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Chapter 3
Scaling Functional Traits from Leaves 
to Canopies

Shawn P. Serbin and Philip A. Townsend

3.1  �Introduction

Fossil energy use and land use change are the dominant drivers of the accelerating 
increase in atmospheric CO2 concentration and the principal causes of global cli-
mate change (IPCC 2018; IPBES 2018). Many of the observed and projected 
impacts of rising CO2 concentration and increased anthropogenic pressures on natu-
ral resources portend increasing risks to global terrestrial biomes, including direct 
impacts on biodiversity, yet the uncertainty surrounding the forecasting of biodiver-
sity change, future climate, and the fate of terrestrial ecosystems by biodiversity and 
Earth system models (ESMs) is unacceptably high, hindering informed policy deci-
sions at national and international levels (Jetz et al. 2007; Friedlingstein et al. 2014; 
Rice et al. 2018). As such, the impact of our changing climate and altered distur-
bance regimes on terrestrial ecosystems is a major focus of a number of disciplines, 
including the biodiversity, remote sensing (RS), and global change research 
communities.

Here we provide an overview of approaches to scale and map plant functional 
traits and diversity across landscapes with a focus on current approaches, leveraging 
on best practices provided by Schweiger (Chap. 15), benefits and issues with gen-
eral techniques for linking and scaling traits and spectra, and other key consider-
ations that need to be addressed when utilizing RS observations to infer plant 
functional traits across diverse landscapes.
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3.1.1  �Plant Traits and Functional Diversity

The importance of characterizing leaf and plant functional traits across scales is tied 
to the crucial role these traits play in mediating ecosystem structure, functioning, 
and resilience or response to perturbations (Lavorel and Garnier 2002; Reich et al. 
2003; Wright et al. 2004; Reich 2014; Funk et al. 2017). The structural, biochemi-
cal, physiological, and phenological properties of plants regulate the growth and 
performance or fitness of plants and their ability to propagate or survive in diverse 
environments. As such, these traits are used to characterize the axes of variation that 
define broad plant functional types (PFTs), which in turn describe global vegetation 
patterns and properties (Ustin and Gamon 2010; Díaz et al. 2015), particularly in 
ESMs (Bonan et al. 2002; Wullschleger et al. 2014). Our focus here will be on leaf 
traits related to nutrition and defense that broadly fit within the concept of the leaf 
economics spectrum (LES, Wright et al. 2004), because these are most amendable 
to measurements using spectral methods. Other traits relating to reproductive strate-
gies, hydraulics, physiology (though see Serbin et al. 2015), wood characteristics, 
etc. may be inferred from the traits described here, especially when combined with 
climate, soils, topography, or other data that generally are not directly detectable 
using RS.

Leaf nutritional properties and morphology are strong predictors of the photo-
synthetic capacity, plant growth, and biogeochemical cycling of terrestrial ecosys-
tems (Aber and Melillo 1982; Green et  al. 2003; Wright et  al. 2004; Díaz et  al. 
2015). With respect to litter turnover and nutrient cycling, leaf traits that correspond 
to the distribution and magnitude of structural carbon and chemical compounds 
such as lignin and cellulose are used to infer the recalcitrant characteristics of can-
opy foliage (Madritch et al., Chap. 8). Capturing the spatial variation in these traits 
can therefore provide critical information on the nutrient cycling potential of eco-
systems (Ollinger et al. 2002). On the other hand, leaf mass per area (LMA)—the 
ratio of a leaf’s dry mass to its surface area—and its reciprocal, specific leaf area 
(SLA), correspond to a fundamental trade-off of leaf construction costs versus light-
harvesting potential (Niinemets 2007; Poorter et  al. 2009). The amount of foliar 
nitrogen within a leaf, on a mass (Nmass, %) or area (Narea, g/m2) basis, strongly regu-
lates the photosynthetic capacity of leaves given its fundamental role in the light-
harvesting pigments of leaves (chlorophyll a and b) and photosynthetic machinery, 
namely, the enzyme RuBisCo (Field and Mooney 1986; Evans and Clarke 2018). 
Other traits, such as the concentration or content of water and accessory pigments, 
are important indicators of plant health and stress (Ustin et al. 2009). Moreover, the 
covariation of traits is also a primary focus of ecological and biodiversity research 
given strong trade-offs defining different leaf form and function (Díaz et al. 2015). 
For example, across the spectrum of plant functional diversity (Wright et al. 2004), 
foliar nitrogen and LMA form a key axis of variation that describes end-members 
between “cheap” thinner, low-LMA leaves with high leaf nitrogen, higher photo-
synthetic rates and faster turnover versus thick, expensive leaves with high LMA, 
low nitrogen, slower turnover, and longer leaf life spans. Other traits with strong 
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evidence for detection in the literature relate to plant allocation strategies (e.g., 
starch and sugar content) or defense compounds, such as phenolics (e.g., Asner 
et al. 2015; Kokaly and Skidmore 2015; Couture et al. 2016; Ely et al. 2019).

Despite the importance of characterizing leaf and plant functional traits across 
global biomes, the plasticity and high functional diversity of these traits makes this 
apparently simple goal extremely challenging (Reich et al. 1997; Wu et al. 2017; 
Osnas et al. 2018), and as such global coverage has been historically limited to spe-
cific biomes (Schimel et al. 2015). Leaf traits can vary strongly within and across 
species (Serbin et al. 2014; Osnas et al. 2018) and are strongly mediated by an array 
of biotic and abiotic factors (Díaz et al. 2015; Neyret et al. 2016; Butler et al. 2017). 
Within a canopy, for example, functional traits typically show high variation with 
average light condition and quality (Niinemets 2007; Neyret et  al. 2016) where 
lower canopy leaves tend to be thinner and have lower photosynthetic rates and 
altered pigment pools to account for the lower light quality. Plant traits can also 
change across local resource gradients, including with variations in water, nutrient 
availability, and disturbance legacy (Singh et al. 2015; Butler et al. 2017; Enquist 
et al. 2017). Importantly, this pattern can be confounded by species composition, 
which is generally the strongest driver of trait variation.

RS has provided new avenues to explore trait variation at larger scales and con-
tinuously across landscapes (Fig. 3.1). For example, Dahlin et al. (2013) observed 
that leaf functional traits were more strongly mediated by plant community compo-
sition than environment across a water-limited Mediterranean ecosystem, explain-
ing 46–61% of the variation on the landscape. Likewise, McNeil et al. (2008) found 
that 93% of variation in nutrient cycling in northern hardwood forests of the US 
Adirondacks could be explained by species identity. Yet the presence or absence of 
specific plant species is, in part, a consequence of habitat sorting processes and the 
adaptive mechanisms of plants that influence the environments in which they can 
persist, including their modification of traits in response to local conditions (Reich 
et al. 2003). Mapping species or communities to infer traits is impractical at any-
thing other than the local scale due to the presence of more than 200,000 plant spe-
cies on Earth. Dispersal and other stochastic processes also play a role. Across 
broad environmental gradients, traits display much larger variation, where climate, 
topography, and edaphic conditions drive changes in plant community composition 
and structure, which, in turn, drive the patterns of potential and realized plant traits 
in any one location (Díaz et al. 2015; Butler et al. 2017). Finally, factors such as 
convergent evolution may make some species spectrally similar, while phenology 
and phenotypic variation may make the same species look different across locations.

Temporal regulation of traits is a key factor driving changes in functional proper-
ties and the resulting functioning of the ecosystem. Seasonal changes in traits can 
be significant (e.g., Yang et al. 2016) and can strongly regulate vegetation function-
ing (e.g., Wong and Gamon 2015). Moreover, during the lifetime of a leaf, traits can 
change significantly (e.g., Wilson et al. 2001; Niinemets 2016), and in evergreen 
species, leaf age has been shown to be a strong covariate with functional trait values 
(e.g., Chavana-Bryant et al. 2017; Wu et al. 2017). Age-dependent and phenological 
changes in leaf traits can, in turn, have significant impacts on ecosystem functioning 
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(Wu et al. 2016). Given the role plant traits play in community assembly, character-
izing the distribution, spatial patterns, and seasonality of traits is crucial for improved 
prediction of biodiversity change and ecosystem responses to global change.

Numerous plant trait databases have been developed to store information on the 
variation in functional traits across space and time (e.g., Wright et al. 2004; Kattge 
et al. 2011; LeBauer et al. 2018) needed to inform biodiversity and ecological mod-
eling research. However, repeated direct measurement of plant traits is logistically 
challenging, which limits the geographic and temporal coverage of trait variation in 
these databases. Moreover, capturing plant trait variation through time is critical, 
but currently lacking from most observations (but with notable exceptions, e.g., 
Stylinski et al. 2002; Yang et al. 2016) given a host of additional technical and mon-
etary challenges. In particular, efforts to collect direct, repeat samples of functional 
traits in remote areas, such as high-latitude ecosystems and the remote tropics, can 
be severely hindered by access and other logistical considerations.

On the other hand, RS can provide the critical unifying observations to link 
in-situ measurements of plant traits to the larger spatial and temporal scales needed 
to improve our understanding of global functional and plant biodiversity (Fig. 3.1, 
Table  3.1). As such, a strong interest in the use of RS to characterize foliar 
functional traits and their diversity has emerged from three key areas: research in 
RS of leaf optical properties (Jacquemoud et  al. 2009), the concept of the leaf 

Fig. 3.1  There is a strong coupling between vegetation composition, structure and function, and 
the signatures observed by remote sensing instrumentation. Passive optical, thermal, and active 
sensing systems can be used to identify and map a range of phenomena, including minor to major 
variation in vegetation properties, health, and status across a landscape. Specifically, high spectral 
resolution imaging spectroscopy data can be used to infer functional traits of the vegetation through 
the measurement of canopy-scale optical properties which are driven by variation in leaf biochem-
istry and morphology, as well as overall canopy structure
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Table 3.1  List of key foliar functional traits that can be estimated from imaging spectroscopy

Functional 
characterizationa Trait

Example of functional 
role Example Citations

Primary Foliar N (% dry 
mass or area 
based)

Critical to primary 
metabolism (e.g., 
Rubisco).

