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Mesoscale convective systems (MCSs) are complexes
of thunderstorms that become organized and cover
hundreds of kilometers over several hours. MCSs are
prolific rain producers in the tropics and mid-latitudes
and are the major cause of warm-season flooding.
Traditionally, climate models have difficulties in
simulating MCSs partly due to the misrepresentation
of complex process interactions that operate across
a large range of scales. Significant improvements
in simulating MCSs have been found in kilometer-
scale models that explicitly simulate deep convection.
However, these models operate in the grey zone of
turbulent motion and have known deficiencies in
simulating small-scale processes (e.g., entrainment,
vertical mass transport). Here, we perform mid-
latitude idealized ensemble MCS simulations under
current and future climate conditions in three
atmospheric regimes: hydrostatic (12 km horizontal
grid spacing; ∆x), non-hydrostatic (∆x=4, 2, and
1 km), and large-eddy-scale (∆x=500 m and 250 m).
Our results show a dramatic improvement in
simulating MCS precipitation, movement, cold pools,
and cloud properties when transitioning from 12 km
to 4 km ∆x. Decreasing ∆x beyond 4 km results in
modest improvements except for up- and downdraft
sizes, average vertical mass fluxes, and cloud top
height and temperature, which continue to change.
Most important for climate modeling is that ∆x=4 km
simulations reliably capture most MCS climate change
signals compared to those of the ∆x=250 m runs.
Significantly different climate change signals are
found in ∆x=12 km runs that overestimate extreme
precipitation changes by up to 100 %.
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1. Introduction2

Mesoscale convective systems (MCSs) play an important role in the earth’s energy balance3

[19,61] and are essential for the water cycle in the tropics [31] and mid-latitude regions [12,14].4

These systems are prolific rain producers and are the main cause of warm-season flooding5

[33,45]. Observations of MCSs over the continental U.S. indicate that extreme precipitation6

rates associated with MCSs have significantly increased since the 1980s [12], and MCSs are7

projected to further intensify under future climate change scenarios [39]. A major bottleneck8

for predicting possible climate change effects on future extremes is that convective storms and9

storm intensity (precipitation, updraft strength) are poorly represented by state-of-the-art models10

[22]. These challenges are exacerbated for MCS that represent some of the largest and most11

impactful of convective storms. This is because MCSs entail processes that operate and interact12

across a wide range of scales, which makes them hard to constrain with limited observations13

[19,30]. Improving MCS modeling capabilities is essential to advance the credibility of weather14

predictions and climate projections, especially for socioeconomic impactful extreme events (e.g.,15

floods, droughts).16

The frontier of global and regional atmospheric modeling has reached convection-permitting17

scales (horizontal grid spacings ∆x≤4 km) [37]. Convection-permitting models (CPMs) can18

explicitly represent deep convection, which revolutionizes our ability to simulate and predict the19

weather and climate system [7,37]. CPMs substantially improve the simulation of MCSs including20

their propagation, evolution, size, and associated extreme precipitation [38]. This paper provides21

a multi-scale analysis of why this is true. An ongoing challenge of kilometer-scale modeling is22

that these models operate in the grey zone of turbulent motion, wherein convection is not fully23

resolved [60]. This causes challenges in realistically simulating cloud entrainment processes and24

draft characteristics [27].25

Simulations in the turbulent grey zone truncate the turbulent energy spectrum, leading to26

misrepresentations of convection dynamics, which can result in a factor of two overestimation of27

convective updraft intensity in CPMs [10,55]. Moreover, the energy spectrum of deep convective28

clouds is continuous across kilometer to meter-scales, without an apparent energetic gap29

indicating a scale separation [15]. Thus, choosing an appropriate grid spacing to realistically30

simulate deep convective clouds is difficult, since spatial structures of turbulent motion do31

not converge until meter-scales [27]. Although turbulent motions are not fully resolved at the32

kilometer-scale [4], several studies have demonstrated that convergence of convective storm33

bulk properties (e.g., precipitation accumulations over a mesoscale region) can be achieved with34

kilometer-scale models [6,26,32,59]. A better understanding of the impacts of simulating in the35

grey zone is paramount since the climate community is rapidly transitioning to kilometer-scale36

grid spacings whereas large-eddy simulations on climate time scales are far out of reach [37].37

In this study, we address two main research questions:38

(i) How are processes that interact within an MCS simulated across∆x spanning two orders39

of magnitude from hydrostatic-scales (∆x=12 km) to large-eddy-scales (∆x=250 m)?40

(ii) Which ∆x is needed to reliably simulate MCS process changes under global warming?41

The first question aims to identify systematic differences between large-eddy simulations42

(∆x=250 m) and grid spacings that are currently tested for regional and global climate modeling43

(∆x=4 km and ∆x=12 km). The main objective is to investigate the convergence of bulk MCS44

properties. Identifying grid spacings that can reliably capture salient MCS properties such as total45

precipitation, vertical mass transport, and the cloud shield properties is important to capture the46

global energy budged and hydrologic cycle at efficient computational costs. The second question47

assesses the robustness of climate change signals comparing results from large-eddy simulations48

with simulations with grid spacings that are currently feasible for climate modeling.49
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The novel contribution of this study is the use of 10-member ensemble simulations in50

current and future climate conditions under business as usual warming. Using an ensemble-51

based approach allows investigating how systematic ∆x dependent differences are to changes52

in MCS inflow environments. Furthermore, we use a larger domain than previous studies,53

enabling realistic simulation of three-dimensional MCSs, rather than MCS sections in a channel54

configuration [5,27].55

2. Data and Methods56

The programs that were used for data processing and visualization in this paper are available on57

GitHub [36].58

(a) Initial Sounding for Idealized Simulations59

The initial conditions for running idealized simulations are based on inflow soundings of air60

that gets advected into heavy precipitating MCSs. The soundings are derived from two 13-61

year long climate simulation covering most of North America under current and future climate62

conditions [28]. Current and future climate simulations were performed using the Weather63

