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Abstract 24 

Plant functional diversity is strongly connected to photosynthetic carbon assimilation in 25 

terrestrial ecosystems. However, many of the plant functional traits that regulate photosynthetic 26 

capacity, including foliar nitrogen concentration and leaf mass per area, vary significantly 27 

between and within plant functional types and vertically through forest canopies, resulting in 28 

considerable landscape-scale heterogeneity in three dimensions. Hyperspectral imagery has been 29 

used extensively to quantify functional traits across a range of ecosystems but is generally 30 

limited to providing information for top-of-canopy leaves only.  On the other hand, lidar data can 31 

be used to retrieve the vertical structure of forest canopies. Because these data are rarely 32 

collected at the same time, there are unanswered questions about the effect of forest structure on 33 

the 3-D spatial patterns of functional traits across ecosystems. In the United States, the National 34 

Ecological Observatory Network’s Airborne Observation Platform (NEON AOP) provides an 35 

opportunity to address this structure-function relationship by collecting lidar and hyperspectral 36 

data together across a variety of ecoregions. With a fusion of hyperspectral and lidar data from 37 

the NEON AOP and field-collected foliar trait data, we assessed the impacts of forest structure 38 

on spatial patterns of N. In addition, we examine the influence of abiotic gradients and 39 

management regimes on top of canopy %N and total canopy N (i.e. the total amount of N (g/m2) 40 

within a forest canopy) at a NEON site consisting of a mosaic of open longleaf pine and dense 41 

broadleaf deciduous forests. Our resulting maps suggest that in contrast with top-of-canopy 42 

values, total canopy N variation is dampened across this landscape resulting in relatively 43 

homogeneous spatial patterns.  At the same time, we found that leaf functional diversity and 44 

canopy structural diversity showed distinct dendritic patterns related to the spatial distribution of 45 

plant functional types. 46 
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1. INTRODUCTION 70 

The relationship between forest structure and function is a major focus of ecosystem 71 

ecology; however, most studies have focused on measurements within traditional forest plots 72 

(Ellsworth and Reich 1993; Parker et al. 2004; Gough et al. 2019; Atkins et al. 2018; Fahey et al. 73 

2015; Pedro et al. 2017). These studies have shown that the integral relationship between 74 

structure and function drives important canopy processes such as net photosynthetic carbon 75 

assimilation (Niinemets 2007), resource use and efficiency (Hardiman et al. 2013), and woody 76 

growth (Stark et al. 2012), as well as critical ecosystem processes such as net primary production 77 

(Scheuermann et al. 2018; Hardiman et al. 2011). Since the individual traits that drive this 78 

structure-function relationship are not constant in space and instead show significant 79 

heterogeneity across landscapes (Chambers et al. 2007; Asner et al. 2014), a core question in 80 

ecosystem ecology is: Do landscape scale patterns of forest functional traits change when whole 81 

plant structure is considered? 82 

In addition to this significant spatial variation, plant functional and structural traits also 83 

vary in three-dimensional space due to a host of different long-term abiotic growth conditions, 84 

crown position within the canopy and competition for light, as well as within-canopy fluctuating 85 

light environments across the full vertical and horizontal extent of the canopy (the ‘canopy 86 

volume’; Ellsworth et al. 1993). These differing light and growth environments drive variation of 87 

important leaf functional traits including leaf mass per area (LMA; the ratio between leaf dry 88 

mass and leaf area) and foliar nitrogen (foliar N; g/mG
2; mG = meter of ground) within the 89 

canopy volume (Poorter et al. 2009, Niinemets, 2007). Moreover, horizontal and vertical patterns 90 

of these traits in growth environments create heterogeneous distributions of leaves in three 91 

dimensions causing significant variation in canopy-scale carbon assimilation across plant 92 
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functional types (Niinemets 2015). This variation can be attributed to differing light 93 

environments related to the effects of multiple scattering, within-canopy shading, and the density 94 

of plant material above and around a given leaf (Stark et al. 2012; Harding et al. 2001).  95 

Resulting tradeoffs between light interception, photosynthetic capacity, and construction costs 96 

(e.g. the leaf economics spectrum) leads to broadly predictable variation in photosynthetic 97 

strategies across the plant species comprising global terrestrial biomes (Reich et al. 1997; Wright 98 

et al. 2004).  99 

At the canopy scale, forest structural traits can be used to describe the architectural 100 

properties that define a leaf’s growth environment. These traits include leaf area density (LAD; 101 

the total leaf area per unit of volume) which characterizes the horizontal and vertical spatial 102 

variation of leaf area within a canopy (Weiss et al. 2004) and canopy clumping (a measure of 103 

foliage aggregation relative to a random spatial distribution of leaf material within the canopy; 104 

Pisek et al. 2018). When combined with information on plant function, structural diversity yields 105 

important insights into vegetation growth and carbon cycling (Niinemets 2012), however both 106 

can be challenging to quantify at scales larger than vegetation plot without advanced remote 107 

sensing technologies (Asner and Martin 2009). 108 

Remote sensing has played a significant role in understanding the global terrestrial 109 

carbon cycle for decades (Tucker and Sellers 1986; Schimel 1995; Running et al. 2004; Schimel 110 

et al. 2015), with a more recent focus on the use of hyperspectral imagery and lidar to measure 111 

forest function and structure. By utilizing hundreds of narrow spectral bands, airborne passive 112 

optical hyperspectral imagery (HSI; also known as imaging spectroscopy) provides detailed two-113 

dimensional (2D) information on the spectral and functional properties of leaves at the top of the 114 

canopy (Ollinger et al. 2002; Townsend et al. 2003; Asner et al. 2015; Singh et al. 2015; Dahlin 115 
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et al. 2013). Lidar is an active remote sensing system that utilizes laser pulses to measure 116 

distance, which can then be used to accurately estimate the three dimensional (3D) and internal 117 

structure of forest canopies across a range of plants in different biomes (Stark et al. 2012; 118 

Kamoske et al. 2019; Shao et al. 2019; Smith et al. 2019). While passive optical data can also be 119 

used to estimate variables related to forest structure, including clumping index (Pisek et al. 2018) 120 

and 3D point clouds through structure-from-motion methods (Dandois et al., 2013; Iglhaut et al. 121 

2019), the results are not as robust as active methods like lidar for generating 3D plant 122 

information. Compared to HSI data, lidar can yield detailed insights into plant architecture but 123 

does not provide the information necessary to map leaf functional traits across space and time, a 124 

combination of these data sources is required to provide a complete picture of vegetation 125 

structural and functional diversity.  However, few publicly-available opportunities and platforms 126 

exist for the simultaneous collections of these two complementary technologies (Cook et al. 127 

2013, Kampe et al. 2010), limiting our ability to combine landscape-scale information about 128 

forest structural and functional traits that play critical roles in whole-canopy processes like 129 

carbon assimilation.  130 

In this study, we take steps towards addressing the question of how leaf traits and 131 

structural heterogeneity determine whole canopy function by considering how spatial patterns of 132 

top of canopy and total canopy traits vary across a heterogeneous landscape. We detail a 133 

reproducible methodology for estimating functional and structural diversity within the canopy 134 

volume from airborne lidar and hyperspectral data from the National Ecological Observatory 135 

Network’s Airborne Observation Platform (NEON AOP; Kampe et al. 2010). We compare the 136 

spatial patterns of 3D whole canopy traits derived from our fusion of lidar and hyperspectral data 137 

with traditional 2D remote sensing derived top of canopy traits. In addition, we examine the 138 
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influence of topography, geology, and management regimes on these two measurements of 139 

functional diversity at a NEON site consisting of patches of open longleaf pine and dense 140 

broadleaf deciduous forests, located in Alabama, USA. These insights could lead to a better 141 

understanding of how we scale fine-resolution ecological processes to landscape, continental, 142 

and global models (Schimel et al. 2019). 143 

2. MATERIALS AND METHODS 144 

2.1 Site Description 145 

Field measurements and remote sensing data were acquired in Talladega National Forest – 146 

Oakmulgee Ranger District (TALL) in west-central Alabama, USA (Figure 1). TALL is a core 147 

