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ABSTRACT 

 
As climate continues to warm, detailed geospatial spectral, 

structural, and thermal information, related to water, carbon, 

and energy cycling, are required for modeling the future state 

of the Arctic biome. To address these needs we have 

developed a cost-effective, multi-sensor UAS-based remote 

sensing platform for acquiring high resolution spectral, 

structural, and thermal measurements of Arctic vegetation. 

We successfully deployed this remote sensing platform in 

three sites along an elevation gradient near Nome, Alaska in 

summer 2017. Corresponding workflows have been further 

developed for assessing spectral, structural, and thermal 

patterns of arctic tundra biomes from the collected datasets. 

Our results demonstrate that the UAS platform can 

successfully (1) map heterogenous vegetation composition 

and (2) assess corresponding spectral, structural, and thermal 

patterns of Arctic tundra biomes. This study not only presents 

a novel and innovative approach for collecting high 

resolution spectral, structural and thermal information for 

characterizing Arctic tundra biome patterns, but also a basis 

for informing the modeling of climate feedbacks between the 

biosphere and the atmosphere in response to ongoing global 

change. 

Index Terms—plant traits, vegetation composition, object-

oriented classification, spectroscopy, thermal infrared 

 

1. INTRODUCTION 

 

A number of studies have documented dramatic changes in 

the composition, distribution, and functioning of Arctic 

tundra vegetation, in particular, in response to ongoing global 

change over the past several decades [1, 2].  These changes 

can lead to numerous biochemical and biophysical 

consequences (i.e., changes to carbon and nutrient storage 

and cycling), with complex feedbacks [3]. Methods for 

measuring detailed spectral, structural, and thermal 

properties of Arctic tundra vegetation, related to water, 

carbon, and energy cycling (e.g., functional traits, albedo, 

land surface temperature), are thus crucial for modeling and  

 

 

projecting the future state of Arctic biome, as climate 

continues to warm [4]. 

     The recent development of Unmanned Aircraft System 

(UAS)-based remote sensing platforms have provided the 

opportunity to fill a critical gap in the scaling between field 

measurements and satellite remote sensing observations. 

These platforms allow the characterization of Arctic 

vegetation at unpreceded high spatial-temporal resolution for 

improving our understanding of Arctic vegetation 

biodiversity and dynamics [5]. For example, consumer-grade 

cameras on UAS platforms have been used successfully to 

characterize optical features of vegetation and topography at 

centimeter-level spatial resolution [6]; UAS-acquired overlap 

RGB imagery and its generated dense point clouds with 

computer vision algorithms (i.e., Structure from Motion, SfM) 

can be used to derive three dimensional (3D) structural 

features of diverse vegetation in remote regions [7]. 

Additionally, thermal infrared (TIR) cameras suitable for 

UAS platform can be used to conduct spatially diagnostic 

assessment of vegetation health and stress [8].  

     To meet the geospatial measurement needs in Arctic 

tundra biomes we assembled a small UAS-based remote 

sensing platform with multiple off-the-shelf (OTS) sensors 

including optical RGB, spectroscopic (i.e. “hyperspectral”), 

and TIR sensors and integrated information extraction 

pipelines. The aim of this study was two-fold: first, to confirm 

that UAS-based platform provides a viable alternative to 

traditional field surveys for detecting spectral, structural and 

thermal patterns in Arctic tundra biomes. Second, to provide 

a roadmap for utilizing UAS-based very high-resolution data 

collection platform to examine vegetation compositions and 

corresponding spectral, structural, thermal patterns in Arctic 

tundra biomes. 

 

2. MATERIALS AND METHODS 

 

2.1 Study area and data collections 

 

An octocopter, model CarbonCore Cortex Heavy Lift 

(Autonomous Avionics, Colorado, USA), was used as the 

platform to carry the sensor suite and perform all flights 

(Fig.2). The octocopter UAS has an integrated survey-grade 
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Global Navigation and an inertial motion unit (IMU) for 

navigation and error corrections associated with pitch, roll, 

and heading. The octocopter carried our customized sensor 

suite (Fig.2) including a TIR camera (ICI 9640 P-Series), a 

RGB camera (Canon EOS M6), and two visible-near-infrared 

(VNIR) spectrometers (Ocean Optics flame series).   

      The ICI TIR camera has a pixel resolution of 640x480, 14 

bit dynamic range, and a 7um -14um spectral band with 

30mm manual focus lens (20° x 15° Field of View, FOV). 

Canon EOS M6 is a 24MP mirrorless CMOS camera with 15-

45mm lens. The Ocean Optic flame spectrometer has a 

spectral region of 350–1000 nm at a 1.5 nm spectral 

resolution and a 16-bit radiometric resolution. 

