) with the dry season period of high light availability. Experimental manipulations of light quantity show that high light induces leaf production in tropical trees (Graham et al., 2003) and, across tropical latitudes, observations of leaf production are linked to seasonal increases in daily light quantity (Borchert et al., 2014), showing that high light can be a cue or proximate control over leaf production. The degree to which wet–dry seasonality has ultimately shaped temporal strategies of acquisition and allocation in tropical evergreen trees through natural selection still requires more investigation, but the current study suggests that dry season leaf turnover contributes to optimal light use across the year.

Conclusions

This field-based study shows that the combination of age-dependent leaf physiology and canopy leaf demography increases branch-level estimates of V_{cmax} as the dry season progresses, consistent with independent estimates of ecosystem-level PC (Fig. 7c). These findings provide the first evidence from coupled leaf and branch-level measurements supporting the leaf demography–ontogeny hypothesis for dry season GPP increases in central Amazonian forests (Wu et al., 2016), and emphasize the active role of leaf phenology in controlling carbon and water exchange in central Amazon broadleaf evergreen forests. Thus, phenological rhythms of tropical evergreen forests, although subtle compared with those of temperate deciduous forests, may modulate similar vegetation feedbacks to the climate system (Richardson et al., 2013), including not only seasonality of carbon uptake, but transpiration (Wright et al., 2017) and canopy reflectance (Chavan-Bryant et al., 2017; Wu et al., 2017a).

Acknowledgements

This research was supported by US National Science Foundation (NSF) (OISE-0730305), US Department of Energy (DOE) (DE-SC0008383), the Philecology Foundation through University of Arizona Biosphere 2 and a Marshall Foundation of Arizona dissertation fellowship to L.P.A. J.W. was partly supported by DOE (BER) NGEE-Tropics at Brookhaven National Laboratory. We thank Mick Eltringham for invaluable help with tree canopy access. We thank Cecilia Chavana-Bryant and Ana Paula Florentino for methods advice. We thank Kleber Silva Santos, Aldeize Santos, Mariã Miranda, Ana Paula Bicalho, Matthew Belheir and Michael Kwon for their fieldwork and data-processing efforts. We thank the LBA and Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) staff in Santarém for organizational support. Luciana Alves provided tree inventory information for focal tree selection. Ty Taylor contributed voucher specimens for identification at Herbario IAN.

Author contributions

ORCID

Loren P. Albert http://orcid.org/0000-0002-9674-6071
Rafael S. Oliveira http://orcid.org/0000-0002-6392-2526

References

Supporting Information

Additional Supporting Information may be found online in the Supporting Information tab for this article:

Fig. S1 Examples of leaves from each age category for trees used in leaf demography surveys.

Fig. S2 Stomatal conductance by leaf age and time of day for trees early in the dry season.

Fig. S3 Stomatal conductance by leaf age and time of day for trees late in the dry season.

Table S1 Focal tree information

Table S2 Early vs late dry season A_{net} information by tree

Table S3 Young and mature leaf V_{cmax} information by tree

Table S4 Mature and old leaf V_{cmax} information by tree

Table S5 Young and mature leaf J_{max} information by tree

Table S6 Mature and old leaf J_{max} information by tree

Table S7 Young and mature leaf triose phosphate use (TPU) information by tree

Table S8 Mature and old leaf triose phosphate use (TPU) information by tree

Table S9 Mature and old stomatal conductance information by tree

Table S10 Young and mature leaf Chla : b ratio information by tree

Table S11 Mature and old leaf Chla : b ratio information by tree

Table S12 Young and mature leaf total chlorophyll information by tree

Table S13 Mature and old leaf total chlorophyll information by tree

Table S14 Young and mature leaf percentage nitrogen information by tree

Table S15 Mature and old leaf percentage nitrogen information by tree

Table S16 Young and mature leaf carbon-to-nitrogen ratio information by tree

Table S17 Mature and old leaf carbon-to-nitrogen ratio information by tree

Table S18 Early vs late dry season number of young leaves on c. 1-m branches

Table S19 Early vs late dry season number of mature leaves on c. 1-m branches

Table S20 Early vs late dry season number of old leaves on c. 1-m branches

Table S21 Linear regressions of branch-level V_{cmax} vs day of year

Methods S1 Stem water potential.

Methods S2 Chlorophyll concentration calculations.

Methods S3 Meta-analysis equations.

Methods S4 Branch-level V_{cmax} calculations.

Please note: Wiley Blackwell are not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the *New Phytologist* Central Office.