Johnson et al. (1994),  
Gastellu-Etchegorry et al. (1995),  
Mirik et al. (2005), Martin et al. 
(2008), Gil-Pérez et al. (2010), 
Gökkaya et al. (2015), Kalacska 
et al. (2015), Singh et al. (2015)

Foliar P (% dry 
mass)

DNA, ATP synthesis Mirik et al. (2015), Mutanga 
and Kumar (2007), Gil-
Pérez et al. (2010), Asner et al. 
(2015)

Sugar (% dry 
mass)

Carbon soiree Asner and Martin (2015)

Starch (% dry 
mass)

Storage compound, 
carbon reserve

Matson et al. (1994)

Chlorophyll-total 
(ng g–1)

Light-harvesting 
capability

Johnson et al. (1994), Zarco-
Tejada et al., (2000a); Moorthy 
et al., (2008); Gil-Pérez et al. 
(2010), Zhang et al. (2008)

Carotenoids (ng 
g-1)

Light harvesting, 
antioxidants

Datt (1998), Zarco-Tejada et al.
(2000a)

Other pigments 
(e.g., 
anthocyanins; ng 
g–1)

Photoprotection. NPQ van den Berg and Perkins 
(2005)

Water content (% 
fresh mass)

Plant water status Gao and Goetz (1995),  
Gao (1996), Serrano et al., 
(2000), Asner et al. (2015)

Physical Leaf mass per 
area (g m–2)

Measure of plant 
resource allocation 
strategies

Asner et al. (2015),  
Singh et al. (2015)

Fiber (% dry 
mass)

Structure, 
decomposition

Mirik et al. (2005),  
Singh et al. (2015)

Cellulose (% dry 
mass)

Structure, 
decomposition

Gastellu-Etchegorry et al. 
(1995), Thulin et al. (2014), 
Singh et al. (2015)

Lignin (% dry 
mass)

Structure, 
decomposition

Singh et al. (2015)

Metabolism Vcmax (μmol m–2 
s–1)

Rubisco-limited 
photosynthetic capacity

Serbin et al. (2015)

Photochemical 
Reflectance Index 
(PRI)

Indicator of non-
photochemical 
quenching (NPQ) and 
photosynthetic 
efficiency, xanthophyll 
cycle

Gamon et al. (1992), Asner et al. 
(2004)

Fv/Fm Photosynthetic capacity Zarco-Tejada et al. (2000c)

(continued)
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economics spectrum (Wright et  al. 2004), and the development of global-scale 
foliar trait databases (Kattge et al. 2011). Within the signals observed by passive 
optical, thermal, and active sensing systems, such as light detection and ranging 
(lidar) platforms, is a whole host of underlying leaf chemical, physiological, and 
plant structure information that drives the spatial and temporal variation in RS 
observations (Ollinger 2011; Figs. 3.1, 3.2, and 3.3). As a result, RS provides the 
only truly practical approach to observing spatial and temporal variation in plant 
traits, canopy structure, ecosystem functioning, and biodiversity in absence of being 
able to map all species or communities everywhere (Schimel et al. 2015; Jetz et al. 
2016). RS observations can provide the synoptic view of terrestrial ecosystems and 
capture changes on the landscape from disturbances and necessary temporal cov-
erage via multiple repeat passes or targeted collection at specific phenological 
stages, yielding information needed to fill critical gaps in trait observations across 
global biomes (Cavender-Bares et al. 2017; Schimel et al., Chap. 19).

3.1.2  �Historical Advances in Remote Sensing of Vegetation

Over the last four-plus decades, passive optical RS has been used as a key tool for 
characterizing and monitoring the composition, structure, and functioning of ter-
restrial ecosystems across space and time. For example, spectral vegetation indices 
(SVIs), such as the normalized difference vegetation index (NDVI), have been used 
to capture broad-scale plant seasonality or phenology and changes in composition, 
monitor plant pigmentation and stress, and track changes in productivity through 
time and in response to environmental change (e.g., Goward and Huemmrich 1992; 
Kasischke et al. 1993; Myneni and Williams 1994; Gamon et al. 1995; Ahl et al. 
2006; Mand et al. 2010). Platforms, such as the Advanced Very High Resolution 
Radiometer (AVHRR), originally designed for atmospheric research, have been 

Table 3.1  (continued)

Functional 
characterizationa Trait

Example of functional 
role Example Citations

Secondary Bulk phenolics 
(% dry mass)

Stress responses Asner et al. (2015)

Tannins (% dry 
mass)

Defenses, nutrient 
cycling, stress 
responses

Asner et al. (2015)

aCategories of functional characterization are for organizational purposes only: Primary refers to 
compounds that are critical to photosynthetic metabolism; Physical refers to non-metabolic attri-
butes that are also important indicators of photosynthetic activity and plant resource allocation; 
Metabolism refers to measurements used to describe rate limits on photosynthesis; and Secondary 
refers compounds that are not directly related to plant growth, but indirectly related to plant func-
tion through associations with nutrient cycling, decomposition, community dynamics, and stress 
responses
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leveraged to capture changes in plant “greenness” based on the ratio of red absorp-
tion in leaves (signal of pigmentation levels and change) to near-infrared reflectance 
(tied to internal cellular structure and water content) to monitor changes in plant 
vigor and change (e.g., Tucker et  al. 2001; Zhou et  al. 2001; Goetz et  al. 2005; 
Goetz et al. 2006). With the advent of focused Earth-observing (EO) sensors, such 
as the Landsat constellation, the science and use of optical RS observations for 
monitoring plant properties and functioning increased substantially (e.g., Chen and 
Cihlar 1996; Turner et al. 1999; Townsend 2002; Jones et al. 2007; Sonnentag et al. 
2007; Drolet et al. 2008; Foster et al. 2008; Peckham et al. 2008; Yilmaz et al. 2008). 
Since the earliest uses, optical RS observations from the leaf to suborbital to satel-
lite EO platforms have been heavily leveraged in the plant sciences, RS, and biodi-
versity communities (e.g., Jacquemoud et al. 1995; Roberts et al. 2004; Ustin et al. 
2004; Gitelson et al. 2006; Hilker et al. 2008; Pettorelli et al. 2016; Cavender-Bares 
et al. 2017).

Fig. 3.2  The internal structure and biochemistry of leaves within a canopy control the optical 
signatures observed by remote sensing instrumentation. The amount of incident radiation that is 
reflected by, transmitted through, or absorbed by leaves within a canopy is regulated by these 
structural and biochemical properties of leaves. For example, leaf properties such as a thick cuticle 
layer, high wax, and/or a large amount of leaf hairs can significantly influence the amount of first-
surface reflectance (that is the reflected light directly off the outer leaf layer that does not interact 
with the leaf interior), causing less solar radiation to penetrate into the leaf. The thickness of the 
mesophyll layer associated with other properties, such as thicker leaves, can cause higher degree 
of internal leaf scattering, less transmittance through the leaf, and higher absorption in some wave-
lengths. Importantly, the diffuse reflectance out of the leaf is that modified by internal leaf proper-
ties and contains useful for mapping functional traits
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3.1.3  �Remote Sensing as a Tool for Scaling and Mapping  
Plant Traits

The use of leaf-level spectroscopy to understand plant functioning via biochemistry 
dates to the early twentieth century with papers describing light absorption and 
reflectance (Shull 1929; McNicholas 1931; Rabideau et  al. 1946; Clark 1946; 
Krinov 1953). Billings and Morris (1951) made a direct linkage to differing ecological 
strategies of plants, in particular demonstrating that visible and near-infrared reflec-
tance of species growing in different environments is directly linked to strategies 
associated with thermoregulation. Similarly, Gates et al. (1965) connected the inter-
action of light with leaves to internal leaf pigments and leaf structure (Fig. 3.2.) and 
how this relates to larger ecological processes.

By the 1970s, work with spectrophotometers at the US Department of Agriculture 
(USDA) led to the use of spectral methods for constituent characterization—near-
infrared spectroscopy (NIRS) to predict moisture, protein, fat, and carbohydrate 
content of feed (Norris and Hart 1965; Norris et al. 1976; Shenk et al. 1981; Davies 
1998; Workman and Weyer 2012), generally using linear regression on dry samples. 
In the 1980s and 1990s, field and laboratory studies used these earlier spectrometer 
systems to develop relationships and approaches to link leaf optical properties 
and underlying biochemical and structural properties, including variations in leaf 
moisture condition (Hunt and Rock 1989). For example, Elvidge (1990) utilized 

Fig. 3.3  High spectral resolution measurements of leaves and plant canopies enable the indirect, 
non-contact measurement of key structural and chemical absorption features that are associated 
with the physiological and biochemical properties of plants
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spectroscopy to describe optical properties of dried plant materials in the 0.4–2.5 
micron range that enable detection of plant biochemistry from spectroscopy. 
Similarly, Curran (1989) summarized spectral features across this same spectral 
range that could be used in RS of plants, identifying not just the specific absorption 
features associated with pigments but also features related to harmonics and over-
tones related to molecular bonds of hydrogen (H) with carbon (C), nitrogen (N), and 
oxygen (O) in organic compounds (e.g., Fig. 3.3). In addition, by the late 1980s, 
researchers began to utilize novel, experimental airborne imaging spectrometer sys-
tems to map vegetation canopy chemistry in diverse landscapes. Using an early-
generation NASA imaging spectrometer, the airborne imaging spectrometer (AIS, 
Vane and Goetz 1988), these studies illustrated the capacity to map landscape varia-
tion in foliar biochemical properties, including nitrogen and lignin (Peterson et al. 
1988; Wessman et al. 1988; Wessman et al. 1989). AIS was the precursor to the 
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS, Vane 1987). Following 
on this work, several others explored the impacts of leaf functional traits on reflec-
tance properties of plant canopies and the ability to retrieve canopy chemistry, 
leveraging several important airborne campaigns including the Oregon Transect 
Ecosystem Research (OTTER) project  and the Accelerated Canopy Chemistry 
Program (ACCP) (e.g., Card et al. 1988; Peterson et al. 1988; Matson et al. 1994; 
Bolster et al. 1996; Martin and Aber 1997).