NEON site covering 5,300 hectares with a mean annual temperature of 17° C and a mean annual 148 

precipitation of 1350 mm. TALL consists of a mosaic of forest types, with higher elevation areas 149 

containing an overstory of longleaf pine (Pinus palustris) and loblolly pine (Pinus taeda), while 150 

white oak (Quercus alba), Southern red oak (Quercus falcata), chestnut oak (Quercus montana), 151 

blackjack oak (Quercus marilandica), mockernut hickory (Carya tomentosa), pignut hickory 152 

(Carya glabra), sweetgum (Liquidambar styraciflua), and tulip tree (Liriodendron tulipifera) are 153 

present in lower elevation bottomlands. TALL is an actively managed site with ongoing logging, 154 

restoration, and prescribed burning projects (USDA Forest Service 2005). 155 

2.2 Airborne Remote Sensing Data 156 

The NEON AOP collected remotely sensed data from April 27 to April 29, 2018 at TALL. The 157 

NEON AOP employs a full-range hyperspectral sensor (380 to 2500 nm; 5 nm bands), a high-158 

resolution RGB camera, and a lidar system (Kampe et al. 2010). Flights occurred at an altitude of 159 

1000m, resulting in hyperspectral measurements at a one-meter resolution. The lidar system for 160 

this collection was a Riegl Q780 Laser Measurement System operated at a scan angle of +/- 18 161 
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degrees, and a beam divergence of 0.8 mRad, resulting in an average point density of 9.48 162 

pts/m2. 163 

2.3 Field Data Collection and Lab Methodologies 164 

In May 2018, shortly after the AOP collection, we collected leaves from throughout the canopy 165 

volume, targeting the dominant species at TALL (10 species total; listed in section 2.1). Foliar 166 

samples were collected using a Big Shot line launcher (SherrillTree, Greensboro, NC) and a pole 167 

pruner, with each sample’s height estimated using a laser range finder and meter marks on the set 168 

line. We collected sample locations using a Trimble GEO7x GPS (Trimble, Sunnyvale, CA), 169 

which were later differentially corrected with Trimble’s GPS Pathfinder Office software. As we 170 

collected samples from the canopy, they were wrapped in a damp paper towel, sealed in a plastic 171 

bag, and placed in a cooler with ice packs. In total we collected 156 foliar samples from the 172 

canopy dominant species (Appendix S1: Fig. S1 and Fig. S2). In addition to leaf samples, we 173 

took 120 hemispherical photographs across the site, following the protocol described in 174 

Kamoske et al. (2019). 175 

            Leaf samples were processed the same day in our mobile laboratory. For each sample (a 176 

small branch with multiple leaves) we took three reflectance measurements from different leaves 177 

with a SVC HR-1024i Spectroradiometer with an attached LC-RP-Pro leaf clip foreoptic 178 

(Spectra Vista Corporation, Poughkeepsie, NY) , which collects data from 340 to 2500 nm with a 179 

bandwidth of approximately 2 nm. Leaves from broadleaf samples were placed directly into the 180 

leaf clip, while we created mats from needleleaf samples by laying the needles vertically next to 181 

one another while taping the ends together. For needleleaf samples, only the needles and not the 182 

taped ends were placed into the leaf clip. After each sample, the instrument was recalibrated 183 

using a white Spectralon panel. We then collected a minimum of 500 mg of leaf material from 184 
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the sample using a pair of scissors that were sterilized between each sample. These pieces of leaf 185 

material were imaged on a flatbed scanner and processed for area using imageJ software 186 

(Schneider et al. 2012). We placed the leaf material in a paper coin envelope and dried the 187 

samples at 70° C for at least 48 hours. After drying, we weighed the leaf samples and calculated 188 

leaf mass per leaf area (LMA; g/mL
-2; mL = meter of leaf material). A subset of these samples (n 189 

= 40, ~4 per species) were re-dried, ground to a fine powder using a ball mill (2000 Geno 190 

Grinder; Spex Sample Prep, Cridersville, OH, USA), with 1.50-2.50 mg weighed in 0.1-mil tin 191 

foil vials (AX26DR; Mettler Toledo, Columbus, OH, USA), and used to determine the C:N ratio 192 

and elemental N content (g N/g leaf, %) employing a CHNS/O elemental analyzer operated in 193 

CHN mode, according to the manufacturer’s instructions (2400 Series II CHNS/0 Analyzer; 194 

Perkin Elmer, Waltham, MA, USA) at Brookhaven National Laboratory (Upton, NY). 195 

         To build a leaf-scale model of %N to apply to the remaining samples in lieu of 196 

determining foliar N in the lab, we used the laboratory calculated %N values and the associated 197 

mean reflectance values for each wavelength, to train a partial least squares regression model 198 

(PLSR; Serbin et al. 2014; Singh et al. 2015). We withheld 20% of the samples using a weighted 199 

random approach, based on the %N values, as validation  data (n = 8) that wasn’t used to develop 200 

the model and used the remaining samples (n = 32) as model training data. Using a jackknife 201 

approach that randomly withholds 20% of the training data through 50 iterations, we calculated a 202 

PRESS statistic (up to 15 components) for each iteration. We then selected the number of 203 

components for our final model using the lowest PRESS statistic that balanced predictive 204 

accuracy between the training and validation datasets. We applied these equations to the 205 

validation data to assess model accuracy. We then applied the final PLSR coefficients to the 206 

reflectance measurements of all 156 leaf samples to determine PLSR derived %N values. We 207 
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used the PLSR predicted values in subsequent analysis. This methodology follows the process 208 

and code described in Serbin et al. (2014), with all analysis performed in R using the pls package 209 

(Mevik and Wehrens 2015). 210 

2.4 Lidar Methods 211 

Lidar data was processed for LAD (mL
2/mG

3; mG = meter of ground) at a 10x10 meter spatial 212 

resolution using the canopyLazR package on GitHub (Kamoske et al. 2019). The canopyLazR 213 

package uses the methods described by MacArthur and Horn (1969) and is similar to other 214 

published methods (Stark et al. 2012; Zhao and Popescu 2009; Solberg et al. 2006; Sumida et al. 215 

2009). By normalizing the point cloud to height above ground, LAD is calculated by counting 216 

the number of lidar pulses that enter and exit each voxel in each vertical column of data that has 217 

at least one ground return. After removing the bottom 10 meters of the canopy due to noise 218 

caused by topographic variation (Kamoske et al. 2019), a stack of rasters containing LAD 219 

estimates for each 1-meter slice of the canopy above this threshold is returned (mean canopy 220 

height at TALL is 25 meters). LAI is then calculated by taking the sum of LAD values within a 221 

given column of voxels within the canopy. While the TALL lidar data set has a considerably 222 

higher point density than the NEON lidar data used in Kamoske et al (2019), here we elected to 223 

keep this relatively conservative approach to aggregating and filtering these data as these lidar 224 

point clouds were processed as part of a larger study where we wanted to maintain data 225 

uniformity across sites. Moreover, topographic issues have been shown to be common when 226 

using lidar data for DEM generation (Bater and Coops 2009), which are further amplified when 227 

using low-density lidar data. To calibrate the lidar derived LAI estimates to field collected data, 228 

we processed field-collected hemispherical photographs for LAI using the DHP software 229 

(Leblanc et al. 2005). We then calculated the slope of a regression equation between these 230 
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measurements and the lidar derived LAI estimates (Appendix S1: Fig.S8; Sabol et al. 2014; 231 

Richardson et al. 2009). This slope is used as an extinction coefficient in the Beer-Lambert 232 

portion of the LAD equation described in Kamoske et al. (2019) and in Appendix S1: Fig. S8. 233 

For TALL we used an extinction coefficient of 0.4982. Here we opted to use a single extinction 234 

coefficient for the entire site, rather than separate coefficients for broadleaf, needleleaf, and 235 

mixed species pixels due to difficulties in detecting species differences with lidar data. 236 

 Based on our previous work in Kamoske et al. (2019), we then applied a canopy height 237 

and LAI mask to each processed LAD raster to minimize noise in the lidar dataset. Using 238 

