Stimulation of isoprene emissions and electron transport rates are a key mechanism of thermal tolerance in the tropical species *Vismia guianensis*

Running Title: Temperature, isoprene, and photochemistry

Tayana B. Rodrigues¹, Christopher R. Baker², Anthony P. Walker³, Nate McDowell⁴, Alistair Rogers⁵, Niro Higuchi¹, Jeffrey Q. Chambers¹,⁶, Kolby J. Jardine*¹,⁶

¹ Forest Management Laboratory, National Institute of Amazonian Research, Manaus, Amazonas, Brazil
² Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
³ Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
⁴ Earth System Analysis and Modeling, Pacific Northwest National Laboratory, Richland, WA, USA
⁵ Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
⁶ Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

*Author for correspondence:
Kolby Jardine
Tel: (510) 495-8231
Email: kjjardine@lbl.gov

<table>
<thead>
<tr>
<th>Total word count (excluding summary, references and legends):</th>
<th>6,661</th>
<th>N° of figures:</th>
<th>6 (all in color)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary:</td>
<td>285</td>
<td>N° of tables:</td>
<td>1</td>
</tr>
<tr>
<td>Introduction:</td>
<td>2,036</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material and Methods:</td>
<td>1,548</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results:</td>
<td>1,038</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discussion:</td>
<td>1,934</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>105</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

Tropical forests absorb large amounts of atmospheric CO$_2$ through photosynthesis, but high surface temperatures suppress this absorption while promoting isoprene emissions. While mechanistic isoprene emission models predict a tight coupling to photosynthetic electron transport (ETR) as a function of temperature, direct field observations of these phenomenon are lacking in the tropics and are necessary to assess the impact of a warming climate on global isoprene emissions. Here, we demonstrate that in the early successional species *Vismia guianensis* in the central Amazon, ETR rates increased with temperature in concert with isoprene emissions, even as stomatal conductance (g_s) and net photosynthetic carbon fixation (P_n) declined. We observed the highest temperatures of continually increasing isoprene emissions yet reported (50°C). While P_n showed an optimum value of 32.6 ± 0.4°C, isoprene emissions, ETR, and the oxidation state of PSII reaction centers (q_L) increased with leaf temperature with strong linear correlations for ETR ($p = 0.98$) and q_L ($p = 0.99$) with leaf isoprene emissions. In contrast, other photoprotective mechanisms, such as non-photochemical quenching (NPQ), were not activated at elevated temperatures. Inhibition of isoprenoid biosynthesis repressed P_n at high temperatures through a mechanism that was independent of stomatal closure. While extreme warming will decrease g_s and P_n in tropical species, our observations support a thermal tolerance mechanism where the maintenance of high photosynthetic capacity under extreme warming is assisted by the simultaneous stimulation of ETR and metabolic pathways that consume the direct products of ETR including photorespiration and the biosynthesis of thermoprotective isoprenoids. Our results confirm that models which link isoprene emissions to the rate of ETR hold true in tropical species and provide necessary “ground-truthing” for simulations of the large predicted increases in tropical isoprene emissions with climate warming.
1. Introduction

Tropical forests absorb large amounts of atmospheric CO$_2$, accounting for an estimated ~34% (42 Pg C yr$^{-1}$) of global terrestrial gross primary production (Beer et al., 2010). However, substantial decreases in tropical forest gross primary productivity have been repeatedly demonstrated in the Amazon basin during periodic widespread drought associated with high temperature (Potter et al., 2011; Liu et al., 2017). Therefore, the physiological mechanisms through which tropical forests respond to high temperature are critically important to understand. One such mechanism is the biosynthesis and emission of the volatile organic compound isoprene (C_5H_8), which can act as a thermotolerant and may be associated with stress protection at elevated temperatures (Jardine et al., 2017, Sharkey and Yeh 2001).

During photosynthesis, energy from absorbed light is dissipated by three processes: photochemistry, chlorophyll fluorescence, and thermal dissipation (measured as non-photochemical quenching, NPQ). The relative contribution of these three processes to total energy dissipation is highly sensitive to leaf temperature (Müller et al., 2001). Chlorophyll fluorescence is light emitted at wavelengths centered on 682 nm or 740 nm (Krause & Weis, 1984) and changes in fluorescence and derived photochemical parameters during high leaf temperatures have been widely used to provide insight into photochemical metabolism (Li et al., 2009). For example, variable chlorophyll fluorescence (Fv), is the difference between the maximum (Fm) and minimum fluorescence (Fo). Decreases in the ratio (Fv/Fm) of variable (Fv) to maximum (Fm) chlorophyll fluorescence have been widely used to demonstrate environmental stress effects on the quantum...
efficiency of Photosystem II (Murchie and Lawson 2013). During the 2015/2016 El Niño Amazon
drought, sun-induced fluorescence, a metric of gross primary productivity, was strongly
suppressed over areas with anomalously high temperatures and decreased levels of soil moisture
(Koren et al., 2018). Elevated leaf temperatures strongly enhance leaf-to-atmosphere vapor
pressure deficits which drives high leaf transpiration rates and reductions in plant water potentials.

To avoid excessive water loss and hydraulic failure, an afternoon reduction in stomatal
conductance \((g_s) \) is often observed, resulting in an afternoon depression of \(P_n \) during warm
afternoons (Koch et al., 1994; Chambers & Silver, 2004). In the Tapajos National Forest in east-
central Amazon, a corresponding mid-day and post mid-day depression in net ecosystem exchange
of CO\(_2\) was regularly observed using eddy covariance (Piedade et al., 1994; Goulden et al., 2004).

It has been hypothesized that reductions in \(P_n \) at high leaf temperatures in tropical species,
are mainly associated with reductions in \(g_s \) rather than direct negative temperature effects on
photosynthetic electron transport, or the light-independent reactions of photosynthesis (Lloyd &
Farquhar, 2008). However, few experimental observations in the tropics have evaluated these
hypotheses, especially in early successional species that tend to show high rates of \(P_n \). The
Neotropical early successional genera *Vismia* dominates large rainforest disturbance gaps in the
Amazon Basin (Chambers et al., 2009) where it helps accelerate the regeneration of secondary
forests by influencing forest successional pathways (Uhl et al., 1988; Zalamea & González, 2008;
Brienen et al., 2015). The establishment of early successional genera in secondary forests is related
to their ability to maintain high \(P_n \) and growth under conditions of full sunlight and high leaf
temperatures characteristic of tropical landscapes impacted by natural (Chambers et al., 2009) and
human (Mesquita et al., 2015) disturbances. *Vismia* leaves show high rates of isoprene emissions
(Jardine et al., 2016), which is hypothesized to play an important role in thermotolerance of
photosynthesis (Singsaas et al., 1997; Sharkey et al., 2001; Sharkey, 2005; Sasaki et al., 2007). As previously reviewed (Harley et al., 1999), stimulation of isoprene production by high irradiance and warm temperatures is consistent with physiological evidence of a role in ameliorating stresses associated with warm and high-light environments.