Research and Forecasting (WRF) model [34,48] with a grid spacing of∆x=4 km. At this resolution,64

deep convection can be explicitly represented in the model without the need for a deep65

convection parameterization [37,59]. The current climate condition simulation downscales ERA-66

Interim reanalysis data [9] within the period from October 2000 to September 2013. The future67

simulation uses the pseudo global warming approach [28,40,44] by adding monthly climate68

change perturbations to the 6-hourly boundary conditions of ERA-Interim during the same time69

period. The perturbations are derived from an ensemble of CMIP5 (fifth phase of the Coupled70

Model Intercomparison Project) global climate model projections [50]. These models use the71

high-end representative concentration pathways (RCP8.5) comparing the period 2071–2100 to72

1976–2005. More information about these ∆x=4 km climate simulations are found in Liu et al.73

(2017; [28]).74

Inflow environmental conditions are derived from these simulations by using the identification75

of MCSs from our previous study [38]. All MCSs that are identified in the central U.S. warm76

season (June, July, and August; JJA) are ranked according to their peak hourly rainfall rate.77

MCS inflow environments are derived from 3-hourly model level output and are defined as78

the MCS relative upstream region that is perpendicular to the largest equivalent potential79

temperature gradient [53,54]. Within the inflow environment, we search for grid cells that have80

large maximum convective available potential energy (CAPE), low convective inhibition (CIN),81

and large precipitable water in radial bands of 30 km centered on the location of maximum82

precipitation with a maximum radius of 320 km. We excluded more distant sounding locations to83

capture inflow air properties that are affecting the actual MCS development. The environmental84

variables are calculated from mean air parcel condition (e.g., temperature, moisture) within a85

depth of 500m centered on the maximum equivalent potential temperature level in the lowest86

3 km above the surface. To exclude inflow grid-cells that are contaminated by the MCS or other87

precipitating clouds, we remove all cells that are closer than 40 km to grid cells with precipitation88

(precipitation rates > 0.01 mm h−1). These filtering steps retain several optimal inflow grid cells89

for which various diagnostics are calculated (Supplementary Figure 1). We manually investigate90

these diagnostics and select suitable soundings to initialize idealized WRF simulations.91

(b) Model Setup92

We use the WRF model version 3.9.1.1 to perform idealized MCS simulations. The source code93

of WRF is available from GitHub (https://github.com/wrf-model/WRF). The model setup94

is adapted from the WRF tutorial idealized case 3D supercell thunderstorm, which is called95

em_quarter_ss [47]. A single sounding provides the initial and boundary conditions that are kept96

https://github.com/wrf-model/WRF
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constant over time. Domain size sensitivity tests showed that MCS features such as accumulated97

precipitation start to converge at domain sizes of 600 km×600 km or larger (not shown). We use98

95 vertical levels with an equal distance of 250 m similar to [27] and a 620 km square horizontal99

domain. Limited sensitivity to decreases in vertical grid spacing has been shown for an idealized100

squall line case [27]. We use open boundaries and apply Rayleigh damping to the top 20-levels of101

the model domain to avoid wave reflections.102

In all simulations, we neglect the effects of radiation, surface fluxes, Coriolis acceleration, and103

do not use a planetary boundary layer scheme. Surface drag is included by applying the Eta104

surface layer scheme [20], which helps to form coherent cold pools that organize convection. The105

Thompson microphysics scheme is used [51], which was also applied in the climate simulations106

from which the initial MCS inflow soundings are derived [28]. This scheme has been shown to107

result in high-quality MCS simulations in the central U.S. [13]. The Kain-Fritsch deep convection108

scheme [23] is only used in one of the ∆x=12 km simulations. In those simulations, we test the109

effect of using the Kain-Fritsch deep convection closure [23] in addition to explicitly simulating110

deep convection. An overview of the performed simulations is shown in Tab. 1.111

All MCSs are simulated at six horizontal grid spacings: ∆x=12 km, 4 km, 2 km, 1 km, 500 m,112

and 250 m. At ∆x=250 m, the model starts to resolve entrainment/detrainment [27]. Convection113

is initiated by using a similar approach to previous work [27,62] by forcing vertical motion114

within a half elliptic cylinder with a length of 40 km, a radius of 20 km and a depth of 4 km. The115

flat side of the half-cylinder is located at the surface. We use a maximum vertical acceleration116

of 2 m s−2 along the center of the cylinder. The acceleration decays with the cosine of the117

radius. We randomly perturb potential temperature by 0.1 K in a rectangular area with a size of118

110 km×80 km×4 km centered on the half-cylinder to facilitate the development of 3D motion.119

This approach is used in all simulations but the location of the half-cylinder was adjusted120

depending on the MCS movement in each simulation to trigger convection close to the inflow121

boundary to maximize the time before the MCS reaches the outflow boundary. We performed122

sensitivity tests using warm bubbles instead of a convergence area to trigger convection, which123

frequently did not result in the development of deep convection. This is likely because most124

mid-latitude MCS are baroclinic/synoptically-driven, and not primarily forced by radiational125

heating.126

We test 36 current climate condition soundings and 46 future climate soundings at ∆x=4 km127

to investigate the development of MCSs. This grid spacing is sufficient to assess if the sounding128

results in the development of an MCS. A larger number of sounding had to be tested in the future129

climate because fewer soundings supported the development of organized convection mainly130

because of a reduction of low-level relative humidity. Based on visual inspection, we select 17131

cases in each climate that develop an MCS and rank them according to their peak hourly rainfall132

rate. Members 4 to 14 are selected in both periods and simulated using all six horizontal grid133

spacings. This is done to increase the robustness of the climate change analysis by excluding134

atypically strong and weak MCSs. Including high-end extreme events in the analysis would135

increase the impact of chaotic processes on our climate change assessment and would demand136

a much larger ensemble of MCSs than we can afford with our available computer resources [29].137