Tukey’s outlier test (k = 1.5), we removed all outliers from the upper end of the dataset, which 239 

resulted in all pixels with a canopy height greater than 44 meters being removed as well as all 240 

pixels with a LAI value greater than 6 (0.002% of pixels). While a LAI value of 6 is a statistical 241 

output, it is also greater than our highest field-collected plot-scale LAI value of 4.35. We also 242 

removed all pixels with a LAI value equal to 0. Using these masked LAD tiles, we calculated 26 243 

lidar derived forest structural attributes in raster format at a 10x10 meter resolution. These 244 

include filled canopy volume, canopy porosity, and canopy distribution metrics described in 245 

Hardiman et al. (2013), top of canopy rugosity, and canopy euphotic, oligophotic, and empty 246 

zone metrics described in Lefsky et al. (1999), canopy height metrics described in Shi et al. 247 

(2018), and within canopy rugosity described in Hardiman et al. (2011). All code to calculate 248 

these metrics is provided in the canopyLazR package on our GitHub page 249 

(https://github.com/akamoske/canopyLazR; http://doi.org/10.5281/zenodo.3987340). An overall 250 

diagram of our workflow is shown in Figure 2. 251 

2.5 Hyperspectral Imagery Methods 252 
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We processed the atmospherically corrected, HSI reflectance data before analysis. First, we 253 

removed all flight lines from April 27 due to cloudiness, as well as the horizontal (east-west) 254 

flight lines from April 29 and April 30. The remaining north-south flight lines covered the entire 255 

TALL site (April 29 and April 30 flights covered the same area as the April 27 flights). Next, we 256 

visually identified noisy bands in the dataset and removed all bands that were below 500 nm, 257 

between 1350 and 1450 nm, between 1800 and 2000 nm, and all bands above 2400 nm. We then 258 

calculated a narrowband NDVI mask (red = 674 nm; NIR = 830 nm; NDVI > 0.5) to remove all 259 

non-vegetated pixels from further analysis (Dahlin et al. 2014). We used this relatively high 260 

NDVI value of 0.5 in order to leave only healthy green vegetated pixels during the subsequent 261 

corrections and analysis. We also calculated a brightness mask to remove all shaded pixels using 262 

Tukey’s outlier test (k = 1.5), where all pixels that have a reflectance below this cutoff at 800 nm 263 

are considered outliers and removed. This is a modified version of the methodologies presented 264 

by Clark et al. (2005) and Gougeon (1995), which removes all pixels that are less than the mean 265 

reflectance value at 800nm. Following this, we applied a topographic correction to reduce the 266 

effects of terrain, view, and illumination on the reflectance data by normalizing the sunlit area 267 

within a pixel without changing the sun and sensor positions or the orientation, geometry, and 268 

structure of the canopy while also accounting for diffuse radiation (Soenen et al. 2005). Lastly, 269 

we applied a bidirectional reflectance distribution function effects correction (BRDF) with a 270 

thick Ross kernel and a dense Li kernel to remove the anisotropic scattering properties of 271 

vegetation that result in flight line artifacts (Colgan et al. 2012; Collings et al. 2010; Schlapfer et 272 

al. 2015; Wanner et al. 1995; Weyermann et al. 2015). Annotated R code to apply these 273 

corrections is available on our GitHub page as the hypRspec package 274 

(https://github.com/akamoske/hypRspec; https://zenodo.org/record/3987336). 275 
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From the resulting images, we extracted reflectance data for all top of canopy field 276 

samples. Due to potential image orthorectification errors, GPS uncertainty, and field challenges, 277 

we visually assessed GPS point locations and, when necessary, moved the GPS locations, by 278 

hand, 1-2 meters to the most appropriate pixel based on a canopy height model and pixel 279 

brightness. Due to flight line overlap, many samples had multiple reflectance values. In these 280 

cases, we kept the reflectance data from whichever image produced the brightest total reflectance 281 

across all bands. We choose to take the brightest reflectance value rather than the median here, in 282 

order to filter pixels that were possibly affected by collection issues related to adverse weather 283 

conditions that would not be resolved during the topographic and BRDF correction process. 284 

            Once reflectance spectra for all top of canopy samples (n = 52) were extracted, we 285 

developed PLSR models for top of canopy %N and LMA (Ollinger et al. 2002; Townsend et al. 286 

2003; Singh et al. 2015) using the same methodology and code described for the laboratory data. 287 

For the LMA model, we removed all lab measured LMA values that were greater than 259 g/m2 288 

based on the results from a Tukey’s extreme outlier test (k = 3). This outlier test removed 6 289 

samples from the dataset. We removed these outliers from the dataset prior to fitting our models, 290 

due to PLSR being sensitive to outliers during the calibration and validation process (Martens 291 

and Martens 2000). Once PLSR coefficients were calculated for top of canopy LMA and %N, 292 

we applied them to the corrected HSI data, resulting in a 1x1 meter raster for each trait (%N and 293 

LMA). We then filtered the trait maps to remove all extreme outlier pixels (k = 3) and values less 294 

than 0 from each 1x1 meter raster that result from the errors associated with reflectance values 295 

collected during image collection. This resulted in 0.09% of the pixels being removed from the 296 

final raster. Next, we resampled the mosaicked image to a 10x10 meter spatial resolution using 297 

the mean value within a given kernel, to match the spatial resolution of the lidar derived rasters. 298 
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Following this, we mosaicked the flight line rasters together with the mean of overlapping pixels 299 

used in the final raster. All analysis was performed in the R programming language and is 300 

available on our GitHub page as the hypRspec package (https://github.com/akamoske/hypRspec’ 301 

https://zenodo.org/record/3987336). 302 

2.6 Remote Sensing Fusion: Total Canopy N 303 

To model within canopy LMA, we extracted data from the 26 previously calculated lidar 304 

structural attribute rasters, and top of canopy %N and LMA rasters, for all 156-field sample 305 

locations. We also included the height and depth (e.g. distance from the top of canopy) for each 306 

of the samples in the model. We then removed all top of canopy samples (n = 52) since these 307 

were used in previous steps and were predicted using the HSI data and PLSR. We then tested the 308 

correlation (Pearson’s R) between each variable and within canopy LMA. To avoid 309 

multicollinearity, variables with correlations greater than 0.5 to each other were considered too 310 

correlated and the predictor most correlated with LMA was kept for further analysis. We then 311 

split the dataset into validation data (20%; n = 20) and training data (80%; n = 84) using a 312 

weighted approach based on species sample counts. Using the previously determined variables 313 

we developed an ordinary least squares (OLS) regression model from the training data. To 314 

determine the best combination of variables for our final model predicting within canopy LMA, 315 

we used backwards stepwise AIC model selection (Burnham et al. 2011; Mascaro et al. 2011). 316 

We then applied the resulting coefficients to the validation dataset to examine the overall 317 

predictive accuracy of our model. Because we did not see a substantial variation of within 318 

canopy %N in our data (Appendix S1: Fig.S1) or in the literature (Serbin et al. 2014; Bachofen et 319 

al. 2020), we used top of canopy %N values for our within canopy %N values in lieu of creating 320 

another predictive model. 321 
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            We then applied the final model coefficients to the raster data to create a three-322 

dimensional model of within canopy LMA (g/mL
2), with any value less than zero set to NA (due 323 

to predictive inaccuracy and noise in the raster data). Lastly, we used these three-dimensional 324 

models to calculate within canopy N per meter of ground area (g/mG
2; mG = meter of ground) 325 

using the following equation: 326 

𝑁𝑡𝑜𝑡 = ∑ 𝑁𝑇𝑂𝐶 ∗ 𝐿𝑀𝐴𝑖 ∗ 𝐿𝐴𝐷𝑖

ℎ

𝑖=10

 327 

where Ntot is the total canopy N (g/mG
2) for each 10x10 meter pixel, i refers to each 1 m layer of 328 

the canopy, starting at 10 m (layers below 10 m were not considered in this analysis), h is the 329 

maximum height of each column of voxels, NTOC is the top of canopy N (%), LMAi is the LMA 330 

at each voxel i (g/mL
2) and LADi is the LAD at each voxel i.  This resulted in a two-dimensional 331 

raster for the entire AOP collection area that summarizes functional and structural traits within 332 

the canopy volume. We also calculated foliar biomass using the same equation described above 333 

but withholding the NTOC values. Lastly, we removed all extreme outliers from the raster images 334 

using Tukey’s outlier test (k = 3). All analysis was performed in the R programming language. 335 