These early studies became the basis for studies using imaging spectrometry to 
infer nutrient use and cycling in natural ecosystems (e.g., Martin and Aber 1997; 
Ollinger et  al. 2002; Ollinger and Smith 2005). By the 1990s, the promise of 
spectroscopy for ecological characterization led to the increased use of handheld 
portable spectrometers in the field (e.g., instruments from Analytical Spectral 
Devices, GER, Spectra Vista Corporation, Spectral Evolution, Ocean Optics, LiCor, 
and PP Systems), as well as research that led to the use of narrowband SVIs for 
characterizing rapid changes in leaf function in response to the environment and 
leaf physiology (e.g., photochemical reflectance index, PRI, Gamon et  al. 1992; 
Penuelas et  al. 1995; Gamon et  al. 1997). The review by Cotrozzi et  al. (2018) 
provides a more detailed summary of the history of spectroscopy for plant studies, 
while Table 3.1 provides a summary of the key functional traits observable with 
spectroscopic RS approaches. As a consequence of studies at the leaf level and 
using early imaging spectrometers, a host of airborne sensor systems emerged, such 
as AVIRIS (Green et  al. 1998), HyMap (Cocks et  al. 1998), Airborne Prism 
Experiment (APEX, Schaepman et al. 2015), the Carnegie Airborne Observatory 
(CAO, Asner et al. 2012), AVIRIS-Next Generation (Miller et al. 2018; Thompson 
et al. 2018), and the US National Ecological Observatory Network (NEON) imag-
ing spectrometer (Kampe et al. 2010) in the twenty-first century. The NASA proto-
type satellite EO-1 (Middleton et al. 2013) included the Hyperion sensor as an early 
test of the capacity to make hyperspectral measurements from space, leading to the 
development of a number of spaceborne missions planned for the early 2020s 
(Schimel et al., Chap. 19).

3  Scaling Functional Traits from Leaves to Canopies
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3.1.4  �Key Considerations for the Use of Imaging Spectroscopy 
Data for Scaling and Mapping Plant Functional Traits

One of the chief challenges to effectively using imaging spectroscopy has been the 
acquisition of data of sufficient resolution, quality, and consistency for broad 
application in vegetation studies (Table 3.2). This necessitates measurements in the 
shortwave infrared (SWIR, 1100–2500 nm) in addition to the visible and near 
infrared (VNIR, 400–1100 nm). While VNIR wavelengths are most sensitive to 
pigments and overall canopy health, longer wavelengths are required to retrieve 
many biochemicals and LMA (Serbin et  al. 2014; Kokaly and Skidmore 2015; 
Serbin et al. 2015; Singh et al. 2015). Spectral resolution is critical as well, with 
10 nm band spacing and 10 nm full-width half maximum (FWHM) generally con-
sidered essential to identify traits detected based on narrow absorption features. 
Even finer resolution is required to detect spectral features that rely on narrow (<0.5 
nm) atmospheric windows, such as solar-induced fluorescence (SIF, Yang et  al. 
2018). Other key considerations include sufficient signal-to-noise ratio (SNR) to 
identify important spectral features, accounting for both coherent and random noise 
related to detector sensitivity, dark current, and stray light. Additional sensor char-
acteristics important to using imaging spectroscopy include spectral distortion. 
Most sensors are push-broom sensors, in which an image is constructed via the 
forward movement of the platform. Spatial samples are measured in the X-dimension 
(pixels) of the detector array and spectral wavelengths in the Y-dimension. 
Nonuniformity may arise due to differences in detectors in both dimensions, mean-
ing that different detectors in the X-dimension see different central wavelengths 
(smile) and offsets in the Y-dimension lead to band-to-band misregistration (key-
stone). All of these effects can influence the ability to detect traits reliably within 
one scene or across multiple scenes using common algorithms. Full understanding 
of detector (and thus image) uniformity as well as the measurement point-spread 
function in 3-D (spatial X [detector X], spatial Y [platform movement], and spectral 
[detector Y]) is critical to accurate retrievals.

All RS data require some level of post-processing. Imaging spectroscopy is no 
different; prior to implementing algorithms for trait retrieval (Sect. 3.2.2), addi-
tional efforts must be undertaken to ensure consistent measurements in consistent 
units such that retrievals from imagery from multiple sources, dates, locations, etc. 
can be compared. Minimally, pixel measurements should be converted to radiances 
(w m-2 sr-1 nm-1) based on laboratory calibrations and regular vicarious measure-
ments of stable targets. With proper instrument characterization, keystone, smile, 
and other radiometric artifacts can be reduced. Subsequently, atmospheric correc-
tions to convert radiance to reflectance (percent) are essential for cross-site studies. 
The approaches to atmospheric correction are numerous and tailored to particular 
environments, e.g., terrestrial vs. aquatic systems. Even within terrestrial applica-
tions, approaches differ among airborne data products (e.g., NASA’s AVIRIS-
Classic and AVIRIS-NG sensors vs. NEON AOP) and do not necessarily yield 
consistent reflectance imagery. Finally, new approaches that take advantage of 

S. P. Serbin and P. A. Townsend



53

Ta
bl

e 
3.

2 
T

ra
ce

ab
ili

ty
 m

at
ri

x 
fo

r 
a 

gl
ob

al
 im

ag
in

g 
sp

ec
tr

os
co

py
 m

is
so

n 
fo

r 
te

rr
es

tr
ai

l e
co

sy
st

em
 f

un
ct

io
ni

ng
 a

nd
 b

io
ge

oc
he

m
ic

al
 p

ro
ce

ss
es

Sc
ie

nc
e 

ta
rg

et
Sc

ie
nc

e 
ob

je
ct

iv
es

Fu
nc

tio
na

l 
ch

ar
ac

te
ri

za
tio

n
T

ra
it

Sp
ec

ta
l r

an
ge

 a
nd

 
sa

m
pl

in
g

O
th

er
 m

ea
su

re
m

en
t 

ch
ar

ac
te

ri
st

ic
s

E
xa

m
pl

e 
ci

ta
tio

ns

T
he

m
e 

II
I:

 M
ar

in
e 

an
d 

Te
rr

es
tr

ia
l 

E
co

sy
st

em
s 

an
d 

N
at

ur
al

 R
es

ou
rc

e 
M

an
ag

em
en

t

N
ew

 e
ss

en
tia

l 
m

ea
su

re
m

en
ts

 o
f 

th
e 

bi
oc

he
m

ic
al

, 
ph

ys
io

lo
gi

ca
l a

nd
 

fu
nc

tio
na

l 
at

tr
ib

ut
es

 o
f 

th
e 

E
ar

th
’s

 te
rr

es
tr

ia
l 

ve
ge

ta
tio

n

O
1.

 T
o 

de
liv

er
 n

ew
 

qu
an

tifi
ca

tio
n 

of
 

bi
og

eo
ch

em
ic

al
 

cy
cl

es
, e

co
sy

st
em

 
fu

nc
tio

ni
ng

 a
nd

 
fa

ct
or

s 
th

at
 

in
flu

en
ce

 v
eg

et
at

io
n 

he
al

th
 a

nd
 

ec
os

ys
te

m
 s

er
vi

ce
s

O
2.

 T
o 

ad
va

nc
e 

E
ar

th
 s

ys
te

m
 m

od
es

 
w

ith
 im

pr
ov

ed
 

pr
oc

es
s 

re
pr

es
en

ta
tio

n 
an

d 
qu

an
tifi

ca
tio

n.

Pr
im

ar
y 

bi
oc

he
m

ic
al

 
co

nt
en

t

Fo
lia

r 
N

 (
%

 d
ry

 
m

as
s 

or
 a

re
a 

ba
se

d)

45
0–

24
50

 n
m

 @
 

≤
15

 n
m

Se
as

on
al

 c
lo

ud
 f

re
e 

m
ea

su
re

m
en

t f
or

 ≤
 

80
%

 te
rr

es
tr

ia
l 

ve
ge

ta
tio

n 
ar

ea
s.

R
ad

io
m

et
ri

c 
ra

ng
e 

an
d 

sa
m

pl
in

g 
to

 
ca

pt
ur

e 
ra

ng
e 

of
 

ve
ge

ta
tio

n 
si

gn
al

s 
fr

om
 tr

op
ic

al
 to

 h
ig

h 
la

tit
ud

e 
su

m
m

er
s.

Si
gn

al
s-

to
-N

oi
se

 
R

at
io

 c
on

si
st

en
t 

w
ith

 tr
op

ic
al

 to
 h

ig
h 

la
tit

ud
e 

ve
ge

ta
tio

n 
(e

.g
., 

re
d 

re
gi

on
, 

>
50

0:
1)

.