Plants utilize the products of both the light (ATP and NADPH) and light-independent reactions of photosynthesis to synthesize a number of photosynthetic components and defense compounds via the isoprenoid pathway in chloroplasts (Lichtenthaler, 1987; Affek & Yakir, 2003). Tropical ecosystems are recognized as the largest source of isoprene emissions to the atmosphere, representing roughly half of the estimated global annual emissions of 440-660 Tg C yr\(^{-1}\) (Guenther et al., 2006). Isoprene biosynthesis begins with the initial condensation of pyruvate and glyceraldehyde-3-phosphate derived from the Calvin-Benson-Bassham cycle (Silver & Fall, 1995). Leaf isoprene emissions are strongly stimulated by temperature (Duncan et al., 2009) with global emission models predicting future increases in tropical forest isoprene emissions and their corresponding impacts on atmospheric chemistry and climate including altering the dynamics and lifetimes of atmospheric oxidants, secondary organic aerosols, and cloud condensation nuclei (Pacifico et al., 2009). Isoprene emissions from terrestrial plants are completely dependent on illumination (Sanadze, 1991), including tropical trees (Jardine et al., 2014), consistent with the view that the isoprenoid pathway is completely dependent on photosynthetic electron transport (Lantz et al., 2019).

While the mechanisms of isoprene thermotolerance are under investigation, recent literature suggests that isoprene and other isoprenoids protect photosynthesis during abiotic stress by minimizing oxidative damage through a number of mechanisms including: physical stabilization of photosynthetic membranes, the consumption of photosynthetic energy and
reducing equivalents, direct antioxidant reactions (e.g. between isoprene and reactive oxygen species including fatty acid peroxyl radicals), and potent phytohormone signaling properties of isoprene including oxidation products methyl vinyl ketone and methacrolein which activate defense gene expression (Singsaas et al., 1997; Velikova et al., 2008; Vickers et al., 2009a, 2009b; Karl et al., 2010; Jardine et al., 2012; Morfopoulos et al., 2014, Junker-Frohn et al., 2019, Zuo et al., 2019). For example, in Populus nigra and Phragmites australis leaves exposed to oxidative stress, reduced damage to photosynthesis, accumulation of H$_2$O$_2$, and membrane denaturation was attributed, in part, to isoprene production (Velikova et al., 2008). However, there is limited evidence for the occurrence of these mechanisms in the tropics where field data are scarce.

Leaf isoprene emissions are generally assumed to account for 1–2% of P_n at leaf temperatures below the optimum for P_n, but have been reported to represent 10% of P_n or higher at temperatures above the optimum (Harley et al., 1996). While P_n in tropical trees generally have an optimum leaf temperature between 28 - 32°C, emissions of isoprene at the leaf level have been consistently shown to continue to increase up to 40°C or beyond (Alves et al., 2014; Jardine et al., 2014, 2017a). Observations at ecosystem scales in the tropics observed the highest isoprenoid emission fluxes during the hottest period of the day (12:00h–14:00h) when g_s and P_n are reduced (Karl et al., 2009; Jardine et al., 2011, 2017a). Therefore, the increasing importance of isoprene emissions to plant carbon budgets under high temperatures is recognized as a consequence of both the stimulation of isoprene emissions and the suppression of P_n (Monson et al., 1992). 13CO$_2$ labeling revealed that under optimal conditions of P_n, 70 - 90% of the carbon used for isoprene synthesis is produced from recently assimilated atmospheric CO$_2$ (Delwiche & Sharkey, 1993; Affek & Yakir, 2003). In contrast, under high leaf temperatures and drought conditions where P_n is suppressed, isoprene carbon sources have been shown to increasingly derive from previously
assimilated or stored carbon (Funk et al., 2004). While a number of extrachloroplastic metabolites have been considered as ‘alternate’ carbon including pyruvate, glucose, acetate, and the C₁ pathway (Jardine et al., 2010, 2017b; Kreuzwieser et al., 2002, de Souza et al., 2018), evidence using ¹³C-labeled photorespiratory intermediates and CO₂-free atmospheres suggest that re-assimilation of internal plant sources of CO₂ like photorespiration, respiration, and xylem-transported CO₂ may help explain this ‘alternate’ carbon source for isoprene and contribute to the suppression of \(P_n \) at high temperatures (Jardine et al., 2014, 2017a; Garcia et al., 2019; Guidolotti et al., 2019). This is consistent with the recent observation that the majority of xylem-transported CO₂ is re-assimilated in illuminated leaves (Stutz & Hanson, 2019).

In addition to strong uncoupling between isoprene emissions and \(P_n \) at high temperature, elevated CO₂ has been widely reported to stimulate \(P_n \) while suppressing isoprene emissions (Loreto & Sharkey, 1993). While various mechanisms including a key role of extrachloroplastic intermediates have been discussed in the literature, recent evidence suggests that the elevated CO₂ effect is largely driven by a limited supply of energetic and reductive equivalents for isoprenoid biosynthesis generated by the photochemical phase of photosynthesis (Rasulov et al., 2009, 2018; Morfopoulos et al., 2014). In 2002, strong positive correlations was first described between foliage isoprenoid emissions and photosynthetic electron transport rates (ETR) in the Mediterranean trees Quercus coccifera and Q. ilex (Niinemets et al., 2002a) and an early model was developed discussing light-dependent NADPH limitation of isoprenoid leaf emissions (Niinemets et al., 2002b). Following these initial discoveries and developments, positive linear correlation between ETR and isoprene emissions were observed at elevated CO₂ mixing ratios in both Quercus pubescens and Quercus ilex (Rapparini et al., 2004), and later a model was developed showing NADPH limitation of isoprene emissions under different light, leaf intercellular CO₂
concentrations (C_i) and temperature conditions (Morfopoulos et al., 2013). A similar model was then used to explain how the elevated CO$_2$ enhancement of P_n, but suppression of isoprene emission, is driven by a limited supply of NADPH for isoprenoid biosynthesis (Morfopoulos et al., 2014), and these mechanisms were extended to include drought effects where increased isoprene emissions are maintained due to the increased ratio of ETR to P_n (Dani et al., 2015).

Using post-illumination isoprene bursts to estimate the pool size of the isoprene precursor dimethylallyl diphosphate (DMADP) in oak (Quercus robur) and poplar (Populus deltoides) leaves, DMADP was observed to increase with temperature up to 35°C (Li et al., 2011). ETRs in many plants generally demonstrate higher optimum leaf temperatures than P_n under current atmospheric CO$_2$ concentrations (Ishida & Toma, 1999; Himalayan & Tech, 2005; Sage & Kubien, 2007) and isoprene energetic models predict a temperature optimum of isoprene emissions that closely follows the temperature optimum of ETR (a temperature optimum higher than P_n but lower than that of isoprene synthase activity) (Morfopoulos et al., 2013). Thus, there is considerable evidence that the rate-limiting steps for isoprenoid biosynthesis in vivo depends on the availability of NADPH and ATP in the chloroplast, the direct products of ETR (Rasulov et al., 2009, 2018).