The 10 current and future soundings that can be used to initialize idealized WRF simulations can138

be accessed from https://issues.pangaea.de/browse/PDI-23519.139

(c) MCS Processes140

All analyses are mainly performed on the common grid of the ∆x=12 km simulations unless141

otherwise noted. Conservative remapping [21] was used to ensure the conservation of mass and142

energy. Comparing the simulations on the same grid helps to assess processes on similar scales.143

However, this approach averages out small-scale features in the higher resolution simulations that144

might be important for specific applications (e.g., hail formation or local scale flood assessments).145

Therefore, the models are also compared on their native grid concerning the characteristics of146

https://issues.pangaea.de/browse/PDI-23519
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convective up- and downdrafts and climate change impacts on precipitation. The salient MCS147

components that are evaluated are shown in Fig. 1.148

We use an object-based approach for our analyses. This involves thresholding the149

spatiotemporal data to create a binary field in which objects can be identified. Thereafter, we150

consider coherent precipitation areas that are connected in space and time as an object – which151

we refer to as MCS – similar as in our previous work [38,39]. This allows focusing our analysis152

solely on the MCS by excluding potential secondary convection in the domain. Only objects that153

do not contact the domain boundaries are considered. Furthermore, for convergence assessments,154

we only evaluate data three hours after model initialization. At this time, MCSs have reached a155

mature stage (rainfall area, integrated vertical mass flux) and ∆x dependent differences of MCS156

processes are constant or demonstrate only slow and gradual changes. The only exception are157

anvil cloud properties, which are evaluated one hour after simulation start since anvil clouds158

reach the domain boundary typically within the first four hours. This improves the robustness of159

the analysis but results are similar if anvil clouds properties are evaluated between hour three to160

four. We suggest the simulations to be "converged" when the differences between simulations161

at smaller ∆x are non-systematic and insignificant, which is the case after three hours. We162

do not analyse characteristics that are associated with the MCS size (e.g., total precipitation,163

size of the anvil cloud, cold pool extent) because these characteristics can strongly depend on164

the initialization of the MCS and vary from real cases that are typically associated with an165

atmospheric boundary (i.e., synoptic scale forcing).166

(i) Convective and Stratiform Precipitation167

To differentiate between the MCS and potential secondary precipitating storms that develop168

remotely from the MCS, we select the largest contiguous precipitation region with precipitation169

larger than 0.1 mm h−1. The MCS convective and trailing/detrained startiform precipitation170

regions are differentiated by the area with radar 2 km reflectivity >40 dBZ. This is in accordance171

with previous radar based observations [1,2].172

(ii) Draft Geometry and Dynamics173

We identify drafts within each MCS as 3-dimensional objects of adjacent (horizontally, vertically,174

and diagonal) grid cells with at least 3 m s−1 vertical wind speed for updrafts and -3 m s−1
175

for downdrafts [18]. Only drafts with more than 20 dBZ average reflectively, below 16 km, and176

above an area with precipitation of at least 2.5 mm h−1 are analyzed to not include clear air177

vertical motions (e.g., gravity waves) in our analysis. This method is adapted from observational178

studies using vertical pointing radar for wind profiling [58]. Draft statistics are performed on the179

native grid to estimate structural convergence of core properties. We randomly selected up to180

50-cores per output time step (5-minutes) to reduce the computational costs of the analysis for181

sub-kilometer-scale simulations, which can have several hundred cores.182

(iii) Cold Pools183

The spatiotemporal evolution of cold pools is captured with an approach that was used in184

previous studies [11]. Buoyancy near the surface (b; m s−2) is calculated following [52]:185

b=
g · (Θp −Θp)

Θp
(2.1)186

with g being the gravitational acceleration (g=9.81 m s−2), Θp (K) is the virtual potential187

temperature, and the overbar indicates a 100 km×100 km moving average low-pass filter. Θp is188

defined as:189
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Θp =Θ · (1 + 0.608 ·Qvapor −Qcloud −Qrain) (2.2)190

where Θ is the potential temperature in Kelvin, and Qvapor , Qcloud, and Qrain are the191

mass mixing ratios of water vapor, cloud condensate, and rain water in kg kg−1 respectively.192

In accordance to previous studies [5,42], we calculate the cold pool intensity (B; m s−1) as:193

B =

√
−2

∫h
0
bdz (2.3)194

with buoyancy b (equation 2.1) integrated from the surface to h, which is the height at which195

b first exceeds -0.005 m s−2. Some of the cold pools are directly connected to downdrafts and196

can, therefore, reach into the mid-troposphere. To reduce computational resources, we limited the197

maximum height of cold pools to 3.875 km, which has no significant impact on our results.198

(iv) Anvil Cloud Properties199

We define the anvil cloud as the contiguous 3D area where the sum of the ice mass mixing ratio200

(Qice) and the snow mass mixing ratio (Qsnow) is larger than > 0.1 g/kg. The anvil properties201

investigated are the average cloud top height and the corresponding cloud top temperature.202

Cloud top characteristics are analysed between hour three to hour five after model initialization203

to avoid including statistics when large parts of the anvil are outside the model domain (typically204

after hour five).205

3. Results206

In Fig. 2, we show properties of the ten inflow sounding that are used to initialize the idealized207

current and future climate MCS simulations. Most soundings were derived from MCSs in208

the first half of JJA. There is a slight shift to earlier sampling dates in the future climate209

(Fig. 2a). The sounding locations are randomly sampled throughout the central U.S. (Fig. 2b).210

Note that cumulative CAPE (cCAPE, Fig. 2c) tends to increase in the future soundings at high211

altitudes. However, below ∼7 km the soundings have similar cCAPE values. The CIN properties212

(Fig. 2f) do not change significantly between current and future climate scenarios, and the same213

behavior holds for the relative humidity (RH; Fig. 2d). Constant relative humidity means that214

the atmospheric precipitable water (PW; Fig. 2g) increases at close to Clausius-Clapeyron rates215