A
t l

ea
st

 th
re

e 
ye

ar
s 

of
 m

ea
su

re
m

en
t t

o 
ca

pt
ur

e 
in

te
r-

an
nu

al
 

va
ri

ab
ili

ty
 a

nd
 

se
as

on
al

ly
 a

s 
ro

bu
st

 
ba

se
lin

e 
fo

r 
≥

80
 o

f 
th

e 
te

rr
es

tr
ia

l 
ec

os
ys

te
m

s.

Jo
hn

so
n 

et
 a

l. 
(1

99
4)

, 
G

as
te

llu
-E

tc
he

go
rr

y 
et

 a
l. 

(1
99

5)
, M

ir
ik

 e
t a

l. 
(2

00
5)

, 
M

ar
tin

 e
t a

l. 
(2

00
8)

, 
G

il-
Pé

re
z 

et
 a

l. 
(2

01
0)

, 
G

ök
ka

ya
 e

t a
l. 

(2
01

5)
, 

K
al

ac
sk

a 
et

 a
l. 

(2
01

5)
, 

Si
ng

h 
et

 a
l. 

(2
01

5)

Fo
lia

r 
P 

(%
 d

ry
 

m
as

s)
45

0–
24

50
 n

m
 @

 
≤

15
 n

m
M

ir
ik

 e
t a

l. 
(2

00
5)

, 
M

ut
an

ga
o 

an
d 

K
um

ar
 

(2
00

7)
, G

il-
Pé

re
z 

et
 a

l. 
(2

01
0)

, A
sn

er
 e

t a
l. 

(2
01

5)

(c
on

tin
ue

d)

3  Scaling Functional Traits from Leaves to Canopies



54

Ta
bl

e 
3.

2 
(c

on
tin

ue
d)

Su
ga

r 
(%

 d
ry

 
m

as
s)

15
00

–2
40

0 
nm

 @
 

≤
15

 n
m

A
sn

er
 a

nd
 M

ar
tin

 (
20

15
)

St
ar

ch
 (

%
 d

ry
 

m
as

s)
15

00
–2

40
0 

nm
 @

 
≤

15
 n

m
M

at
so

n 
et

 a
l. 

(1
99

4)

C
hl

or
op

hy
ll-

to
ta

l 
(m

g 
g–1

)
45

0–
74

0 
nm

 @
 ≤

 
10

 n
m

Jo
hn

so
n 

et
 a

l. 
(1

99
4)

, 
Z

ar
co

-T
ej

ad
a 

et
 a

l. 
(2

00
0a

),
 G

il-
Pe

re
z 

et
 a

l. 
(2

01
0)

, Z
ha

ng
 e

t a
l. 

(2
00

8)
, K

al
ac

sk
a 

et
 a

l. 
(2

01
5)

C
ar

ot
en

oi
ds

 (
m

g 
g–1

)
45

0–
74

0 
nm

 @
 

≤
10

 n
m

D
at

t (
19

98
),

 Z
ar

co
-T

ej
ad

a 
et

 a
l. 

(2
00

0a
)

O
th

er
 p

ig
m

en
ts

 
(e

.g
., 

an
th

oc
ya

ni
ns

; m
g 

g–1
)

98
0 

nm
 ±

 4
0,

 
11

40
 ±

 5
0 

@
 ≤

20
 n

m
va

n 
de

n 
B

er
g 

an
d 

Pe
rk

in
s 

(2
00

5)

W
at

er
 c

on
te

nt
 (

%
 

fr
es

h 
m

as
s)

11
00

–2
40

0 
nm

 @
 

≤
20

 n
m

G
ao

 a
nd

 G
oe

tz
 (

19
95

),
 

G
ao

 (
19

96
),

 T
ho

m
ps

on
 

et
 a

l. 
(2

01
5)

, A
sn

er
 e

t a
l. 

(2
01

6)
L

ea
f 

m
as

s 
pe

r 
ar

ea
 (

g 
m

–2
)

15
00

–2
40

0 
nm

 @
 

≤
20

 n
m

A
sn

er
 e

t a
l. 

(2
01

5)
, S

in
gh

 
et

 a
l. 

(2
01

5)
Fi

be
r 

(%
 d

ry
 

m
as

s)
15

00
–2

40
0 

nm
 @

 
≤

20
 n

m
M

ir
ik

 e
t a

l. 
(2

00
5)

, S
in

gh
 

et
 a

l. 
(2

01
5)

Sc
ie

nc
e 

ta
rg

et
Sc

ie
nc

e 
ob

je
ct

iv
es

Fu
nc

tio
na

l 
ch

ar
ac

te
ri

za
tio

n
T

ra
it

Sp
ec

ta
l r

an
ge

 a
nd

 
sa

m
pl

in
g

O
th

er
 m

ea
su

re
m

en
t 

ch
ar

ac
te

ri
st

ic
s

E
xa

m
pl

e 
ci

ta
tio

ns

S. P. Serbin and P. A. Townsend



55

Ph
ys

ic
al

/
st

ru
ct

ur
al

 c
on

te
nt

C
el

lu
lo

se
 (

%
 d

ry
 

m
as

s)
15

00
–2

40
0 

nm
 @

 
≤

20
 n

m
G

as
te

llu
-E

tc
he

go
rr

y 
et

 a
l. 

(1
99

5)
, T

hu
lin

 e
t a

l. 
(2

01
4)

, S
in

gh
 e

t a
l. 

(2
01

5)
L

ig
ni

n 
(%

 d
ry

 
m

as
s)

15
00

–2
40

0 
nm

 @
 

≤
15

 n
m

Jo
hn

so
n 

et
 a

l. 
(1

99
4)

, 
G

as
te

llu
-E

tc
he

go
rr

y 
et

 a
l. 

(2
01

4)
, T

hu
lin

 e
t a

l. 
(2

01
4)

, S
in

gh
 e

t a
l. 

(2
01

5)
M

et
ab

ol
is

m
V

cm
ax

 (
μm

ol
 m

–2
 

s–1
)

45
0–

24
50

 n
m

 @
 

≤
15

 n
m

Se
rb

in
 e

t a
l. 

(2
01

5)

Ph
ot

oc
he

m
ic

al
 

R
efl

ec
ta

nc
e 

In
de

x 
(P

R
I)

.

45
0 

to
 6

50
 n

m
 @

 
≤

10
 n

m
45

0 
to

 8
00

 n
m

 @
 

≤
20

 n
m

G
am

on
 e

t a
l. 

(1
99

2)
, A

sn
er

 
et

 a
l. 

(2
00

4)

Fr
ac

tio
n 

of
 

ab
so

rb
ed

 
ph

ot
os

yn
th

et
ic

al
ly

 
ac

tiv
e 

ra
di

at
io

n 
by

 
ch

lo
ro

rp
hy

ll,
 f

A
P 

A
R

ch
l.

Se
co

nd
ar

y 
bi

oc
he

m
ci

al
 

co
nt

en
t

B
ul

k 
ph

oe
ol

ic
s 

(%
 

dr
y 

m
as

s)
11

00
–2

40
0 

nm
 @

 
≤

10
 n

m
A

sn
er

 e
t a

l. 
(2

01
5)

Ta
nn

in
s 

(%
 d

ry
 

m
as

s)
11

00
–2

40
0 

nm
 @

 
10

 n
m

A
sn

er
 e

t a
l. 

(2
01

5)

R
eq

ui
re

d 
fo

r 
at

m
os

op
he

ri
c 

co
rr

ec
tio

n

W
at

er
 v

ap
or

C
ir

ru
s 

cl
ou

ds
A

er
os

os

98
0 

nm
 ±

 5
0,

 
11

40
 ±

 5
0 

@
 ≤

20
 n

m
T

ho
m

ps
on

 e
t a

l. 
(2

01
5)

, 
G

ao
 e

t a
l. 

(1
99

3)

94
0 

nm
 ±

 3
0,

 
11

40
 ±

 4
0 

@
 ≤

20
 n

m
45

0–
12

00
 n

m
 @

 
≤

20
 n

m

3  Scaling Functional Traits from Leaves to Canopies



56

advances in computing capacities and newer optimal estimation (OE) approaches 
for radiative transfer retrieval of atmospheric parameters are poised to transform 
atmospheric correction in the 2020s (Thompson et al. 2018).

Following atmospheric correction, scene-dependent corrections are often 
required, including corrections for different illumination and reflectance due to sun-
target-sensor geometry, i.e., the bidirectional reflectance distribution function 
(BRDF). Current methods to correct for across-track (and along-track) illumination 
variation account for differences in vegetation structure and density, either through 
continuous functions (Schläpfer et  al. 2015; Weyermann et  al. 2015) or using 
land-cover stratification (Jensen et al. 2018). However, BRDF corrections are also 
rapidly changing and likely will be improved by new OE methods. As well, methods 
requiring land cover stratification are generally limited to local studies, whereas 
broad-scale implementation across biomes and through time will be most stable as 
long as scene-specific stratification is not required.

In addition to BRDF, corrections for topographic illumination are required 
(Singh et al. 2015). However, such corrections can result in poor performance for 
highly shaded slopes; they enhance noise on shaded slopes while suppressing signal 
on illuminated slopes. In addition, differential illumination may still remain in 
images due to multiple sensor artifacts as well as effects of vegetation structure 
(Knyazikhin et al. 2013). These effects can be effectively addressed using vector 
normalization (Feilhauer et al. 2010; Serbin et al. 2015) or continuum removal (e.g., 
Dahlin et al. 2013). Such approaches largely address structure-induced reflectance 
effects of broadleaf and graminoid canopies, with minor variances remaining in 
conifers. The residual effect of canopy structure on trait mapping largely relates to 
an inability to fully account for within-canopy scattering of diffuse radiation, 
especially in conifer forests.