Unfortunately, studies with parallel measurements of ETR and isoprene emissions as a function of temperature are relatively rare and experimental data on abundant tropical species at high temperature is lacking.

Here we hypothesize that in early successional tropical species high temperatures will be associated with an enhanced rate of production of the energetic and reductive equivalents necessary for isoprenoid biosynthesis and generated by the photochemical phase of photosynthesis. Thus, in spite of reduced P_n at high temperatures, ETR will continue to increase at elevated temperatures together with high isoprenoid biosynthesis rates and other chloroplastic
NADPH/ATP consuming pathways such as photorespiration (Voss et al., 2013), thereby limiting rates of NPQ at high temperatures. We also hypothesize that inhibition of isoprenoid biosynthesis would reduce \(P_n \) at high temperatures both due to the direct loss of the thermoprotective role of isoprene as well as the potential antioxidant and signaling roles of isoprene. We test these hypotheses by quantifying the suppression of \(P_n \) and \(g_s \) at high leaf temperatures together with changes in photochemical parameters of photosynthesis and isoprene emissions in the fast growing early successional species *Vismia guianensis* (Aubl.) Pers in the central Amazon. We combine gas exchange during leaf temperature response curves with chlorophyll fluorescence and isoprene emissions, and therefore simultaneously characterize the temperature sensitivities of \(P_n \), \(g_s \), isoprene emissions, and key parameters of the photochemical reactions of photosynthesis including ETR, non-photochemical quenching (NPQ), the oxidation state of PSII reaction centers (\(q_L \)), and the maximum quantum efficiency of PSII in the dark (\(Fv/Fm \)) and light (\(Fv'/Fm' \)).

Further, by delivering a specific inhibitor of the isoprenoid pathway (fosmidomycin) to detached *V. guianensis* branches, we evaluate the impact of blocking isoprenoid production on \(P_n \) at high leaf temperatures. We discuss the results in terms of thermotolerance mechanisms in tropical plants including the role of isoprene may have in supporting the upregulation of ETR rather than NPQ at high leaf temperatures. Finally, we discuss the implications for modeling of future isoprene emissions from tropical forests and interpretation of remote sensing studies tracking seasonal patterns in regional isoprene emissions, gross primary productivity, and canopy temperature.

2. Materials and Methods

2.1 Site description
Coupled gas-exchange and chlorophyll fluorescence measurements were carried out on three individuals of *V. guianensis* (Aubl.) Pers., an early successional tree species from the Hypericaceae family. Four *V. guianensis* individuals were studied in the Reserva Biológica do Cuieiras (ZF2), a primary rainforest biological reserve located approximately 60 km northwest of Manaus, in the central Amazon Basin, Brazil (Higuchi et al., 1998). The *V. guianensis* individuals ranged between 1.6 m and 2.0 m in height and were exposed to full sunlight conditions throughout a large part of the day due to their presence in gap associated with the site access road.

2.2 Gas exchange data

The coupled leaf isoprene emissions, gas exchange, and chlorophyll fluorescence field measurements were made during October 2017 and April, May, June, July, and August of 2018. For each of the four *V. guianensis* individuals, 2-8 leaf temperature response curves were conducted between 7:00-15:00 (23 total response curves, 1-3 per day). All leaves selected for study were dark green and considered developmentally and physiologically mature, with no obvious visual problems and little herbivory. Previous research has shown that mature *V. guianensis* leaves in the central Amazon showed substantially higher rates of P_n, isoprene emissions, and g_s under standard environmental conditions than young, rapidly expanding light green leaves (Jardine et al., 2016).

Gas exchange responses to leaf temperature for *V. guianensis* leaves were collected in the field using a portable photosynthesis system with a 2 cm2 leaf fluorescence chamber (6400XT, Licor Biosciences) adapted for the collection of isoprene emissions by the diversion of a fraction (100 ml min$^{-1}$) of the air sample leaving the leaf chamber through a clean thermal desorption tube packed with Quartzwool, Tenax TA and Carbograph 5TD adsorbents (Markes International) for 10 min using a hand-held pump (APEX, Casella, USA) (Jardine et al., 2015b). Each leaf placed in
the chamber was maintained under constant photosynthetically active radiation (PAR) of 0 µmol m\(^{-2}\) s\(^{-1}\) for the dark temperature response curve. In a previous study at constant leaf temperature (30°C) we showed that during both the wet and dry seasons, developmentally and physiologically mature \textit{V. guianensis} leaves reached light saturation of \(P_n\) at PAR fluxes between 750-1000 µmol m\(^{-2}\) s\(^{-1}\) (Jardine \textit{et al.}, 2016). Thus, we chose to conduct all leaf temperature response curves in the wet and dry seasons under the standard PAR flux of 1000 µmol m\(^{-2}\) s\(^{-1}\), which also facilitates future modeling studies requiring the standard isoprene emission potential parameter, defined as the emissions under 30°C and 1000 µmol m\(^{-2}\) s\(^{-1}\) PAR. Throughout temperature response curves in the dark and light, the reference CO\(_2\) concentration was maintained at 400 ppm, and air flow rate entering the leaf chamber was held constant at 400 µmol s\(^{-1}\). Once the leaf was placed in the chamber at 0 µmol m\(^{-2}\) s\(^{-1}\) PAR, a black cloth was used to cover the chamber. Following a 15 min period of leaf dark adaption, the dark leaf temperature response curve was initiated to demonstrate the lack of isoprene emissions in the dark and to acquire the dark parameters of chlorophyll fluorescence. Following the completion of the dark temperature response curve, the black cloth was removed, the PAR was set at 1000 µmol m\(^{-2}\) s\(^{-1}\). Following a period of light adaptation required to reach steady state gas exchange (10-40 min), the temperature response curve of the illuminated leaf was initiated. Leaf temperature response curves were generated by setting the block temperature to 25, 27.5, 30.0, 32.5, 35, 37.5, 40, and 42.5 ºC, sequentially. The leaf temperature was directly measured using a leaf thermocouple mounted inside the leaf chamber.

2.3 Chlorophyll Fluorescence

For all leaves studied during October 2017 and April, May, June, July, and August of 2018, a leaf chamber fluorimeter (LCF 6400-40, Licor Biosciences) was used to simultaneously quantify leaf gas exchange and chlorophyll fluorescence. The fluorimeter was unavailable during the
isoprenoid inhibition experiments which occurred earlier during the July 2017 (see section 2.5).