(∼6.5 % per degree warming [8]). Air temperature increases roughly twice as fast at high-levels216

(∼7 ◦C at 14 km; Fig. 2e) than near the surface (∼3.5 ◦C), resulting in a stabilization of the217

troposphere and an enhanced moistening of upper levels compared to low levels. Ground to low-218

level wind shear (Fig. 2h) does not change significantly, while median mid-level shear (Fig. 2i) is219

on average 5 m s−1 smaller in future climate soundings. The modeled soundings that we use here220

are comparable to observed pre-MCS soundings at the U.S. Department of Energy’s Atmospheric221

Radiation Measurement Southern Great Plains site in Oklahoma except for higher low-level RH222

and lower CIN values in the model soundings [57,58].223

(a) Grid Spacing Dependencies Under Current Climate Conditions224

In this section we present results addressing our first research question on how MCS components225

are simulated when using horizontal grid spacings that range from hydrostatic to large-eddy226

scales. We use an ensemble of 10 idealized MCS simulations to understand the robustness of our227

results to different MCS environments. All figures in this section feature a representative MCS228

example to illustrate grid spacing dependent differences followed by ensemble based analysis.229
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(i) Precipitation Characteristics230

In this section, we assess key precipitation characteristics from the 10-member current climate231

MCS ensemble to understand if there are systematic scale-dependent differences. Note that all232

ensemble evaluations are performed on a common 12 km grid unless otherwise noted.233

MCS precipitation features can change significantly contingent on ∆x, as shown on the234

example of hourly MCS precipitation accumulation in Fig. 3a–g. There is a regime shift in the235

spatial structure and location of precipitation when transitioning from hydrostatic (∆x=12 km) to236

non-hydrostatic (∆x≤4 km) grid spacing. Further increasing ∆x results in the addition of small-237

scale variability and a northward extend of stratiform rainfall but no fundamental changes in238

mesoscale structures in the intense precipitation region.239

Fig. 3h–m shows the ensemble mean and variability of precipitation properties from coarser240

∆x simulations compared to their ∆x=250 m counterpart. The location of the MCS track is241

remarkably similar (within less than 10 km displacement) for simulations with grid spacings up to242

4 km. However, significant track discrepancies occur in the ∆x=12 km simulations (Fig. 3h) with243

smaller differences in those without deep convection scheme.244

Maximum hourly precipitation accumulations suggest a clear regime shift when transferring245

non-hydrostatic to hydrostatic simulations with the latter simulations typically showing lower246

precipitation intensities and much less accuracy (large ensemble spread; Fig. 3i). Maximum247

precipitation is systematically ∼20 % larger using ∆x=4 km to ∆x=1 km, which is consistent248

with previous results [24,46]. A similar behaviour can be seen for mean convective (Fig. 3k) and249

stratiform (Fig. 3l) precipitation with the latter showing substantial low biases of ∼50 % in the250

∆x=12 km simulations due to the lack of a stratiform shield. MCSs movement speed does not251

show a strong grid spacing dependence (Fig. 3j).252

Next we analyse how similar the spatial pattern of the total MCS accumulated precipitation253

(hereafter precipitation footprint) are compared to those of the ∆x=250 m simulation. To avoid254

penalties from displacement errors we shift the precipitation footprint from the coarser resolution255

simulations relative to the footprint of the ∆x=250 m run until the spatial correlation coefficient is256

maximized. We see a decrease of correlation coefficients from 0.8 for∆x=500 m to 0.6 at∆x=2 km.257

∆x=2 km and ∆x=4 km simulations have similar correlation coefficients while ∆x=12 km show258

correlation coefficients around 0.4.259

In summary, there is a clear regime shift in simulating MCS precipitation characteristics260

when transitioning from non-hydrostatic to hydrostatic scales. The latter have significantly261

lower skill in capturing the precipitation location, intensity, and spatial patterns simulated by262

the ∆x=250 m runs. Additionally, there are clear benefits of not using the Kain-Fritsch deep263

convection parameterization at∆x=12 km in the simulated precipitation characteristics. From our264

simulations it is unclear how intermediate grid spacing simulations using ∆x=6 km or ∆x=8 km265

would perform, which should be the focus of future studies.266

(ii) Vertical Mass Flux and Draft Geometry and Dynamics267

The impact of horizontal model grid spacing on vertical wind speed at mid levels is shown for268

one example MCS in Fig. 4a–g. The∆x=250 m simulation shows high spatial variability with small269

but intense vertical up- and downdrafts along the leading edge of the MCS. Additionally, there270

are gravity waves propagating ahead of the MCS. These characteristics are qualitatively captured271

even in the ∆x=4 km run but the up- and downdraft sizes are larger and less variable. In the272

∆x=12 km runs the MCS collapses into one dominating updraft and gravity waves are largely273

absent especially in the simulation with deep convection parameterization.274

The ensemble average mass flux in the MCSs is overestimated in kilometer-scale models275

compared to the ∆x=250m simulations (Fig. 4h). ∆x=1 km and ∆x=2 km simulations have an276

overestimating of more than 33 % close to the cloud top while the ∆x=4 km runs overestimates277

mass flux by about 20 % above 3 km height. The ∆x=12 km simulations have more similar mass278

flux statistics compared to the∆x=250 m than the kilometer-scale simulations, which is likely due279

to error cancellation effects (e.g., much larger updrafts with lower vertical wind speeds). Average280
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downward mass flux statistics show similar ∆x dependencies compared to upward mass fluxes281

(Fig. 4i). Note that the maximum overestimation in the downward mass flux occurs at around282

10 km height, which is connected to the maximum overestimation in the upward statistics that283

occurs above this level. The enhanced mass flux in kilometer-scale models is likely related to a284

underestimation of entrainment and detrainment due to an under-representation of small-scale285

turbulence [4,27].286

The structural convergence of core properties is investigated on the native model grid. Up-287

and downdraft characteristics change substantially with ∆x. At ∆x=12 km, ∼200/150 km wide288