Finally, when integrating data from multiple sources to map canopy traits, users 
must address wavelength calibrations. Different sensors may have different band 
centers, and these may change (on airborne devices) as they are recalibrated from 
time to time. This requires image resampling, which is data and processing inten-
sive and—to be done precisely—requires good knowledge of spectral response 
functions or model recalibration to new wavelengths.

3.2  �Linking Plant Functional Traits to Remote Sensing 
Signatures

All materials interact with light energy in different and characteristic ways. With 
respect to terrestrial ecosystems, spectroscopic RS leverages spectroradiometers, 
which measure the intensity of light energy reflected from or transmitted through 
leaves, plant canopies, or other materials (e.g., wood, soil, Fig. 3.3). The absorbing 
and scattering properties of the individual elements (e.g., leaves, twigs, stems) 
within the canopy or surface (soil) are defined by their physical and 3-D structure as 
well as chemical constituents or bonds (Figs. 3.2 and 3.3), which drives the vari-
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ability observed in reflectance spectra (Figs.  3.1 and 3.4). Thus, the underlying 
variation in plant canopy structure, function, and leaf traits in turn drives the optical 
properties and spectral signatures detected by RS platforms (Ollinger 2011). As 
such, the capacity to infer plant health, status, stress, and leaf and plant functional 
traits with optical RS observations is tied to the physical principle that plant physi-
ological properties, structure, and distribution of foliage within plant canopies are 
reflected in the RS signatures of leaves within a canopy (Curran 1989; Kokaly et al. 
2009; Ollinger 2011).

3.2.1  �Spectroscopy and Plant Functional Traits

With the advent of laboratory and field spectrometer instrumentation, the leaf to 
landscape-scale RS of vegetation traits and functional properties began in earnest in 
the early 1980s (Sect. 3.1.3). As stated in Sect. 3.1.4, there are a host of important 

Fig. 3.4.  Similar to those of a leaf, the properties of vegetation canopies strongly control the opti-
cal signatures observed by passive remote sensing instrumentation (Ollinger 2011). Specifically, 
the height and three-dimensional shape of the individual plants comprising the canopy as well as 
their leaf area index (LAI), leaf optical properties and stem and soil optical properties regulate the 
amount of incident radiation that reflects back from and transmits through a canopy. In addition, 
canopy properties and sun-sensor geometry can modify the shape and strength of the reflectance 
signature of vegetation canopies, which requires careful consideration when developing methods 
to map leaf functional traits

3  Scaling Functional Traits from Leaves to Canopies
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considerations with the use of leaf and imaging spectroscopy for scaling plant func-
tional traits. In addition, the underlying drivers of vegetation optical properties are 
complex and numerous (Ustin et al. 2004; Ollinger 2011). For example, in the vis-
ible range (~0.4–0.75 microns) of the electromagnetic (EM) spectrum, the strong 
absorption of solar energy by photosynthetic pigments in healthy, green foliage 
dominates the optical properties of leaves (Ustin et al. 2009; Figs. 3.2. and 3.3). 
Importantly, knowledge of leaf pigment pools and fluxes provides key insight into 
plant photosynthesis, environmental stress, and overall vigor. As such a significant 
amount of research has focused on the retrieval of foliar primary and accessory pig-
ments using spectroscopic and other RS measurements (e.g., Jacquemoud et  al. 
1996; Richardson et al. 2002; Sims and Gamon 2002; Ustin et al. 2009; Féret et al. 
2017). Blackburn (2007) and Ustin et al. (2009) provide more detailed reviews on 
the use of spectroscopy to remotely sense pigments in higher plants.

Within the near-infrared (NIR, ~0.8–1.2 microns) portion of the EM spectrum, 
optical signals are generally dominated by scattering from internal leaf structures, 
structural properties, water, and leaf epidermal layer (Figs. 3.2 and 3.3). In addition, 
strong leaf water absorption features in the NIR, centered on ~0.97 and 1.1 microns, 
are often used to remotely sense vegetation water content (e.g., Hunt and Rock 
1989; Gao and Goetz 1995; Sims and Gamon 2003; Stimson et al. 2005; Colombo 
et al. 2008). Much of the early research into the use of spectroscopic RS focused on 
leaf and canopy water content retrieval given its importance in plant function and as 
an important indicator of moisture (Fig. 3.5.) and other stress. In attached, fresh leaf 
material, water also dominates the spectral absorption features of the SWIR (1.3–2.5 
micron) portion of the EM (Hunt and Rock 1989; Sims and Gamon 2003); as a 
result, spectral optical properties are strongly regulated by leaf and canopy water 
content in this region (Fig. 3.5). Along with water absorption, a number of other 
biochemical and structural trait absorption features exist in the SWIR wavelength 
region (Fig. 3.3), including cellulose, lignin, structural carbon, and nutrients and 
proteins (Curran 1989; Elvidge 1990; Kokaly et al. 2009; Ollinger 2011; Ely et al., 
2019). Removal of water from leaf materials can sometimes enhance the detection 
of these absorption features (e.g., see Serbin et  al. 2014 and references within; 
Fig. 3.5). However, at the canopy scale, a number of studies have demonstrated the 
capacity to retrieve these foliar biochemical properties in the SWIR region (e.g., 
Wessman et al. 1988; Martin and Aber 1997; Townsend et al. 2003; Kokaly et al. 
2009; Asner et al. 2015; Singh et al. 2015), perhaps because of the increased signal 
due to multiple scattering within canopies (Baret et al. 1994).

In addition to the underlying leaf biochemical and structural characteristics, leaf 
orientation, display, and distribution in a canopy are also strong drivers of plant 
optical properties (Ollinger, 2011; Fig. 3.4). Decreasing the leaf area of a canopy 
generally results in a higher reflectance signal from elements deeper within the 
canopy, including twigs, branches, stems, and soil/litter layer (Asner 1998; Asner 
et al. 2000; Ollinger 2011). Canopies with flat, horizontal leaves tend to have higher 
NIR reflectance than those with more erect, vertical leaves, depending on the sun-
sensor geometry. Leaf anatomy and average leaf angle vary widely across species 
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Fig. 3.5.  Together, leaf optical properties and canopy architecture regulate the remote sensing 
signatures observed in remote sensing data. In addition, changes in leaf internal biochemistry or 
structure (i.e., functional traits) as a result of biotic or abiotic factors can change these signatures 
over space and time. For example, a prolonged drought can cause changes in leaf internal water 
content and potentially a redistribution of internal pigmentation. We can simulate the potential 
changes in optical signatures associated with a drought using a leaf and canopy-scale radiative 
transfer models (RTM), in this case PROSPECT-5b (Féret JB et al. 2008) and SAIL (Verhoef and 
Bach 2007), to illustrate the changes in leaf an canopy spectra over the course of a low, moderate, 
and high drought event. Here we modified pigment and water content from low to high for a range 
of canopies, as represented by different LAIs, and for canopy-scale reflectance, we incorporated 
the sensor characteristics of AVIRIS-classic (Green et al. 1998) to illustrate what the canopy reflec-
tance might look like from that sensor. (For illustration purposes only)

3  Scaling Functional Traits from Leaves to Canopies
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(Falster and Westoby 2003), with consequences for interpreting optical RS sig-
natures (Ollinger 2011). Thus, when considering the use of RS approaches for map-
ping leaf traits, careful consideration of vegetation structure, collection 
characteristics, and sensor design is important.

Phenology, leaf seasonality, and leaf age are also important drivers of optical 
properties for a number of reasons. First, leaf traits can change significantly over the 
lifetime of a leaf (e.g., Wilson et al. 2001; Niinemets 2016; Chavana-Bryant et al. 
2017; Wu et al. 2017), and the corresponding leaf optical properties will change in 
concert (Yang et al. 2016). Average leaf angle distribution can also change with leaf 
age or seasonally from younger, recently expanded leaves to fully expanded (Raabe 
et al. 2015), which can have significant impacts on canopy reflectance (Huemmrich 
2013). Finally, atmospheric, insect, or other stressors typically change the chemical 
makeup of leaves and so their optical properties (e.g., Couture et al. 2013; Ainsworth 
et al. 2014; Cotrozzi et al. 2018).

3.2.2  �Approaches for Linking Traits and Spectral Signatures

Despite the promise and utility of spectroscopy for the retrieval and mapping of 
plant traits across space and time, there has not been consensus or standardization 
of approaches and algorithm development in the RS and biodiversity communities. 
This is not entirely unexpected given the complexity of connecting traits and RS 
observations across the various scales of interest, from leaves to individual trees, 
communities, and landscapes (Schweiger, Chap. 15). In addition, early approaches 
(e.g., Peterson et al. 1988) were often later deemed inappropriate and often replaced 
by other techniques (e.g., Grossman et al. 1996). Access to more powerful, improved, 
and cheaper computing resources has also allowed for the exploration of more com-
plex statistical and machine-learning approaches (see Schweiger, Chap. 15).

Two primary approaches have been utilized to link RS observations to functional 
traits—empirical, statistically based techniques and radiative transfer modeling 
(RTM; see also Meireles et al., Chap. 7; Ustin, Chap. 14).