Following leaf acclimation to each successive temperature increase, an actinic light pulse of 7,000 μmol m⁻² s⁻¹ (10% blue light and 90% red light), modulated at 20 KHz, was applied for 1 sec and the average chlorophyll fluorescence signal was recorded. The average chlorophyll fluorescence signal at each leaf temperature was used to determine minimum fluorescence (Fo), maximum fluorescence (Fm), and steady-state fluorescence (Fs). Derived photochemical parameters at each leaf temperature were calculated according to Eqs. 1-5 where derived parameters with prime, for example Fo’, are values related to the data in the light and those with no prime corresponding to data from the dark adapted leaf (Baker & Rosenqvist, 2004).

The electron transport rate (ETR, μmol e⁻·m⁻²·s⁻¹) was calculated according to Eq. 1, where f is the fraction of the quantum absorbed and used by Photosystem II, with a value of 0.5 used for C₃ plants (Earl & Tollenaar, 1998), PAR is incident photon flux density, and α_leaf is leaf absorbance (0.87).

\[
\text{ETR} = \left(\frac{F_m' - F_s}{F_m'} \right) f \cdot \text{PAR} \cdot \alpha_{\text{leaf}}
\]

The redox state of QA, the primary electron accepter of PSII, was determined by quantification of the photochemical extinction coefficient (q_L) according to Eq. 2. q_L is an estimate of the average oxidation level of PSII reaction centers, which is a measure of the fraction of QA in an oxidized state (Kramer & Johnson, 2004). Thus, an increase in q_L indicates that average oxidation level of PSII increased to support, for example, an upregulation of ETR, NADPH/ATP production, and isoprenoid biosynthesis.

\[
q_L = \frac{\frac{1}{F_s} - \frac{1}{F_o'}}{\frac{1}{F_o'} - \frac{1}{F_s}}
\]

Photon capture efficiency of photosynthetic reaction centers in the light was estimated according to Eq. 3.
Eq. 3. Maximum quantum efficiency of PSII photochemistry of dark adapted leaves: \(\frac{F_v}{F_m} \), and light adapted leaves: \(\frac{F'_v}{F'_m} \).

Finally, we estimated non-photochemical quenching (NPQ) according to Eq. 4.

Eq. 4. \(NPQ = \frac{F_m - F'_m}{F'_m} \)

Immediately following the chlorophyll fluorescence measurements, isoprene emissions were collected on a single thermal desorption tube for 10 minutes while gas exchange data were logged simultaneously on the Li6400XT.

2.4 Leaf isoprene emissions

Following sample collection in the field, the thermal desorption tubes were transported to the laboratory in Manaus, Brazil, for the analysis of adsorbed isoprene using an automated thermal desorption system (TD-100, Thermal Desorber, Markes International, UK) coupled to a gas chromatograph (series 7890A, Agilent Technologies, USA) and mass spectrometer (Agilent ChemStation, Agilent Technologies, USA) (TD-GC-MS) installed at the National Research Institute of the Amazon (INPA) (Jardine et al., 2015a). The system was calibrated for isoprene using m/z 67 as the most abundant ion formed during electron impact ionization as previously described (Jardine et al., 2016). The average leaf isoprene emission rate (nmol m\(^{-2}\) s\(^{-1}\)) at each leaf temperature was calculated according to Eq. 6 where PA67 is the GC-MS peak area at the retention time for isoprene (ion counts of m/z 67 x min), Cal is the calibration factor determined for isoprene (10\(^{-6}\) nL isoprene/peak area), F is the flow rate of air into the leaf chamber (400 \(\mu\)mol s\(^{-1}\)), 10\(^{-6}\) is the factor used to convert \(\mu\)moles to moles, Leaf\(\text{Area}\) is the leaf area enclosed in the chamber of 0.0002 m\(^2\), and Volume is the total volume of air that passed through the thermal desorption tube (1.0 L).
Eq. 6. Isoprene emission = \(PA67 \times Cal \times F \times 10^{-6}/(Leaf_{Area} \times Volume) \)

2.5 Inhibition of the isoprenoid pathway with fosmidomycin

In a separate experiment during July and August of 2017, we inhibited the production of leaf isoprene in *V. guianensis*, by feeding excised branches with 12.5 mM fosmidomycin. Branches were cut between 8:00h-8:30h and then immediately recut under either water (control, 4 branches, 1 branch per individual) or the fosmidomycin solution (3 branches, 1 branch per individual) and allowed to transpire for 1h in full sunlight in order to ensure delivery of the inhibitor to the leaves. Previous work has shown that a low concentration of fosmidomycin (4 \(\mu \)M) delivered to leaves of mid-latitude species was sufficient to inhibit leaf isoprene emissions (Sharkey & Yeh, 2001). However, in our study we found that 12.5 mM fosmidomycin solution was required to completely inhibit production of leaf isoprene in *V. guianensis*. Following inhibitor uptake, the temperature response curves of gas exchange and isoprene emissions were measured as described above with the exception that we used the standard 6 cm\(^2\) leaf chamber with red and blue LED light source (6400-02B, Licor Biosciences, USA). Note that in the inhibitor experiments with detached branches, we were able to achieve higher leaf temperatures due to direct solar heating of the chamber because of cloud free conditions during the 2017 dry season.

2.6 Statistical Analysis

Statistical analysis of the 23 leaf temperature response curves included calculating the mean and confidence interval (± 2 standard deviation) of the leaf temperature, gas exchange characteristics (e.g. \(P_n \) and \(g_s \)), photochemical characteristics (e.g. ETR, qL, Fv’/Fm’, and NPQ), and isoprene emissions at each block temperature. Pearson product-moment correlation coefficients were determined between each possible pair of mean gas exchange and photochemical variables together with mean isoprene emissions (Table 1). Linear coefficients of determination
(R²) and the equations were determined during regression analysis between isoprene emissions and the photochemical parameters ETR and qL.

For the isoprenoid inhibitor experiments where gas exchange and isoprene emissions were collected from 4 water-fed control branches and 3 inhibitor-fed branches, the mean and confidence interval (± 2 standard deviation) calculations were made as a function of leaf temperature for \(P_n \), \(g_s \), \(C_i \), and isoprene emissions.

3. Results

3.1 Gas exchange and photochemical parameters

Figures 1-2 show mean (± 2 standard deviations) gas exchange and photochemical parameters as a function of mean leaf temperature. As leaf temperature increased from the lowest value of 26.7 ± 0.5°C to 32.6 ± 0.4°C, net photosynthesis (\(P_n \)) and transpiration (E) were stimulated to maximum values of 10.2 ± 1.1 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) and 3.9 +/- 0.5 mmol m\(^{-2}\) s\(^{-1}\), respectively. As leaf temperatures continued to increase from 32.6 ± 0.4 °C to the highest value (38.3 ± 0.4°C), \(P_n \) decreased by 16% and reached a minimum of 8.6 ± 1.9 \(\mu \text{mol m}^{-2} \text{s}^{-1} \), while E decreased by 21% to 3.1 +/- 0.9 mmol m\(^{-2}\) s\(^{-1}\). In contrast, \(g_s \) continuously decreased as leaf temperature increased. At the lowest leaf temperature of 26.7 ± 0.5°C, \(g_s \) was at a maximum value of 0.21 ± 0.05 mol m\(^{-2}\) s\(^{-1}\), while at 38.3 ± 0.4°C, \(g_s \) reached a minimum value of 0.09 ± 0.04 mmol m\(^{-2}\) s\(^{-1}\), representing a 57% decline. Similarly, intracellular CO\(_2\) (\(C_i \)) levels decreased linearly with leaf temperature, which is consistent with the decline in \(P_n \) being driven by the reduction in \(g_s \) as opposed to a decline in photosynthetic capacity (Fig. 1).