(Fig. 4j,k) and 10/2 km deep up/downdrafts (Fig. 4m,n) are simulated. Updraft width decreases289

exponentially with ∆x, but start to flatten towards ∆x=250 m, indicating potential convergence290

at a higher resolution. This flattening is less pronounced for downdraft widths, meaning that291

structural convergence of downdraft width demands smaller ∆x than updraft convergence.292

Updrafts are plume-like (a rising column of warm air) in the ∆x=12 km simulations with an293

average depth of 10 km (Fig. 4k), which is consistent with our previous study [58]. Decreasing294

∆x makes updraft more thermal-like (rising bubbles of warm air) with a mean depth of 1.25 km295

at ∆x=250 m. Mean updraft depth decreases rapidly between ∆x=12 km and ∆x=2 km and296

starts to flatten afterwards. In contrast, mean downdraft depth is similar between ∆x=12 km297

and ∆x=2 km, starts to decrease from ∆x=2 km to ∆x=500 km, and flattens afterwards (Fig. 4n).298

In previous work, we compare a subset of the here used simulations to radar wind-profiler299

observations and show that the sub-kilometer scale simulations significantly improve the300

representation of draft geometry [58].301

Mean updraft speed is 6 m s−1 in the∆x=12 km simulations, which is almost twice as fast as in302

∆x≤250 m runs (Fig. 4l). The overestimation in the ∆x=12 km simulations of 4.5 m s−1 is already303

substantially improved in ∆x=4 km runs and starts to converge at ∆x≤2 km. Average downdraft304

speed is generally less scale sensitive than updrafts speed (Fig. 4o). Here, ∆x=12 km simulations305

clearly underestimate the velocity while average downdraft speed does not change significantly306

in simulations with ∆x≤4 km.307

(iii) Cold Pool Properties308

Fig. 5a–g shows the cold pool intensity (see Method section for the definition) of an example MCS309

at different horizontal grid spacings. Similar to the precipitation analysis, cold pools also show310

a clear displacement when decreasing the ∆x from 4 km to 12 km. This is understandable since311

these idealized simulations are cold pool driven (e.g., see the development of updrafts along312

the leading edge of cold pools in Fig. 1). It is also obvious that the intense part of the cold pool313

becomes smaller with increasing ∆x and that the location of the intense regions is closer to the314

middle of the cold pool in the ∆x=12 km simulations, whereas it is at the leading edge of the cold315

pool in the higher resolution runs.316

The mean cold pool depth is systematically smaller by up to -10 % in kilometer-scale317

simulations compared to the∆x=250 m runs (Fig. 5h). Much larger underestimations of -30/-20 %318

occur in the ∆x=12 km simulations with/without deep convection parameterizations. Maximum319

cold-pool intensities are well captured up to ∆x=4 km and are systematically lower in the320

∆x=12 km runs (Fig. 5i). The mean movement speed of cold pools is well captured across all grid321

spacings but the ensemble spread is significantly larger in the ∆x=12 km with deep convection322

scheme (Fig. 5j). As expected, the movement of the cold pools is similar to the movement of the323

precipitation area that was discussed earlier (Fig. 3j).324

(iv) Anvil Clouds and Hydrometeor Properties325

Fig. 6a–g shows cloud top temperatures from an example MCS across grid spacings. Similar to326

previous analysis, there is a clear change in the spatial structure and average cloud top height327

when increasing∆ from 4 km to 12 km. This is also obvious in the ensemble mean cloud top height328

statistics (Fig. 6h). Kilometer-scale simulations slightly overestimate the average could top height329

by up to 200 m while the∆x=12 km simulations underestimate it by up to 400 m. Furthermore, the330
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ensemble spread increases significantly in the hydrostatic runs with some members having very331

low cloud top heights. Similar characteristics are seen for maximum cloud top heights that focus332

on overshooting tops that are associated with the most intense updrafts (Fig. 6i). These results are333

consistent with the overestimation of vertical mass fluxes and updraft velocities in kilometer-scale334

simulations (see Section ii).335

Average cloud water mixing ratios agree well across grid spacings with the exception of higher336

mixing ratios close to the surface in the∆x≤2 km runs (Supplementary Fig. 2). Average rain water337

mixing ratios are significantly larger between 2 km and 7 km height for ∆x≥500 m. The area with338

highest graupel mixing ratio around 6 km height is well simulated in simulations with ∆x≤4 km339

and is significantly lower in the∆x≤12 km runs. Simulations with 500 m≤∆x≤2 km overestimate340

graupel close to the surface. Snow mixing ratios in the anvil cloud (10 km to 15 km height)341

are similar in simulations with ∆x≤4 km but significantly larger in the ∆x=12 km simulation.342

Ice mixing ratios are small in the Thompson microphysics scheme [51] but are systematically343

overestimated in all simulations compared to the ∆x=250 m runs (Supplementary Fig. 2).344

(b) Grid Spacing Dependence of Climate Change Signals345

The second question that we asked in the introduction is how model∆x affects the climate change346

signals of MCS processes, which is addressed in this section. Therefore, we regrid all simulations347

to the common grid of the ∆x=12 km simulations and calculate ensemble mean climate change348

between the 10 member current and 10 member future idealized MCS ensembles. Statistics are349

calculated for each MCS case first and then averaged over the current and future ensemble using350

the ensemble spread to calculate statistical significance in future changes.351

(i) Extreme Precipitation Climate Change Signals352

Fig. 7a show the 99 percentile (P99; moderately intense precipitation of ∼10 mm−1) change of353

precipitation for accumulation periods ranging from 5-minutes to 3-hours, which represents354

moderate precipitation intensities. Most obvious is the large increase of P99 precipitation355

intensities in ∆x=12 km runs in future climates especially for short accumulation periods. In356

contrast, simulations with ∆x≤4 km do not show any noticeable change.357

Extreme rainfall rates (99.95 percentile; P99.95) are projected to increase in all simulations358

and across all accumulation periods (Fig. 7b). Again, much larger increases are simulated in the359