3.2.2.1  �Empirical Scaling Approaches

With respect to empirical techniques, the use of SVIs was one of the earliest methods 
to explore the capacity to link a range of plant functional traits to vegetation spectra. 
Typically, with this approach a single SVI is linked with a trait of interest, such as 
leaf pigments or water content, to develop a simple statistical relationship between the 
trait of interest and corresponding variation in optical properties (e.g., Sims and 
Gamon 2003; Gitelson 2004; Colombo et al. 2008; Feret et al. 2011). The derived 
model is then used to estimate trait values for new leaves using only spectral mea-
surements. This approach typically assumes the researcher has an a priori under-
standing of the links between the trait and resulting variation in the electromagnetic 
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spectrum and thus selects specific wavelengths, and therefore SVI, for their analysis. 
An alternative approach is to explore the spectra and trait space to identify new or 
previously unknown SVIs that maximize the correspondence between optical prop-
erties and traits of interest (e.g., Inoue et al. 2008), akin to a data mining exercise. 
A challenge of this approach can be interpretation of the selected SVIs, where the 
resulting vegetation indices may not contain wavelengths with known absorption 
features relating to the trait of interest. The same general approach can also leverage 
multiple SVIs, provided the research avoids highly correlated portions of the spec-
trum (Grossman et  al., 1996), to attempt to capture how variation in the trait of 
interest is reflected in various portions of the EM spectrum to other sites and plant 
species. However, a limitation to the use of SVIs has been the ability to generalize 
across broad canopy architectures, species, and environments due to the often site-
specific modeling results or potential signal saturation issues with some SVIs 
(Shabanov et al. 2005; Glenn et al. 2008).

Continuous spectral wavelet transforms have been used to reduce the dimension-
ality of spectral data prior to developing simple statistical models (e.g., Blackburn 
and Ferwerda 2008). Wavelets are functions that are used to decompose a full, com-
plex signal into simpler component sub-signals. When used with spectral data, the 
full reflectance signature can be decomposed in a way that allows the resulting 
wavelet coefficients assigned to each sub-signal to be related to concentrations of 
chemical constituents or other traits of interest, through standard statistical model-
ing approaches (e.g., linear regression). Previous studies have explored the use of 
wavelet methods to retrieve a host of functional traits, including pigments, water, 
and nitrogen content (e.g., Blackburn and Ferwerda 2008; Cheng et al. 2011; Li 
et al. 2018; Wang et al. 2018). Continuum removal together with band-depth analy-
sis (Kokaly and Clark 1999) has also been utilized as a means to retrieve the chemi-
cal composition of leaves. In this approach, continuum removal lines are fit through 
the absorption features of interest based on those regions not in the areas of interest, 
then the original spectra are divided by corresponding values of the continuum 
removal line. The band centers can then be found by finding the minimum of the 
continuum-removed spectra. Normalization of the band centers is often used to 
standardize the values across samples. These data are then used to develop models 
to predict functional traits at the leaf and canopy scales, including foliar nitrogen 
and recalcitrant properties, such as the amount of lignin and cellulose (Kokaly 
et al. 2009).

In addition to the empirical SVI approach, as discussed in Schweiger (Chap. 15), 
partial least-squares regression (PLSR) modeling has been used extensively in the 
development of spectra-trait models for measuring, scaling, and mapping plant 
functional traits (e.g., Ollinger et al. 2002; Townsend et al. 2003; Asner and Martin 
2008; Martin et al. 2008; Dahlin et al. 2013; Singh et al. 2015; Ely et al. 2019). A 
key attribute of PLSR is the capacity to utilize the entire measured portion of the 
EM spectrum as predictors (i.e., X matrix) without requiring a priori selection of 
wavelengths or SVIs (Wold et  al. 1984; Geladi and Kowalski 1986; Wold et  al. 
2001). PLSR avoids collinearity (i.e., spectral autocorrelation across wavelengths) 
in the predictor variables (i.e., reflectance wavelengths), even if predictors exceed 
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the number of observations (Geladi and Kowalski 1986; Wold et al. 2001; Carrascal 
et  al. 2009). This is done through singular value decomposition (SVD), which 
reduces the X matrix down to relatively few non-correlated latent components. 
While PLSR was originally used in chemometrics, the features and benefits of 
PLSR also fit well within the goals of connecting spectral signatures to leaf func-
tional traits. PLSR leverages the fact that different portions of the EM spectrum 
change in concert with various nutritional, structural, and morphological properties 
of leaves and canopies—in other words, leveraging the known covariance between 
variations in leaf optical properties and leaf traits (Ollinger 2011). Importantly, 
PLSR also allows for univariate or multivariate modeling where multiple predic-
tands (i.e., Y matrix) can be modeled simultaneously with the same spectral matrix 
to account for the covariance between X and Y but also among the various Y 
(response) variables (Wold et  al. 1984; Geladi and Kowalski 1986; Wold et  al. 
2001). Wolter et al. (2008) review of the use of PLSR in RS research, and Carrascal 
et al. (2009) summarize its use in ecology, as well as key features of PLSR.

Several approaches and implementations of PLSR have been used within the 
overarching “plant trait mapping” paradigm, including various spectral transforma-
tions and the use of prescreening of wavelengths or down-selection of suitable of 
pixels (e.g., Townsend et al. 2003; Feilhauer et al. 2010; Schweiger, Chap. 15; Asner 
et al. 2015). In a typical PLSR implementation (e.g., Fig. 3.6), foliar samples are 
first collected from vegetation canopies and processed to obtain the functional traits 
of interest. For leaf-scale algorithms, the optical properties of the leaves are 
typically measured in situ or within a small window (2–4 hours) prior to further 

Fig. 3.6.  A simple example illustrating how leaf functional traits and optical properties (e.g. 
reflectance) are combined in an empirical partial least-squares regression (PLSR) modeling 
approach to develop spectra-trait algorithms. The input traits and reflectance spectra are combined 
and used to train and test a PLSR model, using either cross-validation and/or independent valida-
tion (e.g., Serbin et al. 2014), and the resulting model can then be applied to other spectral mea-
surements to estimate the traits of interest
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processing. Leaf and/or image spectra for the pixel containing the plots or sample 
locations are then linked with these functional trait measurements to develop the 
PLSR algorithm. Typically, for models utilizing imaging spectroscopy data, plot-
scale estimates of traits are derived using measurements of basal area, leaf area by 
species, or other means to produce a weighted average of each trait by dominant 
species within given ground area (e.g., McNeil et al. 2008; Singh et al. 2015). The 
algorithm is evaluated using internal validation during model development (e.g., 
cross-validation) and/or using a set of training and validation data to build and test 
the model predictive capacity across a range of similar samples and optical proper-
ties. Some approaches utilize additional steps to characterize the uncertainties asso-
ciated with the sample collection, measurements, and other issues (e.g., instrument 
noise) in the PLSR modeling step. For example, Serbin et al. (2014) and Singh et al. 
(2015) introduced a novel PLSR approach that can account for uncertainty in the 
prediction of trait values, which has later been used by other groups (Asner et al. 
2015). Image-scale algorithms are often used to derive functional trait maps (e.g., 
Fig. 3.7) to explore the spatial and/or temporal patterns of traits across the land-
scapes of interest (e.g., Ollinger et al. 2002; McNeil et al. 2008).

Fig. 3.7.  Much like developing a leaf-scale PLSR model for estimating leaf functional traits, such 
as leaf nitrogen concentration (Fig. 3.6), we can also utilize high spectral resolution imaging spec-
troscopy data, such as that from NASA AVIRIS to build models applicable at the canopy to land-
scape scales (e.g., Dahlin et al. 2013; Singh et al. 2015). Here we show a simple illustration of the 
linkage between functional traits scaled to the canopy, for example based on a weighted average of 
the dominant species in the plot, connected with the reflectance signature of these canopies. Once 
linked, we can develop PLSR algorithms conceptually similar to that of leaves resulting in canopy-
scale spectra-trait models capable of mapping functional traits across the broader landscape
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While the PLSR approach produces algorithms that “weight” wavelengths by 
their importance in the prediction (Wold et al. 2001) of the functional traits of inter-
est (e.g., Serbin et al. 2014), some researchers have also explored modifications to 
the standard PLSR approach that provide additional reductions in data dimensional-
ity. For example, Li et  al. (2008) coupled PLSR with a genetic algorithm (GA) 
approach to select a smaller subset of wavelengths to use in the final PLSR model 
for predicting leaf water content, measured as equivalent water thickness (EWT). 
DuBois et al. (2018) combined the SVI and PLSR approach by using all two-band 
AVIRIS wavelength combinations to model the relationship between spectral reflec-
tance and ecosystem carbon fluxes across a water-limited environment. To date, the 
spectra-trait PLSR modeling approach has shown the capacity to characterize the 
widest array of leaf functional traits using the optical properties of plants across a 
broad range of species and ecosystems (e.g., Dahlin et al. 2013; Asner et al. 2014; 
Asner et al. 2015; Serbin et al. 2015; Singh et al. 2015; Couture et al. 2016).

Similar to the PLSR approach, researchers have leveraged various machine-
learning approaches to connect RS observations to functional traits (e.g., Féret et al. 
2018). Schweiger (Chap. 15) describes two commonly used machine-learning 
approaches in RS; several other approaches have also been used to model trait varia-
tion as a function of spectral measurements. More recently, Gaussian processes 
regression (GPR) has been recommended as superior to other machine-learning 
approaches for trait mapping from imaging spectroscopy data (Verrelst et al. 2012; 
Verrelst et al. 2016). GPR is a nonlinear nonparametric probabilistic approach simi-
lar to kernel ridge regression that directly generates uncertainty (or confidence) lev-
els for the prediction (Wang et al. 2019). This is in contrast to PLSR uncertainties, 
generally assessed through permutation (Singh et al. 2015; Serbin et al. 2015). PLSR 
and GPR yield very similar results, both in terms of absolute trait predictions and 
relative scaling of uncertainties (Wang et al. 2019). PLSR is much more computa-
tionally efficient, and results are readily interpretable in terms of wavelength quanti-
tative contribution to prediction (see Fig. 3.1 in Schimel et al., Chap. 19), whereas 
GPR only identifies relatively important wavelengths.