Together with isoprene emissions, two of the photochemical parameters (ETR and qL) associated with the light reactions of photosynthesis (Fig. 2) were strongly stimulated by increasing temperatures with no sign of saturation or decline. A minimum ETR value of 123.1 ±
24.5 \mu\text{mol e}^{-}\text{m}^{-2}\text{s}^{-1} occurred at the lowest leaf temperature (26.7 ± 0.5°C) and continuously increased with leaf temperature to reach a maximum value of 189.4 ± 34.2 \mu\text{mol e}^{-}\text{m}^{-2}\text{s}^{-1} at the highest leaf temperature (38.3 ± 0.4°C), representing a 54% increase. Similarly, over the same temperature range, q_L increased by 39% from 0.39 ± 0.06 at the lowest leaf temperature to 0.54 ± 0.05 at the highest leaf temperature, demonstrating that the average oxidation level of PSII increased consistently as leaf temperature increased. Together with these photochemical parameters, leaf isoprene emissions were strongly stimulated by increases in leaf temperature by 490% over the temperature range studied. Isoprene emissions were at a minimum of 6.1 ± 1.9 nmol m^{-2}s^{-1} at the lowest leaf temperature and increased to maximum emission rate of 29.9 ± 3.8 nmol m^{-2}s^{-1} at the highest leaf temperature. In contrast, NPQ was variable and did not show any clear trend with leaf temperature; NPQ was 1.17 ± 0.60 at the lowest leaf temperature and 1.32 ± 0.81 at the highest leaf temperature (Fig. 2). In addition, Fv'/Fm' remained stable as leaf temperatures increased with a variation of less than 1%, with a value of 0.57 ± 0.02 at the lowest leaf temperature and 0.58 ± 0.05 at the highest leaf temperature (supplementary data, figure S1).

As summarized in Table 1, strong positive correlations (indicated with Pearson's product-moment correlation coefficient, r) were observed between leaf isoprene emissions and q_L and ETR. Across the leaf temperature response curves, mean isoprene emissions were nearly perfectly linearly correlated with mean values of ETR (r = 0.98) and q_L (r = 0.99). In contrast, leaf isoprene emissions were strongly negatively correlated with g_s (r = -0.97) and C_i (r = -0.97). Following regression analysis, linear equations and coefficients of determination (R^2) were determined between isoprene emissions and the photochemical parameters ETR (\mu\text{mol e}^{-}\text{m}^{-2}\text{s}^{-1}) and q_L as follows:

\textbf{Eq.7.} Isoprene emissions = (0.37 ± 0.03) ETR - 49.1 ± 4.19 (R^2 = 0.97)
377 Eq. 8. Isoprene emissions = (126.26 ± 6.57) q_L + 38.875 ± 2.89 (R^2 = 0.98)

378 3.2 Isoprene inhibitor studies

379 In order to test whether the isoprenoid pathway is necessary to maintain high photosynthetic rates at elevated temperatures, we applied the isoprenoid biosynthesis inhibitor fosmidomycin to detached branches as a solution delivered to leaves via the transpiration stream.

380 Fosmidomycin application resulted in the complete loss of isoprene emissions at all leaf temperatures (Fig. 3a). In contrast, under water fed control branches, leaf isoprene emission continued to be stimulated through the highest leaf temperatures achievable (47.9 ± 2.0°C). It should be noted, that because the inhibitor experiments occurred during the dry season with greatly reduced cloud cover, the maximum leaf temperatures achievable were much higher than in the chlorophyll florescence experiments (Figs. 1-2), which occurred during the wet season with a greater degree of cloud cover. Fosmidomycin treated branches showed reduced g_s relative to water fed controls (Fig. 3d). This reduction of g_s caused a temperature independent reduction in P_n in the fosmidomycin treated leaves, reducing the values by up to 40% relative to the water fed control (Fig. 3b). However, for both water fed control and fosmidomycin treated leaves, both g_s and P_n reached steady state at each temperature throughout the leaf temperature response curve. Moreover, clear temperature dependent trends can be discerned from this dataset. For instance, at the lowest leaf temperature (25.4 ± 1.2°C), mean P_n of fosmidomycin fed branches decreased by 64% relative to water controls (14.3 ± 3.8 μmol m^{-2} s^{-1} under water versus 5.2 ± 1.1 μmol m^{-2} s^{-1} under fosmidomycin), while at the highest leaf temperature studied (47.9 ± 2.0°C) mean P_n of fosmidomycin fed branches decreased by 82.8% relative to water controls (8.7 ± 1.5 μmol m^{-2} s^{-1} versus 1.5 ±1.1 μmol m^{-2} s^{-1} under fosmidomycin). Intercellular CO₂ concentrations (C_i, Fig. 3c) were similar between the fosmidomycin fed branches and the water fed controls at low leaf
temperatures, however, they diverged at leaf temperatures above 32.5°C. Above these leaf
temperatures, C_i values of fosmidomycin fed branches were higher than water fed controls in spite
of the low g_s values, consistent with reduced photosynthetic capacity (Fig. 3b). Finally, when P_n
was normalized by g_s, the temperature dependent effect of the inhibitor on photosynthesis can be
clearly observed (P_n/g_s, Fig. 4). At low temperatures, P_n/g_s was indistinguishable between the
water fed control branches and the fosmidomycin fed branches (25.4 ± 1.2°C). At high
temperatures, P_n/g_s was lower in the fosmidomycin fed branches relative to the water fed controls
as leaf temperature increased. The largest reduction in P_n/g_s was observed at the highest leaf
temperature (47.9 ± 2.0°C) where P_n/g_s was reduced by 35.8%. Thus, by inhibiting isoprenoid
biosynthesis, photosynthetic capacity is reduced at high temperatures in *V. guianensis*.

4. Discussion

Current mechanistic isoprene emission models predict that high temperatures are associated with
an enhanced rate of the production of the energetic and reductive equivalents necessary for
isoprenoid biosynthesis generated by the photochemical phase of photosynthesis. However, even
though tropical forests are the largest global source of isoprene in the atmosphere, whether the link
between high ETR and isoprene emission is valid in tropical trees had not been tested. We lacked
a quantitative assessment of the relationship between ETR and isoprene emissions in the tropics.