2.7 Raster Differences Across Scales 336 

To test whether the distinction between leaf-level and canopy traits was scale dependent, we 337 

tested the differences between the top of canopy and total canopy N rasters at multiple spatial 338 

grains. First, we scaled the original 10x10 meter data to 30x30 and 250x250 meter resolutions to 339 

match Landsat and MODIS pixels using the raster package in R (Hijmans 2019). Next, we 340 

randomly extracted 10,000 points from the 10x10 m and 30x30 m rasters and 1,000 points from 341 

the 250x250 m raster. We then used a linear regression to test the correlations between the two 342 

rasters at each spatial resolution. To compare the spatial patterns of the two rasters, we scaled 343 
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and centered the rasters using the scale function in the raster package and then subtracted the 344 

normalized total canopy N raster from the normalized top of canopy %N raster.  345 

To compare the overall spatial patterns of the two maps, we extracted 10,000 random 346 

points from the top of canopy and total canopy rasters at the 10x10 m resolution and fit 347 

variograms to these samples.  We compared estimates of spatial autocorrelation as well as 348 

differences in the nugget, sill, and range of the variograms. 349 

2.8 Environmental Driver Analysis 350 

To understand the influence of abiotic gradients and management practices on the spatial 351 

patterns of top of canopy %N and total canopy N (g/mG
2), we assessed and analyzed the spatial 352 

patterns of the data, using multiple regression and Moran’s I to test these relationships. 353 

To quantify the abiotic gradients and management practices, we calculated 26 354 

topographic, geologic, and management variables using ArcGIS, QGIS, and R (Appendix S1: 355 

Fig.S7). Topographic variables were calculated from the 10x10 meter lidar data, geologic 356 

variables were downloaded from the USGS (Horton 2017), and management variables were 357 

downloaded from the US Forest Service (https://data.fs.usda.gov/geodata/edw/datasets.php). All 358 

variables were transformed into rasters for subsequent analysis. 359 

We performed a Monte Carlo test with 1,000 simulations to calculate a distribution of 360 

model coefficients, Moran’s I of the residuals, and R2. During each simulation, we extracted 361 

10,000 random points from the rasters. We then standardized all non-binary variables (Gelman 362 

2007; mean = 0, standard deviation = 0.5) to allow direct comparison between model 363 

coefficients. We developed two regression models, one for top of canopy %N and one for total 364 

canopy N (g/mG
2). For each simulation and for each regression model we used the following 365 

methodology. First, we tested the correlation between each variable (Pearson’s R) to avoid 366 



Page 16 

multicollinearity, with correlations greater than 0.5 considered to be too correlated and the 367 

predictor most correlated with N kept for further analysis. Using the remaining variables, we 368 

developed an OLS regression equation. With these results, we used backwards stepwise AIC 369 

model selection to determine the best combination of variables for each of our final models. Any 370 

remaining variables with non-significant coefficients (p-value > 0.05) were then removed. We 371 

then used these variables in a final OLS regression. To test for spatial autocorrelation, we 372 

calculated Moran’s I on the model residuals. All analysis was performed with the R 373 

programming language. 374 

3. RESULTS 375 

3.1 Trait Prediction with PLSR: From Leaf to Canopy 376 

To predict leaf level %N, we used a PLSR model with five components to produce the best 377 

results between training and validation data (Table 1; Appendix S1:  Fig.S3). This model had an 378 

R2 of 0.90 for the training data, an R2 of 0.78 for the validation data, and an R2 of 0.87 when 379 

applied to all the data. All models had a p-value < 0.001. Across the lab-measured %N samples, 380 

values ranged from 0.55 to 2.64% and PLSR-predicted values ranged from 0.40 to 2.64%. For 381 

subsequent steps, we used PLSR-predicted values. 382 

            To predict the top of canopy %N from the HSI data, we used a PLSR model with five 383 

components. This model had an R2 of 0.61 for the training data, an R2 of 0.57 for the validation 384 

data, and an R2 of 0.56 when applied to all the data (Table 1; Appendix S1: Fig.S4). All models 385 

had a p-value < 0.001. After applying the PLSR coefficients across the images and removing 386 

extreme outliers using a Tukey’s outlier test (k = 3), %N values ranged from 0.004 to 3.048% 387 

(Figure 3a), which is comparable to the ranges of %N found in Eastern US temperate forests by 388 

Serbin et al. (2014).  389 
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To predict LMA from the HSI data, we used a PLSR model with eight components. This 390 

model had an R2 of 0.72 for the training data, an R2 of 0.77 for the validation data, and an R2 of 391 

0.73 when applied to all the data (Table 1; Appendix S1: Fig.S5). All models had a p-value < 392 

0.001. Across the field measured samples, LMA values ranged from 20.72 to 326.02 g/mL
2. 393 

After applying the PLSR coefficients to the images and removing extreme outliers using a 394 

Tukey’s outlier test (k = 3), LMA values ranged from 0.041 to 356.7 g/mL
2 (Figure 3b). While 395 

these values are extrapolated outside of the range of values used in our PLSR model, they are 396 

comparable to LMA ranges found globally by Poorter et al. (2009).  397 

3.2 Within Canopy Leaf Traits: Lidar and HSI 398 

To predict within canopy LMA, our final model consists of four lidar-derived metrics. These 399 

metrics included top of canopy %N, sample height, euphotic zone depth, and standard deviation 400 

of LAD within a column of voxels. Our final model for within canopy LMA had an R2 of 0.51 401 

for the training data and an R2 of 0.50 for our validation data (Appendix S1: Fig.S6). Both 402 

models had a p-value < 0.001. 403 

After summing all within canopy values we calculated the total amount of N (g/mG
2; 404 

Figure 4), foliar biomass (g/mG
2; Figure 3d), and LAI (mL

2/mG
2; Figure 3c) for each pixel. We 405 

then removed extreme outliers using Tukey’s outlier test (k = 3). Values greater than 15 g/mG
2 406 

were removed from the total canopy N raster (0.03% of raster pixels), values greater than 2465 407 

g/mG
2  were removed from the foliar biomass raster (0.46% of raster pixels), and values greater 408 

that 7 mL
2/mG

2 were removed from the LAI raster (0.03% of raster pixels). 409 

To illustrate the differences in canopy profiles of within canopy N (g/mG
3) we extracted 410 

data from the total canopy rasters using the GPS locations of a white oak (Figure 4a) and 411 

longleaf pine (Figure 4b) sample from our field data. The total amount of N in the white oak 412 
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sample was 6.99 g/mG
2 while there was 7.93 g/mG

2 in the canopy of the longleaf pine sample. 413 

Moreover, the profiles of each sample illustrate differing within canopy allocation strategies for 414 

the two species. 415 

3.3 Top of Canopy and Total Canopy N: Differing Spatial Patterns 416 

After normalizing (mean = 0, SD = 1) the top of canopy %N and total canopy N (g/mG
2) rasters 417 

for equal comparison, there was no relationship between the two variables at any of the spatial 418 

resolutions, showing that these differences are not scale dependent (Figure 5, panels a, b, & c). 419 

Prior to normalization, we used linear regression to test the relationship between the two 420 

variables at each spatial resolution (Figure 5, panels d, e, & f). All linear regressions were 421 

significant (p-value < 0.05), but the largest R2 value was 0.02 showing a very weak relationship 422 

between top of canopy and total canopy N across spatial resolutions. This lack of relationship 423 

shows that as data is aggregated together at coarser spatial resolutions, resulting in pixels 424 

containing multiple PFTs rather than single species, there are still distinct differences between 425 

top of canopy and total canopy N. 426 

 To assess differences in spatial patterns across the landscape, we calculated variograms 427 

for the top of canopy %N and total canopy N (g/mG
2) datasets (Figure 6). A comparison of 428 