The challenge with most machine-learning approaches is that some level of data 
reduction is required for optimal performance. Standard approaches, such as principle 
component analysis (PCA) or minimum noise fraction (MNF) transformations, may 
reduce data dimensionality. However, features important to trait estimation may be 
buried in lower principle components, as high contrast variation (albedo, greenness, 
water content) dominate scene properties. In contrast, PLSR rotates the data into 
latent vectors optimized to the empirical dependent variables, which generally yields 
strong models for calibration data but can lead to poor model performance when con-
fronted with new data that differ considerably from the model-building data sets.

3.2.2.2  �Radiative Transfer Models and Scaling Functional Traits

An alternative to statistical, field-based, and empirical approaches for connecting 
leaf and canopy optical properties with plant functional traits, RTMs can be used 
either at the leaf and canopy scales to directly retrieve leaf traits (e.g., Colombo 
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et  al. 2008; Darvishzadeh et  al. 2008; Feret et  al. 2011; Banskota et  al. 2015; 
Shiklomanov et al. 2016) or in hybrid approaches where statistical algorithms are 
developed based on RTM simulations (e.g., Asner et al. 2011). RTMs encapsulate 
our best mechanistic understanding of the coordination among leaf properties, 
canopy structure, and resulting spectral signatures at the leaf and canopy scales, 
but abstracted to operate with different degrees of complexity and assumptions 
(Bacour et al. 2002; Nilson et al. 2003; Kobayashi and Iwabuchi 2008; See also 
Morsdorf et al., Chap. 4; Ustin and Jacquemoud, Chap. 14).

At the leaf scale, RTMs were generally spawned from earlier work that identified 
the relationships between fresh and dried leaf reflectance and a range of foliar traits, 
including pigments, water content, nitrogen, dry matter, cellulose, and lignin. The 
realization that leaf optical properties were fundamentally tied to the concentration 
and distribution of leaf traits led to the development of models that could closely 
mimic the spectral patterns across the shortwave spectral region (0.4–2.5 microns) 
based on select leaf properties, such as chlorophyll and water content, as well as 
structural variables. By far the most widely and commonly used leaf-level RTM is 
the PROSPECT model (Jacquemoud and Baret 1990; Feret et al. 2008), which sim-
ulates leaf directional-hemispherical reflectance (R) and transmittance (T), allowing 
for the calculation of leaf absorption (1-R+T) based on leaf biochemical and mor-
phological properties, primary and accessory pigments, water content, LMA, or dry 
matter content, brown material, and an approximation of the thickness of the inter-
nal leaf mesophyll layer (Féret et  al. 2008; Féret et  al. 2017). PROSPECT then 
simulates leaf optical properties based on a generalized plate model describing 
leaves as a stack of N homogenous absorbing layers that are calculated based on the 
values of input leaf traits and their corresponding spectral absorption coefficient. 
Other prominent leaf models include the Leaf Incorporating Biochemistry 
Exhibiting Reflectance and Transmittance Yields (LIBERTY) model (Dawson et al. 
1998) and LEAFMOD (Ganapol et al. 1998). In particular, LIBERTY is notable 
given its original application focusing on improving the modeling of needle-leaf 
evergreen conifer species and their leaf optical properties based on several leaf 
traits, similar to PROSPECT, but also including foliar lignin and nitrogen content.

Moving to the canopy scale, RTMs are far more numerous with a wide variety of 
complexities, assumptions, and requirements (Verhoef and Bach 2007; Widlowski 
et al. 2015; Kuusk 2018). Most canopy RTMs leverage leaf-scale models, such as 
PROSPECT, to provide the leaf optical properties (i.e., leaf single-scattering albedo) 
needed to simulate canopy directional-hemispherical reflectance across select 
wavelengths, simulated spectral bands, or specific SVIs. Generally, the soil bound-
ary layer is either prescribed or simulated using a simple model of soil BRDF (e.g., 
Hapke model, Verhoef and Bach 2007), and stem or woody material reflectance and 
transmittance (when used) is prescribed. Canopy RTMs can be separated into two 
main classes, homogenous and heterogenous models. Homogenous models assume 
the canopy to be horizontally unlimited and treated as a turbid medium of suffi-
ciently large number of phytoelements (leaves, stems, other materials). For exam-
ple, the Ross–Nilson model of plate medium (Ross 1981) assumes these elements 
to be composed of small bi-Lambertian “plates” described by their reflectance and 
transmittance properties with a specific leaf angle distribution (LAD). Leaves are 
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small compared to the full canopy medium, with no self-shading, and transmittance 
is a function of optical properties and leaf area index (LAI). Additional canopy 
parameters were added, including the hot-spot and canopy clumping to describe 
sun-sensor illumination effects and the inhomogeneity of the canopy elements 
(Kuusk 2018). Early SAIL models also fall into this classification (e.g., Verhoef 
1984). On the other hand, heterogenous canopy RTM models, including 3-D mod-
els, address the fact that vegetation canopies are heterogenous (e.g., gaps between 
crowns, spatial structure, differing canopy architectures) but range widely in their 
complexity and implementations. These models provide enhanced detail in the 
modeling of vegetation canopies but are necessarily more complex. Often these 
models require additional information to model vegetation “scenes,” which can 
include information on tree crown shape, stem location, and other properties (e.g., 
hot spot, clumping) in addition to leaf optical properties, sun-sensor geometry, and 
LAI.  These models range from 3-D Monte Carlo ray-tracing models, such as 
FLIGHT (North 1996) and FLiES (Kobayashi and Iwabuchi 2008), to analytical 
and hybrid approaches using a variety of canopy structure schemes including geo-
metric optical (GO) representation of individual plants where tree placement fol-
lows a statistical distribution and leaf and stem scattering elements are homogenously 
distributed (e.g., Kuusk and Nilson 2000; Nilson et al. 2003). For example, multiple 
stream, including four-stream, two-layer models often utilize simplifying assump-
tions, to model canopies as homogenous and continuous (i.e., “slab canopies”), but 
which are composed of a large number of small scattering elements (leaves, some-
times leaves and stems) with arbitrary inclination angles (e.g., 4SAIL2, Verhoef and 
Bach 2007). The scattering elements and the soil can be prescribed with specific 
optical properties using observed data or based on a leaf RTM, such as PROSPECT 
(Jacquemoud et al. 2009). In addition, some models can divide complex scenes into 
smaller cells to perform the radiative transfer calculations (e.g., DART, 
Gastellu-Etchegorry et al. 2015) where the level of simulation detail is based on the 
size of the cells and the degree of detail built into the model scene components. See 
the review by Kuusk (2018) for more details regarding canopy RTMs and their 
design, diversity, assumptions, and approaches.

The use of RTMs allows for the estimation of leaf and canopy traits using simu-
lated canopy reflectance, without some of the limitations or challenges of empirical 
approaches (3.3.1), such as the requirement of field sampling, scaling leaf traits to 
the canopy, and other issues such as the timing of field and imagery collections. 
Furthermore, RTMs can provide a more mechanistic connection between traits and 
reflectance allowing for potentially broader application than empirical approaches 
in areas were ground sampling may be sparse (e.g., remote regions such as the 
Arctic or the tropics). In addition, RTMs provide the opportunity to prototype 
inversion approaches across a range of remote sensing platforms and evaluate the 
trade-offs between different sensor designs, spectral resolutions, and temporal 
coverage (Shiklomanov et al. 2016), enabling the development of cross-platform 
retrieval algorithms.

Depending on the application, and RTM complexity, inversion can be conducted 
at the pixel or larger patch scales (i.e., collections of relatively homogenous areas of 
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vegetation) to characterize spatial and temporal patterns in plant functional (e.g., 
pigments) and structural (e.g., LAI) properties. In RTM inversion, the leaf-scale 
model is often the focus, where the goal is to invert the canopy and leaf models 
jointly to extract estimated foliar traits based on observed canopy reflectance (e.g., 
Colombo et al. 2008). Many other studies have focused on retrieving canopy-scale 
parameters, such as LAI (e.g., Darvishzadeh et  al. 2008; Banskota et  al. 2015). 
Early approaches leveraged RTM inversions that focused on numerical optimization 
techniques to minimize the difference between modeled and observed reflectance 
across similar wavelengths (e.g., Jacquemoud et al. 1995). Other methods have uti-
lized look-up table (LUT) inversion (e.g., Weiss et al. 2000) where a range of simu-
lated canopy reflectance patterns are generated in advanced by varying leaf and 
canopy inputs across predetermined values. These simulated spectra are then com-
pared to observations where either a single or select number of closely matching 
modeled spectra, and their associated inputs, are selected as the solution to the 
inversion. Bayesian RTM inversion methods have also been utilized (e.g., 
Shiklomanov et al. 2016) as a means to retrieve leaf and canopy properties as joint 
posterior probability distributions through iterative sampling of the input parameter 
space. The use of RTMs ranges from retrieval of vegetation functional and structural 
traits to the characterization of landscape functional diversity (Kattenborn et  al. 
2017; Kattenborn et al. 2019).