 

 
Fig. 1 Locations of study area and UAS-collected ortho-

imagery showing the landscapes of study areas by 

different flight missions 

 

To minimize issues related to variable light conditions in 

the Arctic, we utilized a dual Ocean Optics FLAME 

spectrometer setup where the upward spectrometer 

measuring downwelling radiance was fitted with a cosine-

corrector (~180 °FOV) while the downward spectrometer 

measuring upwelling radiance from the surface was fitted 

with a variable FOV lens; we set this lens to 14°FOV. To 

reduce vibration effects during the aerial surveys, both Canon 

EOS M6 and ICI TIR camera were mounted on a 3-axis 

gimbal (GREMSY H3) attached to the bottom of UAS 

platform on a vibration dampening plate. We further 

developed a software infrastructure called the Modular Data 

Collection System (MoDaCS), to link UAS mission planning 

and flight control to the sensor suite, enabling automated data 

acquisition synced with customizable flight plans and 

monitored in real time (if desired) or completely autonomous 

(Andrew et al., in preparation).  

 

 
Fig. 2 UAS-based remote sensing platform 

Nine successful UAS-flights were successfully conducted 

covering regions about 168,000 m2 ground areas (Fig.1) 

during the period of July 27th to August 8th 2017. During 

each flight, we deployed 5 or more ground control points 

(GCPs) across the survey region for image georeferencing. 

We recorded the coordinates of GCPs, using a hand-held 

decimeter-level differential global positioning system (DGPS, 

Trimble Geo7x). After post-processing, the final registration 

error was less than 10 cm. To validate the spectra quality 

collected by the UAS-based remote sensing platform, we also 

collected near-surface spectra across the study site using a 

Spectra Vista HR-1024i spectrometer. 

 

2.2 UAS-collected data processing 

 

To produce high quality ortho-imagery and 3D point clouds, 

we mosaicked and georeferenced the UAS-collected RGB 

imagery using the SfM algorithm in Agisoft PhotoScan 

software (refereed to Agisoft later) with the collected GCPs 

[5].  Agisoft can reduce image artifacts caused by camera 

angle and altitude changes during the UAS flights. The point 

clouds generated from Agisoft were processed into Digital 

Surface Models (DSMs), followed by vegetation canopy 

height models (CHMs) generated by subtracting lowest 

ground point of cloud points at each five-meter grid from the 

generated DSMs (Fig.3). 

 
Fig.3 Surface-from-Motion (SfM)-generated DTM 

cloud points 

 

Post-processing of the UAS-collected TIR imagery was 

done using the same workflow of RGB imagery; however, 

because of coarse spatial resolution of TIR imagery and low 

contrast in our study area, some of direct SfM-based TIR 

imagery strip mosaicking was not successful. As such we 

applied another semi-automatic method for mosaicking and 

georeferencing the left TIR imagery from aerial surveys with 

the help of ENVI software. Specifically, we first determined 

the rough image center coordinate of each single TIR imagery 

using the GPS and IMU data including altitude, flight 

direction, and time stamps, which are acquired from the 

MoDaCS; then we georeferenced and mosaicked the singe 

TIR imagery in ENVI software, with the help of 

corresponding RGB ortho-images. Regarding the UAS-
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collected spectra, we calculated the footprint and location of 

each measurement according to the GPS, IMU and data 

logging information from the MoDaCS. 

 

2.3 Vegetation composition classification  

 

RGB ortho-imagery were segmented into image objects using 

the multi-resolution segmentation algorithm (scale = 15, 

shape = 0) in eCognition software. During the segmentation 

process, the minimum object areas were defined as 10 cm2 

(10 pixels) using only RGB information. Classification 

predictors listed in Table 1 were then calculated based on the 

segmentation results. The classification legend was 

determined according to the local major plant functional 

types (PFTs), including 11 land cover types: Sedge Moss 

(SM), Willow Birch Tundra (WBT), Mixed Dwarf Shrub and 

Red Moss (MDSRM), Mixed Dwarf Shrub and White Lichen 

(MDSWL), Wet Graminoid (WG), Dead Sege or Moss 

(DSM), Waterbody (WB), Tussock Tundra Health (TTH), 

Shadow and Dark Cryptogams (SDC), White Lichen (WL),  

Road and Soil (RS). 