∆x=12 km runs compared to higher resolution models. Not using a deep convection scheme at360

∆x=12 km results in very strong increases across all accumulation periods. The ∆x=4 km runs361

produce very similar climate change signals compared to the ∆x=250 m simulations while the362

∆x=2 km and ∆x=1 km simulations project systematically ∼10 % higher extreme intensities for363

accumulations longer than one hour. This indicates that there are compensating errors in the364

∆x=4 km simulations that enhance the agreement of their climate change projections compared365

to large eddy simulations and that there is no simple convergence of climate change signals with366

decreasing grid spacing.367

Precipitation intensity dependent climate change signals of hourly accumulations also368

show good agreement between kilometer-scale and sub-kilometre-scale simulations for extreme369

intensities (Fig. 7c). Hourly precipitation intensification in these simulations is consistent with370

saturation vapor increases, which is approximately 6.5 % per degree warming according to the371

Clausius-Clapeyron (C–C) relationship [8]. Simulations with ∆x=12 km, in contrast, result in372

much higher extreme intensification that can exceed twice the C–C relationship particularly373

in the simulations without deep convection scheme. Changes in weak and moderate hourly374

precipitation intensities are more variable than extremes.375

Repeating the above analysis on the native model grid shows very similar extreme376

precipitation climate change signals (Supplementary Fig. 3). This confirms that extreme377

precipitation increases at approximately C–C rates in simulations with grid spacings ∆x≤4 km378

even when localized extremes are considered.379
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(ii) Vertical Mass Flux Climate Change Signals380

Average upward mass flux increases by ∼5 % below 7 km height and by more than 33 % above381

12 km in the ∆x=250 m simulations (Fig. 8a). This is consistent with the increase in CAPE at382

high altitudes in the inflow soundings (Fig. 2c) and generally deeper convection in the future383

climate (see next section). However, these changes are not significant due to the large variability in384

average mass flux in the current and future MCS ensemble. These changes are roughly captured385

in the ∆x≤4 km simulations whereas the ∆x=12 km runs simulate a large increase in upward386

mass flux close to the surface.387

Also average downward mass flux is increasing in the future ∆x=250 m MCSs with maxima388

at ∼5 km and above 16 km height. Simulations using ∆x between 500 m and 4 km capture this389

general pattern while the ∆x=12 km simulations show a large increase in downward mass flux390

close to the surface instead of the mid troposphere (Fig. 8b).391

(iii) Cold Pool and Cloud Top Climate Change Signals392

Cold pools systematically intensify under climate change and deepen by ∼5 % on average393

in the ∆x=250 m simulations (Fig. 9a). Cold pool depth changes are similar in kilometer-scale394

simulations but changes are negative in∆x=12 km runs that do not use a deep convection scheme.395

Peak cold pool intensities also intensify by about 8 % in the sub-kilometer scale simulations396

but kilometer-scale simulations show no change - except for the ∆x=4 km runs that show an397

intensification. The ∆x=12 km simulations show no systematic changes.398

Average cloud top heights do slightly increase under future conditions in sub-kilometer-399

scale simulations (Fig. 9c). However, kilometer-scale and the∆x=12 km simulations without deep400

convection scheme show a robust deepening of the cloud top by ∼700 m. Even stronger increases401

of ∼1,300 m are found in the ∆x=12 km that include the Kain-Fritsch deep convection scheme.402

A similar but less pronounced sensitivity is present for increases in the peak cloud top height403

(i.e., overshooting tops; Fig. 9c). Those increase by ∼550 m in the sub-kilometer and ∼800 m in the404

coarser resolution simulations.405

(iv) Microphysics Climate Change Signals406

Hydrometeor mixing ratios change significantly under warming due to changes in407

thermodynamics and dynamics of future MCSs (Fig. 10). There is consensus across grid spacings408

that cloud water mixing ratios will not change in the lowest 3 km but will increase above up409

to ∼10 km height (Fig. 10a). Increases in the mid troposphere are more systematic and intense410

in kilometer-scale models. A similar upward shift can be seen in rain water mixing ratio, which411

significantly increases above ∼9 km and close to the surface (Fig. 10b). This upward shift is mainly412

due to an increase in the freezing level height and a larger saturation mixing ratio in future413

climates allowing higher concentrations of liquid particles (partly super-cool droplets) at higher414

altitude.415

Large, but non-significant, grid spacing dependencies are shown for graupel mixing ratio416

showing much larger increases in low and mid levels in the ∆x=12 km simulations than in417

the higher resolution simulations (Fig. 10c). Particularly the sub-kilometer simulations feature418

a loss of graupel at lower levels, which is likely driven by enhanced melting [3]. A similar but419

more significant melting loss at mid-levels can be seen for snow mixing ratio across all grid420

spacings up to ∆x=4 km (Fig. 10d). Again, the ∆x=12 km runs show different characteristics with421

larger losses at higher levels and smaller increases in the anvil cloud. Ice mixing ratio show a422

clear transition from significant decreases below ∼11 km to increases above with decreases being423

fairly homogeneous across model resolutions while increases are larger at coarser grid spacings424

(Fig. 10e).425
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4. Summary and Conclusion426

We perform 10-member ensemble simulations of idealized MCSs under current and end-of-the-427

century climate conditions at six horizontal grid spacings (∆x) ranging from hydrostatic-sales428

(∆x=12 km) to large eddy simulation scales (∆x250 m). Several MCS bulk components such429

as MCS precipitation characteristics, cold pools, drafts, and anvil clouds are compared across430

model resolutions on a common 12 km grid. The goal is to investigate systematic differences and431

convergence behaviors in the current climate and the effect of model grid spacing on climate432

change signals. We decided to focus on mean and extreme aspects of MCSs rather than spatial433

structures since the latter depends strongly on the initialization of the MCS.434