Moran’s I values for the two normalized (mean = 0, SD = 1) datasets showed that the top of 429 

canopy %N map was substantially more spatially autocorrelated (Moran’s I = 0.026) than the 430 

total canopy N map (Moran’s I = 0.014). For the non-normalized datasets, top of canopy %N 431 

samples exhibit spatial autocorrelation up to a distance of 1200 meters, while total canopy N 432 

(g/mG
2) samples are spatially autocorrelated up to a distance of 700 meters. Partial sill 433 

measurements also differ substantially, showing differences in variability between pairs of 434 

points, with top of canopy %N having a value of 0.23 and total canopy N (g/mG
2) having a value 435 
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of 0.09. The shapes of the variograms indicate that top of canopy %N is grouped into clusters of 436 

similar values (lower nugget, longer range), while the total canopy N values are more evenly 437 

distributed (higher nugget, shorter range). 438 

3.4 Regional Patterns and Environmental Drivers: Assessing Spatial Structure 439 

Elevation visually appeared to be a strong driver of leaf trait spatial distributions in our maps 440 

(Figure 3). To quantify this relationship, we looked at the influence of elevation on top of canopy 441 

%N, total canopy N (g/mG
2), and the normalized difference between these two datasets (Figure 442 

7). Top of canopy %N was related to elevation (R2 = 0.13), while total canopy N (g/mG
2) was not 443 

related to elevation (p > 0.05). Therefore, the correlation between the normalized difference of 444 

these two estimates and elevation (R2 = 0.06) is mostly due to the stronger correlation between 445 

elevation and top of canopy %N.  446 

To more broadly understand the effects of abiotic gradients and management regimes on 447 

leaf and canopy functional traits, we performed a Monte Carlo simulation on the abiotic and 448 

management rasters to compile a distribution of results. Models predicting top of canopy %N 449 

had a mean R2 of 0.24 with a standard deviation of 0.009. Eleven of the predictors appeared in 450 

over 20% of the models (Fig. 8), seven variables appeared in no models, and 7 variables 451 

appeared in all the models (Table 2). The only major topographic predictor (coefficient > 0.1) 452 

with a positive coefficient was soil wetness index (SWI), while major topographic predictors 453 

with a negative coefficient included elevation (DTM), solar radiation at the winter solstice 454 

(SR.WS), and TPI (topographic position index). The only major geologic predictor (coefficient > 455 

0.1) with a negative coefficient was Coker substrate, while Eutaw substrate had a positive 456 

coefficient and was a major geologic predictor. The only major management variable (coefficient 457 

> 0.1) was areas burned in 2018 and it had a negative coefficient.  458 
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 Total canopy N (g/mG
2) models had a mean R2 of 0.03 with a standard deviation of 0.003. 459 

Eleven of the predictors appeared in over 20% of the models (Fig. 8), 4 variables appeared in no 460 

models and 2 variables appeared in all the models (Table 2). Solar radiation at the summer 461 

solstice was the only major topographic predictor (coefficient > 0.1) with a negative coefficient, 462 

while the only major topographic predictor with a positive coefficient was distance from western 463 

collection boundary (easting). Alluvial substrate was the only major geologic predictor 464 

(coefficient > 0.1) and it had a positive coefficient. There were no major management 465 

(coefficient > 0.1) predictors in the total canopy regressions. 466 

For both regression models many of the management variables appeared in only a small 467 

percentage of the total models. This is because these management practices were only completed 468 

across a small fraction of the entire landscape, and these areas were not randomly sampled in 469 

each iteration of the Monte Carlo simulation. 470 

The residuals of both regression models exhibited some spatial autocorrelation with top 471 

of canopy %N having a mean Moran’s I of 0.03 with a standard deviation of 0.001 and total 472 

canopy N (g/mG
2) having a mean Moran’s I of 0.008 with a standard deviation of 0.0006. While 473 

this spatial autocorrelation of the residuals would indicate that there is a trend present that we are 474 

not capturing, the aim of these regression was not predictive, but instead to compare the 475 

influence of these abiotic and management variables between the two functional traits estimates.  476 

4. DISCUSSION 477 

We used airborne remote sensing and field-collected trait data to show that when three-478 

dimensional forest structure is considered, different patterns of N appear across this landscape 479 

than are produced by two-dimensional top of canopy functional trait estimates. This analysis 480 

demonstrates that canopy functional diversity is not equivalent to leaf functional diversity, which 481 
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illustrates the dampened variation in total canopy N between PFTs and across this landscape 482 

when compared to the heterogeneous spatial patterns produced by leaf functional diversity. This 483 

suggests that these two measurements correspond to different ecological processes and that 484 

relationships between plant carbon assimilation and leaf functional traits must be considered in 485 

the context of canopy vertical structural heterogeneity. 486 

4.1 Scaling and Mapping Leaf and Canopy Traits 487 

Many studies have used HSI data to estimate plant functional traits and lidar data to measure 488 

forest structure, with much success across a wide variety of ecoregions (Dahlin et al. 2013; 489 

Asner et al. 2015; Stark et al. 2015; Smith et al. 2019). By combining 3D structural traits from 490 

lidar and 2D functional traits from HSI, we show that a fusion of these two data types can be 491 

used to model traits within the canopy volume. Moreover, our findings are within the ranges 492 

reported in field-based studies for LAD (Parker and Tibbs, 2003; Brown and Parker, 2004), %N 493 

(Serbin et al. 2014), LMA (g/mL
2; Poorter et al. 2009), and total canopy N (g/mG

2; Cole and 494 

Rapp 1981; Fig. 9). 495 

Our study focuses on an ecoregion consisting of closed-canopy broadleaf stands and 496 

sparser needleleaf forests, with our within-canopy trait estimates being reliable across these two 497 

plant functional types (PFTs). In addition, our within-canopy model utilizes variables related to 498 

the differences in PFTs (top of canopy %N), the local light environment (standard deviation of 499 

LAD within a column of voxels), and light capture (euphotic zone depth). These variables have 500 

been shown to be critical to canopy level processes (Field and Mooney 1986; Hardiman et al. 501 

2001; Lefsky et al. 1999). 502 
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While our results show that we can accurately model foliar functional traits within the 503 

canopy volume in this ecosystem, more research is needed in different biomes to test the ability 504 

of HSI and lidar to accurately estimate within-canopy traits. 505 

4.2 Measuring Ecosystem Function: Top of Canopy %N vs. Total Canopy N 506 

While both foliar N and LMA have been identified as key drivers of plant functional diversity 507 

(Díaz et al. 2016) and have shown strong correlations with leaf photosynthesis in temperate 508 

ecosystems (Field and Mooney 1986; Evans 1989), we show that the spatial patterns of leaf-level 509 

top of canopy %N are not equivalent to those of total canopy N (g/mG
2). Top of canopy leaf-level 510 

traits reflect key differences between PFTs, with needleleaf species exhibiting low %N and high 511 

LMA, while broadleaf species have higher %N and lower LMA (Appendix S1: Fig.S1). These 512 

fundamental differences in functional and structural traits between PFTs produce distinct 513 

dendritic patterns across this landscape corresponding to topographic features including 514 

drainages, which are dominated by broadleaf species, and slopes and ridges, which are 515 

dominated by pines (Fig. 3a, b. c. & d). However, when three-dimensional canopy structure is 516 

considered (i.e. total canopy N), these distinct landscape patterns are dampened (Fig. 4). 517 

Fig. 7 further shows that these distinct spatial patterns related to elevation are not 518 

reflected in our estimates of total canopy N (g/mG
2). This may suggest that canopy architectural 519 

differences between PFTs are causing unique distributions of N within the canopies of individual 520 

trees (Fig. 4a & b), and that these differences represent trade-offs since different PFTs exhibit 521 

similar total quantities of N (g/mG
2) in their canopies (Fig. 9). In this case, differences over a leaf 522 

function-structural architecture trade-off produces the dampened spatial patterns we see in this 523 

landscape (Fig. 4).  524 
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Given the importance of N for photosynthesis, these dampened spatial patterns may not 525 

be surprising. By varying LMA, individual trees will distribute N (g/mL
2) throughout their 526 

canopies in ways to maximize their nitrogen use efficiency, utilizing as much of the available N 527 