Using coupled gas exchange, chlorophyll fluorescence, and isoprene emission observations
during controlled leaf temperature response curves of *V. guianensis*, an early successional species
in the central Amazon, we provide evidence that temperature induced stimulation of isoprene
emissions is tightly correlated with ETR and q_L, both of which indicate a stimulation in the rate of
light-dependent NADPH and ATP production in the chloroplast (Niinemets *et al.*, 2002a,b). We
observed this strong temperature stimulation, and a near perfect coupling between isoprene
emissions and ETR and q_L, despite a decline in g_s and P_n at high temperatures. The high temperatures did not alter the maximum photochemical efficiency of PSII as demonstrated by a near constant Fv'/Fm' (supplementary data, figure S1) value of 0.57 over the range of the entire leaf temperature measurement regime, nor were other photoprotective mechanisms, such as NPQ, induced under these conditions. Assisted by solar heating of the leaf chamber during the Amazon dry season, leaf temperatures during controlled temperature response curves reached values up to 50°C with isoprene emissions continuing to increase (see Fig. 3). Thus, rather than scaling down the photochemical reactions of photosynthesis at high temperatures and increasing NPQ rates, the photochemical reactions of *V. guianensis* leaves continue to increase likely through a tight coupling to increased demand by non-CO$_2$ consuming metabolic pathways for photochemically generated NADPH and/or ATP at high temperatures. This provides direct evidence that suppression of P_n at high leaf temperatures in the tropics is mainly associated with reductions in g_s rather than direct negative temperature effects on photosynthesis itself (Lloyd & Farquhar, 2008) and is consistent with a previous study that observed a negative correlation between isoprene emissions and NPQ (Pollastri *et al*., 2014). Recently, isoprene photoprotection of photosynthesis has been described through mechanisms alternative to NPQ, enabling plants to maintain a high photosynthetic rates at rising temperatures by maintaining PSII and thylakoid membrane stability (Pollastri *et al*., 2019).

Notably, our results with *V. guianensis* stand in contrast to other studies including field-grown cotton plants (a non-isoprene emitter) in North America, which regularly experience temperatures of 40°C or higher during the growing season. It has been reported that components of the photosynthetic apparatus in cotton leaves experience damage at high temperatures (35–42°C) (Wise *et al*., 2004). In a study carried out with the tropical tree *Inga edulis* in the central
Amazon (an isoprene emitter), it was observed that the rate of ETR declined after reaching 28-36°C (Mendes et al., 2017). Similar results were found in four species in a Malaysian rainforest, where ETR declined after reaching a 35°C (Kitao et al., 2000) and in a rainforest in Rwanda where three species showed a decrease in ETR at leaf temperatures beyond 30°C and other three species showed ETR declines above 35-37°C (Vårhammar et al., 2015). As isoprene emissions were not quantified in these studies, further studies are needed to determine if the continuous stimulation of ETR and isoprene emissions to extreme leaf temperatures is a unique functional trait characteristic of *V. guianensis*, or also a common occurrence in other early and late successional species in the tropics that are regularly exposed to full sun and extreme daytime temperatures.

While the atmospheric roles of isoprene have been extensively investigated (Grosjean et al., 1993), much less is known about its biological roles including potential direct and indirect impacts on the terrestrial carbon cycle during climate warming. Directly, leaf isoprene emissions to the atmosphere represent a small (e.g. 5% at a leaf temperature of 50°C, Fig. 3), but potentially important loss of carbon from tropical forests as surface temperatures increase (Harley et al., 1996). In addition to this direct impact on the carbon cycle through a loss of ecosystem carbon, our results are consistent with a secondary effect; isoprene production at high temperatures may minimize the suppression in P_n during high temperature extremes, and improve recovery rates once more favorable temperatures are encountered (Sharkey et al., 2001). This is supported by the observations that blocking the isoprenoid pathway with fosmidomycin in *V. guianensis* repressed P_n at high temperatures through a mechanism that was independent of stomatal closure (Figs. 3-4). Whether this is a consequence of the direct thermoprotective and signaling effects of isoprene itself or other isoprenoid intermediates and products, or the loss of a major chloroplastic NADPH and ATP consuming pathway at high temperatures will be a focus of future work. Although
fosmidomycin is considered highly specific and does not directly inhibit photosynthesis (Sharkey et al., 2001), it has been shown to rapidly (with 1 hour) reduce P_n, PSII chlorophyll fluorescence, V_{cmax} (the maximum rate of Ribulose-1,5-bisphosphate carboxylase activity) and J_{max} (the maximum rate of photosynthetic electron transport) (Possell et al., 2010). Thus, care should be taken in attributing these effects solely to a lack of isoprene as fosmidomycin negatively impacts the synthesis of numerous other isoprenoids involved in photosynthesis resulting in photoinhibition and photo-damage (Possell et al., 2010). However, that the direct inhibition of photosynthetic capacity with fosmidomycin in this experiment was only observed at temperatures well in excess of the optimum P_n temperature is consistent with the role of isoprene in maintaining high photosynthetic capacity under thermal stress conditions in tropical species. A recent literature survey of tropical plants reported that maximum temperatures for $P_n \sim 1.8^\circ C$ higher for isoprene-emitting species than for non-emitters, and thermal response curves were 24% wider (Taylor et al., 2019). Consistent with a significant impact on the ability of tropical forests to maintain a strong carbon sink throughout the 21st century, this study suggested that isoprene emission may be an adaptation to warmer thermal niches, and that emitting species may fare better under global warming than co-occurring non-emitting species. However, the direct and indirect impacts of isoprene emission on terrestrial carbon cycling in the tropics during high temperature extremes remains to be quantified.

As isoprene emissions itself may represent a small fraction of ETR (Lantz et al., 2019), we estimated this fraction by using the slope of the linear relationship in Eq. 7 (0.37 nmol isoprene/μmol e$^-$). Thus, we estimate that as temperatures vary, the percentage of electrons leading to isoprene biosynthesis is 0.037%. Thus, it is important to note that even at high temperatures, only a small fraction of the reducing equivalents generated by ETR will be directly consumed for
isoprene biosynthesis and the strong coupling of ETR/qL and isoprene biosynthesis must be supported by the induction of other pathways that consume the bulk of photosynthetically-derived NADPH and ATP including the biosynthesis of non-volatile isoprenoids as well as other linked biochemical processes and pathways such as photorespiration (Voss et al., 2013), the reassimilation of respiratory and photorespiratory CO₂ (Garcia et al., 2019), the malate valve (Rasulov et al., 2018), mitochondrial respiration (Loreto et al., 2007), and the alternate oxidase pathway (Atkin & Tjoelker, 2003) (Fig. 5). For example, as leaf temperatures increase, photorespiration rates rise faster than photosynthetic rates and an increasing proportion of the NADPH and ATP are diverted into photorespiration (Long, 1991). Moreover, as temperatures increase a large fraction of photorespiratory CO₂ can be re-assimilated by photosynthesis (Voss et al., 2013) and photorespiratory intermediates are increasingly incorporated into isoprene emissions (Jardine et al., 2014). Thus, despite isoprene emissions representing a small fraction of ETR (e.g. 0.037%), our observations are consistent with a mechanism where isoprenoid biosynthesis operates in parallel with numerous coupled pathways which accelerate under high temperature to create a positive feedback with ETR to maintain high photosynthetic capacity.