Fig. 11 shows the main differences of MCS features as simulated with hydrostatic, non-435

hydrostatic, and large eddy grid spacings.436

The following conclusions summarize this paper:437

• There is a step improvement in simulating MCSs when increasing ∆x from hydrostatic438

(12 km) to non-hydrostatic (≤4 km) grid spacings. The ∆x=4 km simulations can439

reproduce most of the salient MCS features such as track, maximum precipitation, cold440

pool intensity, and cloud top temperatures from the ∆x=250 m runs within ±20 % at441

0.02 % of their computational costs and 0.4 % of their output volume. These results are442

in agreement with existing MCS literature [7,17,59].443

• Minor differences occur between simulations with ∆x=4 km and 1 km when compared444

on a common 12 km grid. Higher resolution simulations are able to simulate small-scale445

processes, such as up- and downdraft width and depth, more realistically [58] but this446

added value has only minor effects on MCS bulk processes.447

• A clear deficit of kilometer-scale models is an overestimation of draft velocities and448

convective mass flux of up to 30 % compared to the ∆x=250 m simulations. As a449

consequence, kilometer-scale models simulate ∼20 % higher peak rainfall rates and450

higher and cooler cloud tops. This is likely related to an underestimation of entrainment451

in kilometer-scale models due to under-resolved turbulent processes [4,27] and a452

misrepresentation of non-hydrostatic effects [59].453

• Recent studies show some benefits in not using deep convection schemes for models454

with ∆x>10 km [56]. We confirm these results and show clear advantages in the455

∆x=12 km simulations without deep convection schemes compared to the ones with deep456

convection schemes under current climate conditions (although large differences to the457

∆x≤4 km simulations still exist). The benefits of not using a deep convection scheme458

will likely decrease with increasing ∆x and key deficiencies (i.e., potential build up of459

large buoyancy) will start to dominate. Care should be taken since the absence of a deep460

convection scheme at ∆x=12 km results in much larger increases in vertical mass fluxes461

and extreme precipitation under future climate conditions.462

• Most important for climate modeling is that climate change signals in kilometer-scale463

simulations agree much better with ∆x=250 m simulations than those from ∆x=12 km464

runs. However, important differences such as a significant overestimation of extreme465

rainfall rates in 1 km and 2 km simulations remain, whereas the better agreement in 4 km466

simulations is likely due to compensating errors. The nature of these compensating errors467

and the development of scale aware parameterization schemes to mitigate systematic468

deficiencies in kilometer-scale models should be the focus of future research.469

The future MCS environmental conditions are based on simulations that use the pseudo global470

warming approach assuming that synoptic-scale weather patterns do not change systematically471

under global warming. We believe that this assumption does not change the main conclusions472

of this study since it is plausible that future intense MCSs will develop in similar environmental473

conditions as in the current climate (i.e., moderate wind shear and CAPE, high column average474

relative humidity, moderate to low CIN). The main differences are an increase in precipitable475

water, CAPE, and atmospheric stratification, which are captured in the PGW approach [25]. The476
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PGW approach might provide less reliable results for changes in MCS frequencies and shifts in477

their seasonality, which are not the focus in this study.478

A caveat of this study is the small sample size (10-current and future MCSs) complicates479

a robust assessment of climate change effects. Furthermore, results using more realistic MCS480

simulations might differ from idealized results since MCSs in the U.S. frequently develop along481

atmospheric boundaries (e.g., fronts, drylines) that affect the organization and evolution of482

MCSs [16]. Additionally, land-surface heterogeneities can affect the initiation and development483

of convection [41]. Both of these effects might reduce the sensitivity of MCSs to horizontal grid484

spacing since these features or heterogeneities provide external forcing that can be captured485

in kilometer-scale models. We also neglected the impact of radiation and planetary boundary486

layer effects in our idealized simulations. These effects are likely better represented at LES scales487

and might increase the sensitivity to horizontal grid spacing. Future research will address these488

open questions by simulating observed MCSs in the U.S. Southern Great Plains and the Amazon489

basin. Better understanding the impacts of environmental conditions and model resolution on490

simulating MCSs is important since the frontier of global-atmospheric modeling has reached491

kilometer scales [43,49].492
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Figure 1. Volume rendering of an example ∆x=250 m MCS cloud field and key MCS components. The vertical extent of

the MCS is stretched by a factor of 10.

Table 1. Setup of model simulations. Nx and Ny denote the grid cells in the longitude and latitude direction. All simulations

use the Thompson microphysics scheme [51], the Eta surface layer scheme [20], and have 95 vertical levels with 250 m

equal distance.

large eddy kilometer-scale hydrostatic
∆x 250 m 500 m 1 km 2 km 4 km 12 km 12 km C
Nx/Ny 2495/2495 1247/1247 623/623 311/311 155/155 51/51 51/51
∆t [s] 1 2 4 4 6 10 10
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Figure 2. Date (a), location (b), and characteristics (c–i) of current (blue) and future climate (red) MCS inflow soundings

that are used to initialize idealized simulations. Thin lines show the cumulative convective available potential energy

(cCAPE; c) and relative humidity (RH; d) of individual soundings, thick lines show the ensemble mean, and contours show

the ensemble interquartile spread. We show the mean air temperature difference between future and current climate

soundings (Tdiff.; e) as a black bold line and the interquartile range as a grey contour. Convective inhibition (CIN; f),

precipitable water (PW; g), bulk wind shear between the surface to 3 km (h) and 6 km height (i) are shown in histograms.

The significance of differences between the future and current inflow soundings is indicated by the two-sided p-values of

a Mann-Whitney rank test (P; f–i).
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Figure 3. Hourly precipitation accumulation (4:40 to 5:40 after simulation start) of an example MCS case under current

climate conditions showing the sensitivity to the model grid spacing from ∆x=12 km (left) to ∆x=250 m (right) (a–g).

Relative differences in MCS track distance (h), peak precipitation (i), movement speed (j), mean convective (k), and mean

stratiform precipitation intensity (l) between current climate MCSs compared to their ∆x=250 m counterpart. Five-minute

model output from mature MCSs (3-hours after initiation and before they reach the domain boundary) are considered.