(g/mG
2) as possible. Lower total N (g/mG

2) within the canopy volume would imply lower 528 

production, a disadvantage that would be hard to reconcile between PFTs in the same ecosystem. 529 

While N-fixing trees could change these patterns, we observed no N-fixing trees in this 530 

landscape and overall, this area appears to have low N-fixing tree abundance (Staccone et al. 531 

2020).  532 

4.3 Abiotic and Management Drivers of Foliar and Canopy N 533 

Following community assembly theory (Keddy 1992), abiotic drivers have been shown to predict 534 

species and leaf trait distributions within landscapes with both remote sensing and field 535 

observations (Dahlin et al. 2012; Kraft et al. 2008). We show that these same types of drivers can 536 

be used to predict top of canopy %N in this system, but not total canopy N (g/mG
2).  537 

 Top of canopy %N patterns have consistently strong topographic, substrate, and 538 

management predictors, with many of these predictors being related to the distribution of PFTs 539 

across this landscape. For example, higher elevation areas that receive more solar radiation 540 

during the winter months and that were treated with a prescribed burn in 2018 prior to NEON 541 

AOP flights had consistently lower top of canopy %N values. This describes the spatial 542 

distribution of needleleaf species in this ecosystem. Conversely, lower elevation areas with a 543 

high soil water content had consistently higher top of canopy %N values, describing the 544 

distribution of broadleaf species in this environment. These relationships suggest that the spatial 545 

patterns of top of canopy %N are closely related to the spatial distribution of species within this 546 

ecosystem.  547 
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In contrast, variables related primarily to forest structural changes and water availability 548 

were the main drivers of total canopy N (g/mG
2), even though these relationships were 549 

considerably weaker, though still significant. For instance, areas that had been clear-cut, thinned, 550 

or burned had lower total canopy N (g/mG
2) estimates than areas that did not have a documented 551 

management history. This relationship is most likely due to management activities resulting in 552 

significant structural changes to forest stands and the removal of foliar biomass during these 553 

activities. Furthermore, areas that received high solar radiation in the summer months also had 554 

lower estimates of total canopy N (g/mG
2). This could be due to microclimatic effects. Water 555 

stress in these sunnier, drier areas may cause a reduction in growth and, therefore, total canopy N 556 

(g/mG
2), as light availability is not likely to be a limiting factor in this system. 557 

4.4 Model Uncertainty and Data Concerns 558 

There are many possible sources of error and uncertainty to consider when scaling traits from 559 

leaf to landscape, including those related to field and GPS collections, laboratory equipment, 560 

remote sensing sensors, and statistical methodologies. While we did not conduct a formal 561 

assessment of uncertainty as it propagates through this study, our findings are within the ranges 562 

reported in many field-based studies (see section 4.1). Our final PLSR models did show a 563 

systematic bias of slightly underestimating N and LMA in needleleaf species (Appendix S1: Fig. 564 

S3 and Fig. S4), which could partially explain the differing landscape-scale relationships 565 

between total canopy and top of canopy N. This could possibly be improved by the inclusion of 566 

forest structure metrics such as LAI in the PLSR models. However, due to the low density lidar 567 

data we are forced to estimate structural traits at a coarser spatial resolution (10x10 meters) than 568 

the HSI data (1x1 meter). Because some field samples are closer than 10 meters to one another, 569 

and thus exist within the same pixel, the inclusion of structural traits did not correct this bias. 570 
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While understory shade tolerant plants play an important role in ecosystem functioning 571 

(Valladares et al. 2016), we ignored the lowest 10 meters of the forest canopy where many of 572 

these species occur due to limitations with the lidar data from the NEON AOP (Kamoske et al. 573 

2019). As current lidar sensors within the NEON AOP are upgraded, we will be able to ask 574 

important questions about the role of the understory in ecosystem functioning.  575 

In this study we only considered healthy green forest vegetation, which may partially 576 

explain the weaker relationships between environmental variables and canopy functional and 577 

structural traits. More research is needed into how HSI and PLSR perform in stressed terrestrial 578 

environments and across more heterogeneous landscapes. 579 

The development of a universal model to predict leaf- and canopy-level traits was beyond 580 

the scope of this project; however, as more within-canopy foliar traits are collected across a 581 

diversity of ecosystems, PFTs, and tree species, these models will become more robust and can 582 

be applied to other regions. 583 

4.5 Looking Forward 584 

With airborne and spaceborne platforms like the NEON AOP, NASA Goddard’s Lidar, 585 

Hyperspectral, & Thermal Imager (G-LiHT; Cook et al. 2013), the Global Ecosystem Dynamics 586 

Investigation (GEDI; Stavros et al. 2017), and the proposed Surface Biology and Geology 587 

Mission (SBG; National Academies of Sciences, Engineering, and Medicine 2018) collecting 588 

HSI and lidar data across a variety of ecoregions, there is a unique opportunity for researchers to 589 

ask and answer questions related to how forest canopies function across landscapes and 590 

continents, rather than just the leaves at the top of the canopy.  591 

In support of these new questions about ecosystem function, we present a reproducible 592 

methodology to model foliar traits throughout the entire canopy volume. We also show that the 593 
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spatial patterns produced by traditional top of canopy measurements of %N are dramatically 594 

different than those produced when three-dimensional forest structure is considered. While more 595 

research is needed to test these relationships in different ecoregions and across latitudinal 596 

gradients, this ever-increasing availability of HSI and lidar data will provide new and exciting 597 

opportunities.  598 

These opportunities may raise several questions about the drivers of canopy function. For 599 

example: A) What is the role of soil nutrient availability and heterogeneity in canopy function? 600 

and B) How are these relationships affected by latitudinal gradients and climate regimes? Further 601 

research is needed into these questions to better understand the drivers behind ecosystem 602 

functioning in horizontal and vertical space as well as through time. 603 

5. CONCLUSIONS 604 

Forest structural and functional diversity drive critical canopy processes related to carbon 605 

sequestration; however, structure and function are rarely considered in unison at ecosystem 606 

scales. Here we show that when forest structure is considered, the patterns produced by the total 607 

amount of N (g/m2) within the canopy volume are substantially different from the patterns 608 

produced by top of canopy %N. Furthermore, since total canopy N variation is dampened 609 

relative to leaf-level variation over a landscape characterized by variable PFT dominance, we 610 

find evidence of canopy architecture and leaf function tradeoffs. Patterns of total N are driven by 611 

different abiotic gradients and management regimes, further showing the differences between 612 

these two estimates of ecosystem function.  613 

These differing spatial patterns, as well as differing abiotic and management drivers, 614 

show that canopy functional diversity is not equivalent to leaf functional diversity. By not 615 

considering structure and function together, there could be impacts on how we scale fine-616 
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resolution ecological processes to landscape, continental, and global models. However, with new 617 

space- and airborne remote sensing platforms collecting HSI and lidar data across a variety of 618 

ecoregions, we have an opportunity to think about the terrestrial carbon cycle in three 619 

dimensions. This new approach will potentially unlock important insights into how forests 620 

function in a time of rapid anthropogenic and environmental change. 621 
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7. DATA AVAILABILITY  631 

Lidar and HSI data are available at: http://data.neonscience.org. R package to estimate structural 632 

traits from airborne LiDAR data is provided through our GitHub at: 633 

https://github.com/akamoske/canopyLazR and as a stable DOI at 634 

http://doi.org/10.5281/zenodo.3987340. R package to pre-process HSI data, extract reflectance 635 

data, and apply PLSR coefficients is provided through our GitHub at: 636 

https://github.com/akamoske/hypRspec and as a stable DOI at 637 

https://zenodo.org/record/3987336. Reflectance spectra and trait data are available through the 638 

ECOSIS database at: https://data.ecosis.org/dataset/2018-talladega-national-forest--leaf-level-639 
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reflectance-spectra-and-foliar-traits. Laboratory measured trait data are available through the 640 

TRY database (dataset ID = 714) at: www.try-db.org. 641 
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 896 

9. Tables 897 

 898 

  

Training 

Data 

Validation 

Data 

All 

Data 

Lab %N PLSR 0.9 0.78 0.87 

HSI %N PLSR 0.61 0.57 0.56 

HSI LMA PLSR 0.72 0.77 0.73 

 899 

Table 1. PLSR model results (R2). All models have p-values <0.001. 900 
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 917 