Previous research suggested that large variations in isoprene emissions as a function of light, CO₂, temperature and oxygen were driven by the energy status of chloroplasts (Rasulov et al., 2009; Morfopoulos et al., 2013); a result predicted by models of plant isoprene emissions based on available NADPH and ATP (Morfopoulos et al., 2013, 2014). These mechanisms have been incorporated into Earth system models (Pacifico et al., 2011; Harrison et al., 2013) which predict regional to global emission patterns of isoprene linked to photosynthesis. Therefore, the quantitative relationship presented here between ETR and isoprene emissions from an abundant Neotropical early successional species can be used in future modeling studies to improve the
accuracy of simulations predicting large increases in tropical isoprene emissions associated with increased forest dynamics and climate warming.

The optimal temperature range for P_n has been cited as 30-31°C as typical for climax tree species in terra-firme tropical forests (Lloyd & Farquhar, 2008; Jardine et al., 2017a; Slot & Winter, 2017). For example, in Panama reported optimum temperatures for P_n ranged from 28.4°C to 31.9°C without a significant difference detected between trees and lianas and dry and wet sites. Thus, $V. guianensis$ appears to show a higher optimum temperature for P_n than previously reported for tropical species (32.6 ± 0.4°C). Moreover, isoprene emissions continued to increase through the highest temperatures obtainable by the leaf gas exchange system (wet season greater than or equal to 38.3 ± 0.4°C: Figs. 1-2, dry season 48.1 ± 2.0°C: Fig. 3). Thus, $V. guianensis$ shows a dramatically higher optimum temperature for isoprene emissions than reported for other species (up to 10°C higher). To our knowledge, this represents the highest reported leaf temperature by which isoprene emissions continue to be stimulated by increasing temperature. These findings suggest that the photosynthetic apparatus in $V. guianensis$, and its coupling to isoprene production, is well adapted to the extreme high temperatures regularly experienced in secondary forests, in which the leaf temperature in the middle of the day and early afternoon regularly exceeds the ideal temperature range for P_n (Doughty & Goulden, 2008), especially during the dry season and during droughts. For example, during the dry season of 2015-16 in a central Amazon rainforest, the upper canopy reached leaf temperatures > 45°C with strong afternoon suppression of P_n associated with partial stomatal closure (Jardine et al., 2017a). A previous study with poplar leaves observed that the temperature optimum for P_n (30°C) < ETR (35°C) < isoprene emissions (45°C) < enzyme activity of isoprene synthase (50°C) (Monson et al., 1992). Thus, in order to determine the full extent of coupling of ETR and isoprene emission, future studies using engineered gas exchange
systems capable of extreme leaf temperatures (e.g. 25-60ºC) should be used to determine at what
temperature ETR and isoprene emissions from *V. guianensis* finally begin to decline and if ETR
and isoprene emissions share the same optimum leaf temperature.

As remote sensing of gross primary productivity using solar induced fluorescence (Yang
et al., 2015) and isoprene emissions (both direct isoprene observations and indirect via atmospheric
formaldehyde columns measurements) (Zheng *et al.*, 2015; Fu *et al.*, 2019) are being evaluated
from ecosystem to global scales, our mechanistic results may be utilized to better understand
integrative studies on terrestrial carbon cycling in the tropics. For example, when atmospheric
formaldehyde was used as a proxy for tropical isoprene emissions, it was found that isoprene
emissions tracked the seasonal cycle of canopy temperature, but was anticorrelated with gross
primary productivity (Foster *et al.*, 2014). In light of our leaf level observations, this could be
explained by an increase in isoprene emissions and photochemical reactions of photosynthesis at
high temperatures, but a suppression of P_n associated with partial stomatal closure.

5. Acknowledgements

This material is based upon work supported as part of the Next Generation Ecosystem
Experiments-Tropics (NGEE-Tropics) funded by the U.S. Department of Energy, Office of
Science, Office of Biological and Environmental Research’s Terrestrial Ecosystem Science
Program through contract No. DE-AC02-05CH11231 to Lawrence Berkeley National Laboratory,
DE-AC05-00OR22725 to Oak Ridge National Laboratory, and DE-SC0012704 to Brookhaven
National Laboratory. Additional funding for this research was provided by the Brazilian Conselho
Nacional de Desenvolvimento Científico e Tecnológico (CNPq). Logistical and scientific support
is acknowledged by the Forest Management laboratory (LMF), Climate and Environment
6. References

Pacifico F, Harrison SP, Fu TM et al. (2011) Evaluation of a photosynthesis-based biogenic isoprene emission scheme in JULES and simulation of isoprene emissions under present-day climate conditions. DOI:10.5194/acp-11-4371-2011

Piedade MTF, Long SP, Junk WJ (1994) Leaf and canopy photosynthetic CO₂ uptake of a stand of Echinochloa polystachya on the Central Amazon floodplain: Are the high potential rates associated with the C4 syndrome realized under the near-optimal conditions provided by this exceptional natural habitat? Oecologia, 97, 193–201. DOI: 10.1007/BF00323149

Rasulov B, Talts E, Bichele I, Niinemets Ü (2018) Evidence that isoprene emission is not limited by cytosolic metabolites. exogenous malate does not invert the reverse sensitivity of isoprene emission to high [CO₂]. Plant Physiology, 176, 1573–1586. DOI: 10.1104/pp.17.01463

7. Supplementary Material

Supplementary Figure S1 showing mean V. guianensis leaf temperature responses of fluorescence parameters including maximum quantum efficiency of PSII photochemistry in the light (Fv’/Fm’) and in the dark (Fv/Fm) is available for download as ‘FigureS1_SuppInfo.pdf’.