(m) Spatial correlation coefficient of the MCS total precipitation (accumulated over hour three to seven) between coarser

simulations and their ∆x=250 m counterpart. Correlation coefficients are maximized by shifting the precipitation patterns

to reduce penalties due to spatial displacements. (h–m) Thick lines show the ensemble median, dashed lines the

25 percentile, and dotted lines the 75 percentile.
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Figure 4. MCS up- and downdraft characteristics dependence on horizontal grid spacing. (a–g) Vertical velocity at 5 km

height above surface for the same MCS case as in Fig. 3a–g 4 hours and 40 minutes after simulation start. Accumulated

current climate MCS wide upward (h) and downward (i) mass flux differences relative to the ∆x=250 m simulation based

on 5-minute output between hour-3 to hour-7 after simulation start. Up- (j and l) and downdraft (m and o) width (j and

m), depth (k and n), and mean velocity dependence on model horizontal grid spacing in current climate MCSs. Thick

lines show the ensemble median and dashed/dotted lines the 25/75 percentile. Box whisker plots show results from the

∆x=12 km simulations with deep convection parameterization. This analysis is performed on the native model grid.
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Figure 5. MCS cold pool characteristics dependence on horizontal grid spacing. (a–g) Cold pool intensity for the same

MCS case as in Fig. 3a–g 4 hours and 40 minutes after simulation start. The red contour line shows the part of the

coldpool that was used for the analysis in (h–j). Average cold pool depth (h), maximum intensity (i), and movement

speed (j) differences relative to the ∆x=250 m simulations. Thick lines in h–j show ensemble median differences and

dashed/dotted contours show the 25/75 percentile base on 5-minute model.
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Figure 6. (a–g) Cloud top temperatures for the same MCS case as in Fig. 3a–g 4 hours and 40 minutes after simulation

start. The red box shows the area of the MCS that is shown in Fig. 3–5a–g. Average (h) and maximum (i) cloud top height

differences relative to the∆x=250 m simulations. Thick lines in h,i show ensemble median differences and dashed/dotted

contours show the 25/75 percentile base on 5-minute model data one hour after simulation start.
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Figure 7. Extreme precipitation climate change signal dependence on horizontal grid spacing and accumulation period for

the ensemble mean of 99 (a) and 99.95 (b) percentile values (including zero precipitation). Hatched areas show significant

changes in the ensemble mean according to the Mann-Whitney test (α=0.1). (c) Average relative climate change signal

dependent on hourly precipitation intensity based on the ensemble mean hourly MCS precipitation during the hour with

peak precipitation (including zero precipitation).
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Figure 8. Ensemble mean MCS average up- (a) and down-draft (b) mass flux climate change signal dependence on

horizontal grid spacing and height above surface. Hatched areas show significant changes in the ensemble mean

according to the Mann-Whitney test (α=0.1).
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Figure 9. Ensemble climate change signals of mean cold pool depth (a), peak cold pool intensity (b), mean cloud top

height (c), and maximum cloud top height (b) depended on horizontal grid spacing. The thick lines show the median and

the thin dashed/dotted lines the 25/75 percentile spread of a 1000 member bootstrap sample with replacement.
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Figure 10. Ensemble mean hydrometeor mixing ratio climate change signals. Shown are results for in-cloud (particle

mixing ration > 0.1 g kg−1) mixing ratios for horizontal cloud fields larger than 7.200 km2 for cloud water (a), rain (b),

graupel (c), snow (d), and ice (e) for hour one to seven after simulation start. Hatching shows significant differences

(α=0.05) and contour lines show absolute differences (in g kg−1).



20

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
10.1098/rsta.2014.0049

..........................................................................

 
 
 
 
 
 
 
 
 
  

MCS Feature Hydrostatic | 𝚫x = 12 km Kilometer-Scale | 1 km ≤ 𝚫x ≤ 4 km Large Eddy Scale | 𝚫x = 250 M 

Precipitation Too localized; 
20 % -to 50 % too weak 

Hourly heavy precipitation patterns have converged; 
Average and peak precipitation is ~20 % too intense 

Patterns and peak intensities have converged; 
Stratiform precipitation rates have not converged 

Cold Pools ~20 % too weak ~5 % too weak on average; Maxima well captured Structures and intensities have converged 

Updrafts Plume-like (rising column of air) 
One draft that is very wide, deep, and 
100 % too intense on average 

Thermal-like (rising bubbles of air); 
Few thermals that are too wide, too deep, and  
10 % to 30 % too intense 

Many thermals with converged average depth and 
speed; 
Updraft width has not converged 

Downdrafts Very few drafts that are 130 % too 
deep, too wide, and 12 % too weak 

Few drafts that are too wide and 60 % to 130 % too deep;  
Average speed has converged 

Many drafts with not converged average width and 
depth 

Cloud Tops 1 °C too warm and ~300 m too low; 
Large parts of the anvil are missing 

1 °C too cold and up to ~200 m too high; 
Average extend has converged 

Cloud top temperature and height have not 
converged 

a) Hydrostatic 

   𝚫x=12 km 

b) Kilometer-Scale 

    𝚫x=4 km 

c) Large Eddy Scale 

    𝚫x=250 m 

Cloud Condensates Cold pool 

Updrafts Downdrafts 

Figure 11. MCS features as simulated with hydrostatic (a, ∆x=12 km), kilometer-scale (b, ∆x=4 km), and large eddy

scale (c, ∆x=250 m) horizontal grid spacing based on a representative example MCS. Shown are the cloud condensates

(grey shading), cold pools (violet; -0.005 m s−2), updrafts (orange; >3 m s−1), and downdrafts (blue; <-1.5 m s−1). The

vertical axis is stretched by a factor of 10. The table summarizes the main differences between features simulated by

hydrostatic and kilometer-scale runs compared to those in the large eddy simulations.
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