 

Table 1 Variables used for vegetation classification 

Variable Description 

Red\Green 

\Blue_mean_max_min_std 

Mean, max, minimum and 

standard deviation of red, 

green, blue channel value   

NDGB_mean_max_min_std Mean, max, minimum and 

standard deviation of 

Normalized difference of 

Green and Blue channel 

value: G-B/G+B 

NDGR_mean_max_min_std Mean, max, minimum and 

standard deviation of 

Normalized difference of 

Green and Red channel 

value: G-R/G+R 

Mean_vegetation_height  Mean vegetation height 

derived from CHM  

Compactness (Object_length by  

Object_width) / Area 

Texture_mean_max_min_std Mean, max, minimum and 

standard deviation of grey 

level co-occurrence 

texture 

       

Representative Region Of Interests (ROIs) for each 

classification type were selected directly from the 1cm RGB 

SfM-generated ortho-imagery based on in-situ photos and 

expert knowledge. A stratified sampling scheme was applied 

to split the ROIs into 60% and 40% for classification training 

and validation, respectively. Finally, the Random Forests (RF) 

algorithm was applied for vegetation composition 

classification in R. We chose RF because it is a widely used 

non-parametric classification algorithm, making no 

assumption about the distribution of predictor variables [9].        

2.4 Characterizing spectral and thermal traits of major 

vegetation types 

 

To characterize the spectral traits, we calculated the 

Normalized Difference Vegetation Index (NDVI), using all 

the UAS-based spectrometer measurements. We then 

overlaid NDVI measurement on the RGB ortho-imagery 

generated before. To characterize the plant thermal traits, we 

first overlaid the vegetation composition map with the 

thermal canopy temperature imagery. Then to reduce 

computation task, we randomly extracted three thousand 

objects from 10 major vegetation types.  Mean object-level 

thermal temperature values were calculated for each random 

selected object based on the thermal temperature imagery. 

Similarly, boxplots of mean thermal temperature by 10 plant 

function type were generated to examine the thermal 

temperature differences. 

 

3. RESULTS AND DISCUSSTION 

 

Our UAS-based remote sensing platform successfully 

collected three types of remote sensing datasets across the 

study area, providing detailed information on vegetation 

spectrum, TIR, and structure at the centimeter level. At one 

of the Council study sites, the vegetation community 

demonstrated dramatic differences in spectral and thermal 

signatures across the wetness gradient from the road edge to 

a thaw pond (Fig.4). The hyperspectral-derived normalized 

difference vegetation index (NDVI) also varied with 

locations and changes in vegetation type (Fig.4):  Wet 

Graminoid areas had the highest values, while Shadow areas 

were lowest. The SfM-generated point clouds successfully 

characterized the vegetation structure at different sites, useful 

for feature for vegetation composition classification (Fig.3). 

 

 

 

Fig.4 Vegetation composition map and overlaid 

hyperspectral-derived NDVI values within each 

footprint; subplot A and B show two examples of 

footprint-level RGB ortho-imagery and 

corresponding TIR temperature and hyperspectral 

measurement  
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TTH were dominant at road edges (dry areas); WG and SM 

can be easily found around water pond (wet areas); some dead 

or dry sedge moss can be found at the relatively “dry” areas 

of water pond (Fig.4). This phenomenon indicates that the 

water dynamics has strong effects on local vegetation status 

and composition, in accordance with previous studies [3].  

    In addition, our results indicated that the object-level 

canopy temperatures also changed with vegetation 

composition types and could be used as important features for 

studying plant traits (Fig.5): WG has the lowest canopy 

temperature in general because of waterbody effects; on the 

contrary, WL has the highest canopy temperature because of 

low transpiration and water content. 

    The shape of UAS-collected spectra matched with field-

measured spectra in general, but showed a relative lower 

magnitude in both visible and NIR regions (Fig.6). This 

phenomenon could be likely explained by the fact the 

stronger scattering effects by UAS remote sensing platform 

at higher altitude, comparing to that of near-surface spectra 

measurements by field spectrometer [4]. The confusion 

matrix (not list here) showed that the overall accuracy of 

vegetation composition classification is 84.54% with the 

User’s accuracy between 54.13% (DSM) and 96.48% (RS) 

and Producer’s accuracy between 59.80% (DSM) and 98.80% 

(RS).   

 

4.CONCLUSIONS 

 

The recent development of UAS technology is facilitating a 

transformational change in the remote sensing of Arctic 

tundra biomes. Here we present a cost-effective UAS 

platform for remote sensing of arctic tundra biomes based on 

off-the-shelf instrumentations. Our results indicate that the 

UAS-based remote sensing platform can provide spectral, 

structural, and thermal measurements at unprecedented scales 

with greater flexibility than manned aircraft, thereby greatly 

advancing our capability for monitoring and projecting Arctic 

tundra biomes in response to ongoing global change. 
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Fig.6 Boxplots of Visible (VIS) and Near-infrared (NIR) 

reflectance measured by UAS and field spectrometer 

platform  
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Fig.5 Boxplots of object-level canopy temperature by 

vegetation composition type; Refer to Section 2.3 for 

acronyms 
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