3.3  �Important Considerations, Caveats, and Future 
Opportunities

3.3.1  �Field Sampling and Scaling Considerations

There are several important considerations and best practices when developing 
algorithms for the remote estimation of plant traits (see Schweiger, Chap. 15). We 
will only briefly touch on these here. A key first step is to consider the scope of the 
research and area of interest, focusing specifically on considerations such as local 
climate conditions, terrain, vegetation, and canopy access. Specifically, the spatial 
locations, site, and canopy access (e.g., is it possible to reach canopy foliage?); 
vegetation composition and canopy architecture; timing of collection; and methods 
for sample retrieval are key to identify prior to field campaigns in order to maximize 
the utility of the field samples for conversion of RS signatures to accurate trait maps. 
Furthermore, it may be important to consider what approach may be best to charac-
terize the vegetation canopy architecture and/or composition to facilitate scaling of 
each trait to the pixel or plot scale (e.g., using basal area, LAI). This may strongly 
depend on the dominant vegetation types, where more open canopies may require a 
different approach to a closed canopy, or on the spatial resolution of the imagery. 
Observational data range is a primary consideration (see Schweiger, Chap. 15), and 
sample locations should be chosen to cover the range of canopy types and vegeta-
tion communities that will fall within the RS observations. The timing of the field 
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sampling should be as close to the RS collection date as possible, as an optimal 
approach, but at least be selected to match the phenological stage of the vegetation 
during the imagery collection, if leveraging sample campaigns in following year(s).

A number of different methods have been used to collect plant functional traits 
to link with RS imagery (e.g., Wang et al. 2019). Common approaches for the col-
lection of canopy leaf samples include the use of slingshot, pruning pole, and shot-
gun (Lausch et al., Chap. 13), but also include line-launcher and air cannon (e.g., 
Serbin et  al. 2014); simpler tools and hand shears are often used for accessible, 
shorter canopies. Regardless of the sample collection approach, harvested leaves 
should be reasonably intact and minimally damaged in order to avoid any issues 
with changes in leaf chemistry from physical damage or stress. In addition, leaves 
should be immediately measured for leaf optical properties and fresh mass, if these 
are of interest, then stored in humidified and sealed bags and placed in a cool, dark 
place prior to transport for further processing. Processing should then be completed 
within 2–4 hours of sampling—though a much shorter time between sample and 
measurement or different sample storage and handling (e.g., flash freezing in liquid 
nitrogen) may be needed for specific biochemical traits. Typically top-of-canopy, 
sunlit samples have been the main focus; however, more recent work has also begun 
to focus on collection of canopy and subcanopy samples (e.g., Serbin et al. 2014; 
Singh et  al. 2015). This provides the ability to evaluate the depth in the canopy 
needed to link traits with image, which may vary by vegetation type or LAI.

3.3.2  �Evaluating Functional Trait Maps and the Need 
to Quantify Uncertainties

Maps of plant functional traits are useful for a wide variety of applications. From an 
ecological perspective, maps of plant traits across broad biotic and abiotic gradients 
can be used to explore the drivers of plant trait variation in relation to climate, soils, 
and vegetation types (e.g., McNeil et al. 2008). Modeling activities can leverage 
these trait maps as either inputs for model parameterization across space and time 
(Ollinger and Smith 2005) or to evaluate prognostic plant trait predictions. However, 
to maximize the utility of functional trait maps a detailed understanding of the their 
uncertainties across space and time is required.

In the earliest functional trait mapping work, predictive model uncertainties were 
limited to the “goodness of fit” and overall model root mean square error (RMSE) 
statistics provided by the modeling approach (e.g., Wessman et al. 1988; Martin and 
Aber 1997; Townsend et al. 2003). While this information is helpful to understand 
the accuracy of the model fit, that level of accuracy assessment is insufficient for 
characterizing the uncertainty of the trait maps themselves. Mapping efforts should 
instead provide an accounting of the trait measurement, scaling, and algorithm 
uncertainties and provide this information in the resulting trait map data products. 
However, detailed error propagation is not trivial, particularly with respect to empir-
ical modeling approaches, and is an ongoing and active area of research in the RS 
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sciences and not discussed in detail here. On the other hand, efforts to provide prod-
uct uncertainties do exist. Serbin et al. (2014) and Singh et al. (2015) illustrate how 
to incorporate data and modeling uncertainties at the leaf and canopy scales in the 
mapping of plant functional traits. This approach captures the uncertainties stem-
ming from the leaf-level estimation of traits (Serbin et al. 2014) and the modeling of 
plot-level spectra and trait values (Singh et  al. 2015) using a similar PLSR and 
uncertainty analysis approach. The result is an ensemble of PLSR models to apply 
to new RS data providing mean and error metrics for every pixel in the image. 
However, even approaches such as these fail to incorporate and propagate the uncer-
tainties stemming from the atmospheric correction workflow given the challenge of 
extract the information needed to enable this on a pixel-by-pixel or even a scene-by-
scene basis. Future work will be required to focus on capturing this information and 
providing it to the end-user who conducts the trait mapping efforts.

Uncertainty in RTM approaches have generally been derived based on inver-
sion approaches applied to imagery. For example, as described in Sect. 3.2.2.2, a 
commonly used approach to the inversion of RTM simulations for the RS of func-
tional traits is the use of LUTs. Some LUT approaches provide results based on 
the “best fit” of the model inversion results to the RS observations. However, this 
only provides an assessment of error where field measurements can be used to 
evaluate the retrieved values. Given the challenge of equifinality in RTM 
approaches, later efforts have used an ensemble of best fit results to provide a 
mean and distribution of values that provide a good fit of modeled reflectance to 
observed (e.g., Weiss et  al. 2000; Banskota et  al. 2015). Using this approach 
allows for the description of pixel-level uncertainty based on the best fit ensem-
bles; however, these need to be combined with an accuracy assessment to get a 
true uncertainty of the functional trait retrievals. More recent approaches have 
leveraged Bayesian inversion approaches that provide output that is not a point 
estimate for each parameter but rather the joint probability distribution that 
includes estimates of parameter uncertainties and covariance structure 
(Shiklomanov et al. 2016). Regardless of the approach, the key is that the derived 
products provide a reasonable assessment of trait uncertainty across the spatial 
and temporal domain (where appropriate).

3.3.3  �Current and Future Opportunities in the Use of Remote 
Sensing to Characterize Functional Traits 
and Biodiversity

The ability to map foliar functional traits from imaging spectroscopy greatly 
expands the potential for understanding patterns of vegetation function and func-
tional diversity both locally and broadly across biomes, especially in comparison to 
the challenges of fully characterizing spatial and temporal (across seasons and 
between years) variation using field data (e.g., the TRY database). With forthcoming 
spaceborne sensors (see Schimel et al., Chap. 19) and continental-scale experiments 
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like the US National Ecological Observatory Network (NEON), we are able to test 
relationships among traits and characterize functional diversity at unprecedented 
scales. For example, NEON is collecting imaging spectroscopy data at 1 m resolu-
tion and waveform lidar data almost annually for 30 years at 81 10 km × 10 km sites 
covering 20 biomes defined for the USA. With the addition of lidar, which enables 
measuring traits such as plant area index, canopy height, canopy volume, and 
aboveground biomass (of forests), a broad suite of traits can be leveraged to test 
relationships that have been published in the literature (e.g., the leaf economics 
spectrum) and are generally tested now at global scales using extensive—but still 
not comprehensive—databases such as TRY. With spaceborne imaging, phenologi-
cal variation in traits (e.g., Yang et al. 2016) can be further explored. For example, 
preliminary mapping of key functional traits across all NEON biomes in the USA 
shows the leaf economics spectrum relationship between LMA and nitrogen for for-
est and grassland ecosystems east of the US Rocky Mountains (Fig. 3.8.) in com-
parison to the data set used for the original LES studies, GLOPNET (Global Plant 
Trait Network, Wright et al. 2004; Reich et al. 2007). Importantly, the use of data 
from RS platforms, such as NEON, AVIRIS, and upcoming spaceborne sensors (see 
Schimel et al., Chap. 19), enables the filling of critical research gaps and global 
coverage in remote regions, as suggested by Jetz et al. (2016) and Schimel et al. 
(2015). The relationship does not differ significantly from published relationships 
but does suggest a breadth of the relationship as well as outliers for a number of 
observations many orders of magnitude higher than is possible from field databases. 
Field databases are still required for basic science studies, as well as inventory, cali-
bration, and validation, but RS offers new possibilities for baseline characterization 
of Earth’s functional diversity and thus testing new hypotheses about the drivers of 
such variation, using the range of traits detectable from RS (Tables 3.1 and 3.2). 

Fig. 3.8.  LMA versus nitrogen for NEON for GLOPNET observations (black dots, truncated to 
observations with LMA <600) vs. pixel predictions derived for NEON sites east of the US Rocky 
Mountains (color gradient). Color gradient is density of pixel observations based on 333,500 pixel 
values randomly extracted from 447 flight NEON flight lines in 18 sites across 6 biomes
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Furthermore, coupling of spectral and functional trait databases (e.g., ecosis.org) will 
facilitate more rapid development and testing of new functional algorithms or the 
expansion of the scope of inference of existing models. In addition, the inclusion of 
high spectral resolution sensors on unmanned aerial systems (UASs, Shiklomanov 
et al. 2019) provides the opportunity to leverage similar scaling approaches as pre-
sented in this chapter with UAS observations to provide unprecedented temporal cov-
erage and targeted spatial sampling that can be used to understand ecosystem in new 
detail or aid in the scaling from the plant to grid cell. In all, functional trait maps from 
imaging spectroscopy will supplement data and approaches presented by Butler et al. 
(2017) or Moreno-Martínez et al. (2018) for broad-scale trait characterization.
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