8. Data Availability Statement

The data that support the findings of this study are openly available in NGEE Tropics Data Collection at http://dx.doi.org/10.15486/ngt/1570407, reference number BR-Ma2. The supplementary data (Size: 11,657 KB) includes raw data obtained from the Licor 6400XT gas exchange system and the TD-GC-MS system for isoprene emission analysis and organized as follows:

Fluorescence experiment folder:
- Gas exchange data (Licor 6400XT files) including fluorescence with leaf number and date
- Isoprene data (TD-GC-MS output files) with leaf number and date

Inhibitor experiment folder:
- Gas exchange data (Licor 6400XT files) and isoprene data (TD-GC-MS output files) with isoprenoid fed inhibitor: Folders separated by date
- Gas exchange data (Licor 6400XT files) and isoprene data (TD-GC-MS files) with water fed control branches: Folders separated by date
9. Figures and Tables

Figure 1: Mean response of net photosynthesis (P_n), stomatal conductance (g_s), internal carbon (C_i), transpiration (E), and isoprene emissions to an increase in leaf temperature in *V. guianensis*. Data shown are the mean of 23 temperature response curves collected with error bars representing ± 2 standard deviation.
Figure 2: Mean *V. guianensis* leaf temperature responses of light-dependent photosynthetic parameters including electron transfer rate (ETR), oxidation state of QA (qL), and non-photochemical quenching (NPQ) together with leaf isoprene emissions. Data shown are the mean of 23 temperature response curves collected with error bars representing ± 2 standard deviation.
Figure 3: Mean *V. guianensis* leaf temperature responses after 1 hour of branch feeding with 0 mM (blue curves with squares) and 12.5 mM (purple curves with dots) of the isoprenoid pathway inhibitor fosmidomycin showing (a) isoprene emissions, (b) net photosynthesis, *Pₙ*, (c) intercellular CO₂ concentration, *Cᵢ*, (d) stomatal conductance, *gₛ*. Data shown are the mean of 3-4 temperature response curves (1 curve per leaf) with error bars representing ± 2 standard deviation.
Figure 4: Mean *V. guianensis* leaf temperature responses after 1 hour of branch feeding with 0 mM (blue curves with squares) and 12.5 mM (purple curves with dots) of the isoprenoid pathway inhibitor fosmidomycin showing net photosynthesis normalized to stomatal conductance, P_{n}/g_{s}. Data shown are the mean of 3-4 temperature response curves (1 curve per leaf) with error bars representing ± 2 standard deviation.

![Diagram of photosynthesis process at moderate and high leaf temperatures](image)
Figure 5: Proposed biochemical model of the acclimation to high temperature stress through the consumption of photosynthetic energy (ATP) and reducing equivalents (NADPH) through the activation of the isoprenoid pathway together in parallel with other coupled biochemical pathways (adapted from Voss *et al.*, 2013 and Morfopoulos *et al.*, 2014). O₂: oxygen; CO₂: carbon dioxide; H₂O: water; ATP: adenosine triphosphate; NADPH: Nicotinamide-Adenine-Dinucleotide-Phosphate; AOX: alternative oxidases of mitochondria.

Figure 6 (Graphical Abstract): Graphical representation the influence of proposed surface temperature impacts on plant physiological processes influencing terrestrial ecosystem carbon cycling from leaf to global scales. NPP: Net Primary Productivity, Gs: Stomatal Conductance, ETR: Electron Transport Rate, qL: Fraction of PSII centers that are oxidized, CO₂: carbon dioxide.
Table 1: Correlation (r) derived between the gas exchange (P_n, g_s, and isoprene emissions) and light-independent photosynthetic variables shown in Figs. 1-2.

<table>
<thead>
<tr>
<th></th>
<th>P_n</th>
<th>g_s</th>
<th>Fv'/Fm'</th>
<th>NPQ</th>
<th>ETR</th>
<th>Isoprene</th>
<th>C_i</th>
<th>qL</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_n</td>
<td>1</td>
<td>0.73</td>
<td>0.57</td>
<td>-0.38</td>
<td>-0.75</td>
<td>-0.68</td>
<td>0.63</td>
<td>-0.65</td>
</tr>
<tr>
<td>g_s</td>
<td>0.73</td>
<td>1</td>
<td>0.62</td>
<td>-0.05</td>
<td>-0.97</td>
<td>-0.97</td>
<td>0.97</td>
<td>-0.97</td>
</tr>
<tr>
<td>Fv'/Fm'</td>
<td>0.57</td>
<td>0.62</td>
<td>1</td>
<td>-0.33</td>
<td>-0.67</td>
<td>-0.53</td>
<td>0.46</td>
<td>-0.60</td>
</tr>
<tr>
<td>NPQ</td>
<td>-0.38</td>
<td>-0.05</td>
<td>-0.33</td>
<td>1</td>
<td>0.19</td>
<td>0.09</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>ETR</td>
<td>-0.75</td>
<td>-0.97</td>
<td>-0.67</td>
<td>0.19</td>
<td>1</td>
<td>0.98</td>
<td>-0.93</td>
<td>0.99</td>
</tr>
<tr>
<td>Isoprene</td>
<td>-0.69</td>
<td>-0.97</td>
<td>-0.53</td>
<td>0.09</td>
<td>0.98</td>
<td>1</td>
<td>-0.97</td>
<td>0.99</td>
</tr>
<tr>
<td>C_i</td>
<td>0.63</td>
<td>0.97</td>
<td>0.46</td>
<td>0.13</td>
<td>-0.93</td>
<td>-0.97</td>
<td>1</td>
<td>-0.95</td>
</tr>
<tr>
<td>qL</td>
<td>-0.65</td>
<td>-0.97</td>
<td>-0.60</td>
<td>0.13</td>
<td>0.99</td>
<td>0.99</td>
<td>-0.95</td>
<td>1</td>
</tr>
</tbody>
</table>
Figure 1: Mean response of net photosynthesis (P_n), stomatal conductance (g_s), internal carbon (C_i), transpiration (E), and isoprene emissions to an increase in leaf temperature in V. guianensis. Data shown are the mean of 23 temperature response curves collected with error bars representing ± 2 standard deviation.
Figure 2: Mean *V. guianensis* leaf temperature responses of light-dependent photosynthetic parameters including electron transfer rate (ETR), oxidation state of QA (qL), and non-photochemical quenching (NPQ) together with leaf isoprene emissions. Data shown are the mean of 23 temperature response curves collected with error bars representing ± 2 standard deviation.
Figure 3: Mean V. guianensis leaf temperature responses after 1 hour of branch feeding with 0 mM (blue curves with squares) and 12.5 mM (purple curves with dots) of the isoprenoid pathway inhibitor fosmidomycin showing (a) isoprene emissions, (b) net photosynthesis, Pn, (c) intercellular CO2 concentration, Ci, (d) stomatal conductance, gs. Data shown are the mean of 3-4 temperature response curves (1 curve per leaf) with error bars representing ± 2 standard deviation.
Figure 4: Mean V. guianensis leaf temperature responses after 1 hour of branch feeding with 0 mM (blue curves with squares) and 12.5 mM (purple curves with dots) of the isoprenoid pathway inhibitor fosmidomycin showing net photosynthesis normalized to stomatal conductance, Pn/gs. Data shown are the mean of 3-4 temperature response curves (1 curve per leaf) with error bars representing ± 2 standard deviation.
Figure 5: Proposed biochemical model of the acclimation to high temperature stress through the consumption of photosynthetic energy (ATP) and reducing equivalents (NADPH) through the activation of the isoprenoid pathway together in parallel with other coupled biochemical pathways (adapted from Voss et al., 2013 and Morfopoulos et al., 2014). O₂: oxygen; CO₂: carbon dioxide; H₂O: water; ATP: adenosine triphosphate; NADPH: Nicotinamide-Adenine-Dinucleotide-Phosphate; AOX: alternative oxidases of mitochondria.