  Top of Canopy Total Canopy 

  

Mean 

Coefficient 

Standard 

Deviation 

Models 

Present 

(%) 

Mean 

Coefficient 

Standard 

Deviation 

Models 

Present 

(%) 

T
O

P
O

G
R

A
P

H
IC

 

DTM -0.259 0.027 100.0 -0.057 0.013 99.8 

Easting 0.047 0.023 30.9 0.114 0.013 100.0 

Eastness 0.044 0.009 99.8 0.024 0.005 20.9 

Flow 

Accumulation 
0.023 0.004 35.3 -0.017 0.018 11.2 

Northing 0.047 0.017 85.1 -0.034 0.009 70.0 

Northness NA  NA 0.0 0.027 0.006 4.7 

Surface Roughness NA  NA 0.0 NA  NA 0.0 

Slope NA  NA 0.0 NA  NA 0.0 

Solar Radiation – 

Summer Solstice 
NA  NA 0.0 -0.111 0.013 100.0 

Solar Radiation – 

Winter Solstice 
-0.249 0.011 100.0 -0.032 0.007 44.3 

Soil Wetness Index 0.178 0.009 100.0 NA  NA 0.0 

Topographic 

Position Index 
-0.162 0.009 100.0 -0.040 0.009 97.1 

Topographic 

Ruggedness Index 
NA  NA 0.0 NA  NA 0.0 

G
E

O
L

O
G

IC
 

Alluvial -0.091 0.151 1.3 0.153 0.158 8.3 

Coker -0.144 0.015 18.1 -0.065 0.017 86.6 

Eutaw 0.146 0.013 18.1 0.021 0.036 5.7 

Gordo -0.023 0.008 7.9 0.038 0.009 7.6 

M
A

N
A

G
E

M
E

N
T

 

Prescribed Burn 

2018 
-0.157 0.014 100.0 0.034 0.020 3.0 

Times Burned NA  NA 0.0 0.025 0.010 7.8 

Years Since Last 

Burn 
-0.071 0.010 100.0 -0.036 0.010 90.9 

Times Chemically 

Treated 
-0.009 0.020 4.8 -0.017 0.017 4.3 

Years Since Last 

Chemical 

Treatment 

-0.021 0.003 2.1 -0.002 0.023 2.5 

Times Clearcut -0.013 0.020 7.5 -0.015 0.019 2.4 

Years Since Last 

Clearcut 
-0.023 0.008 17.3 -0.024 0.004 24.6 

Times Thinned -0.052 0.009 100.0 -0.046 0.009 98.2 

Years Since Last 

Thinning 
NA  NA 0.0 -0.041 0.006 1.8 
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 918 

Table 2. Mean standardized coefficients (mean = 0, SD = 0.5), standard deviation of 919 

coefficients, and percent of models each variable was present from Monte Carlo simulations. All 920 

coefficients have a p-value of <0.05.  921 
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10. Figures Captions 941 

 942 

Fig. 1. Location of field site. Purple rectangle represents the extent of the aerial data collection of 943 

the NEON AOP. Inset map shows the extent of the larger map view within the southeastern 944 

United States. 945 
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 964 

Fig. 2. Workflow diagram showing our methodology for within canopy trait modeling. LAD = 965 

leaf area density (mL
2/mG

3), LMA = leaf mass per area (g/mL
-2), N = foliar nitrogen content (g 966 

N/g leaf %), total canopy N = total canopy nitrogen content (g/m2). Field collected sunlit top of 967 

canopy %N & LMA refers to leaf samples that were collected at the top of the canopy, were 968 

constantly sunlit, and had no leaves above (i.e. no sun impediment). Field collected within 969 

canopy %N & LMA refer to leaf samples that were collected within the canopy (i.e. not 970 

constantly sunlit, shaded, and with other leaves surrounding them). 971 
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 987 

Fig. 3. Maps of functional and structural traits derived from NEON AOP HSI and lidar data. 988 

TOC = top of canopy; mL
2 refers to square meters of leaf material, while mG

2 refers to square 989 

meters of ground. Call out circle is a 1km radius around the NEON flux tower at this site, shown 990 

as a star. 991 
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 1010 

Fig. 4. Map of total canopy N (g/mG
2) and within canopy N (g/mG3) profiles from white oak 1011 

(total foliar N = 6.99 g/mG
2) and longleaf pine (total foliar N = 7.93 g/mG

2). Locations were 1012 

extracted based on the GPS positions of field samples. Call out circle is a 1km radius around the 1013 

NEON flux tower at this site, show as a star. 1014 
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 1033 

Fig. 5. Maps of the scaled and centered differences between top of canopy %N and total canopy 1034 

N (g/mG
2) at three different spatial resolutions: 10x10 m (NEON AOP lidar), 30x30 m (Landsat), 1035 

250x250 m (MODIS). Regression results showing no relationship between the two 1036 

measurements. 1037 
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 1056 

Fig. 6. Variograms for normalized (mean = 0, SD = 1) Top of Canopy %N and Total Canopy N 1057 

(g/mG
2). 10,000 random samples were extracted from both datasets.  1058 
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 1079 

Fig. 7. Heatmaps showing the relationship between top of canopy %N, total canopy N (g/mG
2), 1080 

the normalized difference between these two measurements, and elevation. Y-axis units for each 1081 

plot is given at the top of the plot. 1082 
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 1102 

Fig. 8. Coefficients from standardized variables (mean = 0, SD = 0.5) from Monte Carlo 1103 

simulations with variables that appeared in at least 20% of the regressions. All coefficients have 1104 

a p-value of <0.05.  1105 
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 1125 

Fig. 9. North American Foliar N values vs. TALL Foliar N values. TC = Temperate Coniferous, 1126 

TD = Temperate Deciduous. North American N (NA) values come from Cole and Rapp (1981). 1127 

Because our values calculated at TALL do not include the lowest 10 meters of the canopy, 1128 

ANOVA results (p < 0.001) show a significant difference between NA and TALL values but not 1129 

between Forest Types (TC and TD). 1130 
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11. Figures 1148 
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Figure. 1.  1151 

 1152 

 1153 

 1154 

 1155 

 1156 

 1157 

 1158 

 1159 

 1160 

 1161 

 1162 



Page 54 

 1163 

 1164 

Fig. 2 1165 

 1166 

 1167 

 1168 

 1169 



Page 55 

 1170 

 1171 

 1172 

Fig. 3 1173 

 1174 

 1175 

 1176 

 1177 

 1178 

 1179 

 1180 

 1181 



Page 56 

 1182 

 1183 

 1184 

Fig. 4 1185 

 1186 

 1187 

 1188 

 1189 

 1190 

 1191 

 1192 



Page 57 

 1193 

 1194 

Fig. 5 1195 

 1196 

 1197 

 1198 

 1199 

 1200 

 1201 

 1202 

 1203 

 1204 

 1205 

 1206 



Page 58 

 1207 

 1208 

 1209 

Fig. 6 1210 

 1211 

 1212 

 1213 

 1214 

 1215 

 1216 

 1217 

 1218 

 1219 

 1220 

 1221 

 1222 

 1223 

 1224 



Page 59 

 1225 

 1226 

Fig. 7 1227 

 1228 

 1229 

 1230 

 1231 

 1232 

 1233 

 1234 

 1235 

 1236 

 1237 

 1238 

 1239 

 1240 

 1241 

 1242 



Page 60 

 1243 

 1244 

 1245 

Fig. 8 1246 

 1247 

 1248 

 1249 

 1250 

 1251 

 1252 

 1253 

 1254 



Page 61 

 1255 

 1256 

 1257 

Fig. 9 1258 

 1259 

 1260 

 1261 

 1262 

 1263 

 1264 

 1265 

 1266 



 

 

Appendix S1 1 

 2 

Manuscript Title 3 

Leaf traits and canopy structure together explain canopy functional diversity: an airborne remote 4 

sensing approach 5 

 6 

Author names and affiliations 7 

Aaron G. Kamoskea (corresponding author), Kyla M. Dahlina,b, Shawn P. Serbinc, Scott C. Starkd 8 

a Michigan State University, Department of Geography, Environment, & Spatial Sciences 9 

673 Auditorium Rd. #116, East Lansing, MI 48824 10 

b Michigan State University, Program in Ecology, Evolutionary Biology, & Behavior 11 

103 Giltner Hall, 293 Farm Lane #103, East Lansing, MI 48824 12 

c Brookhaven National Laboratory, Environmental and Climate Sciences Department  13 

98 Rochester St, Upton, NY 11973 14 

d Michigan State University, Department of Forestry 15 

480 Wilson Rd #126., East Lansing, MI 48824 16 

 17 

Journal Name 18 

Ecological Applications 19 

 20 

 21 

 22 

 23 



Page 1 

 24 

 25 

 26 

 27 

Fig. S1. Field data from TALL showing within canopy variation of LMA and %N. Canopy 28 

positions (Bottom, Middle, Top) were designated via visual assessment in the field. 29 
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 38 

 39 

 Bottom Middle Top All  

 %N LMA %N LMA %N LMA %N LMA 

Carya glabra - pignut 
hickory 

1.71 ± 
0.43 

47.7 ± 
10.69 

1.98 ± 
0.06 

48.28 ± 
5.24 

1.91 ± 
0.2 

90.29 ± 
18.93 

1.94 ± 
0.18 

53.59 ± 
16.53 

Carya tomentosa -
mockernut hickory 

1.95 ± 
0.15 

54.83 ± 
13.88 

1.96 ± 
0.11 

55.8 ± 
10.11 

1.86 ± 
0.18 

72.5 ± 
17.1 

1.93 ± 
0.15 

60.72 ± 
15.2 

Liquidambar styraciflua - 
sweetgum 

2.04 ± 
0.22 

42.41 ± 
9.11 

2.12 ± 
0.15 

52.98 ± 
10.75 

1.85 ± 
0.42 

78.61 ± 
8.41 

2 ± 
0.29 

58 ± 
18.01 

Liriodendron tulipifera - 
tulip tree 

2.48 ± 
0.13 

45.77 ± 
8.15 

2.49 ± 
0.09 

52.78 ± 
8.7 

2.25 ± 
0.12 

64.42 ± 
13.37 

2.41 ± 
0.16 

54.33 ± 
12.45 

Pinus palustris - longleaf 
pine 

0.99 ± 
0.29 

260.81 ± 
27.96 

0.83 ± 
0.34 

291.18 ± 
42.26 

0.72 ± 
0.26 

281.82 ± 
25.47 

0.86 ± 
0.3 

276.86 ± 
33.01 

Pinus taeda - loblolly pine 
1.06 ± 
0.24 

235.75 ± 
56.97 

0.96 ± 
0.29 

225.36 ± 
14.15 

1.1 ± 
0.18 

253.72 ± 
25.74 

1.04 ± 
0.23 

239.24 ± 
35.94 

Quercus alba - white oak 
1.92 ± 

0.1 
57.13 ± 

2.31 
1.87 ± 
0.15 

66.02 ± 
9.03 

1.78 ± 
0.12 

82.15 ± 
9.24 

1.86 ± 
0.13 

68.43 ± 
12.81 

Quercus falcata - Southern 
red oak 

1.81 ± 
0.28 

53.11 ± 
6.47 

2 ± 
0.13 

78.54 ± 
14.33 

1.88 ± 
0.2 

90.89 ± 
7.2 

1.9 ± 
0.21 

74.18 ± 
18.71 

Quercus marilandica - 
blackjack oak 

1.83 ± 
0.12 

76.52 ± 
19.18 

1.87 ± 
0.11 

94.46 ± 
21.19 

1.61 ± 
0.17 

111.82 ± 
17.51 

1.77 ± 
0.17 

94.26 ± 
23.31 

Quercus montana - 
chestnut oak 

1.97 ± 
0.12 

47.95 ± 
6.68 

2.06 ± 
0.1 

54.89 ± 
15.37 

1.99 ± 
0.19 

77.23 ± 
14.1 

2.01 ± 
0.14 

60.02 ± 
17.44 

 40 

Fig. S2. Mean and SD for field samples (%N and LMA), categorized by general position in the 41 

canopy which was determined by visual assessment. 42 
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 52 

Fig. S3. PLSR output from laboratory %N estimation. 53 
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 58 

Fig. S4. PLSR output from HSI %N estimation. 59 
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 61 

Fig. S5. PLSR output from HSI LMA estimation. 62 
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 65 

Fig. S6. Output from within-canopy trait prediction model: observed vs. predicted. 66 
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 76 

 Variable Source 

To
p

o
gr

ap
h

ic
 V

ar
ia

b
le

s 

Digital Terrain Model NEON AOP LiDAR; R programming language 

Eastness - Aspect NEON AOP LiDAR; QGIS programming language 

Flow Accumulation NEON AOP LiDAR; ArcGIS programming language 

Meters from Northern Collection Boundary NEON AOP LiDAR; R programming language 

Meters from Western Collection Boundary NEON AOP LiDAR; R programming language 

Northness - Aspect NEON AOP LiDAR; QGIS programming language 

Slope NEON AOP LiDAR; QGIS programming language 

Soil Wetness Index NEON AOP LiDAR; QGIS programming language 

Solar Radiation - Summer Solstice NEON AOP LiDAR; ArcGIS programming language 

Solar Radiation - Winter Solstice NEON AOP LiDAR; ArcGIS programming language 

Surface Roughness NEON AOP LiDAR; QGIS programming language 

Topographic Position Index NEON AOP LiDAR; R programming language 

Topographic Roughness Index NEON AOP LiDAR; R programming language 

G
e

o
lo

gi
c 

V
ar

ia
b

le
s Alluvial Substrate Horton 2017; https://doi.org/10.5066/F7WH2N65 

Coker Substrate Horton 2017; https://doi.org/10.5066/F7WH2N65 

Eutaw Substrate Horton 2017; https://doi.org/10.5066/F7WH2N65 

Gordo Substate Horton 2017; https://doi.org/10.5066/F7WH2N65 

M
an

ag
e

m
e

n
t 

V
ar

ia
b

le
s 

Area burned in 2018 before NEON AOP 
flights 

US Forest Service: 
https://data.fs.usda.gov/geodata/edw/datasets.php 

Times burned since 2007 (first year of data) 
US Forest Service: 

https://data.fs.usda.gov/geodata/edw/datasets.php 

Times chemically treated since 2011 (first 
year of data) 

US Forest Service: 
https://data.fs.usda.gov/geodata/edw/datasets.php 

Times clear cut since 1991 (first year of 
data) 

US Forest Service: 
https://data.fs.usda.gov/geodata/edw/datasets.php 

Times thinned since 1993 (first year of data) 
US Forest Service: 

https://data.fs.usda.gov/geodata/edw/datasets.php 

Years since last chemical treatment 
US Forest Service: 

https://data.fs.usda.gov/geodata/edw/datasets.php 

Years since last clear cut 
US Forest Service: 

https://data.fs.usda.gov/geodata/edw/datasets.php 

Years since last forest thinning treatment 
US Forest Service: 

https://data.fs.usda.gov/geodata/edw/datasets.php 

Years since last prescribed burn 
US Forest Service: 

https://data.fs.usda.gov/geodata/edw/datasets.php 
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Fig. S7. Names and references for abiotic and management variables. 78 
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Fig. S8. Top Figure shows the relationship between LAI derived from hemispherical 87 

photographs and raw LAI derived from lidar, used to calculate a Beer Lambert extinction 88 

coefficient (R2 = 0.7181). Bottom figure shows the relationship between Beer-Lambert adjusted 89 

LAI derived from lidar and LAI derived from hemispherical photographs (R2 = 0.8629). LAD is 90 

calculated as the following: 91 

 92 

Within each voxel, LAD is estimated as:  93 

𝐿𝐴𝐷𝑖−1,𝑖 = 𝑙𝑛⁡ (
𝑆𝑒
𝑆𝑡
)

1

𝑘∆𝑧
 94 

where for each vertical column of voxels, i is a voxel in a sequentially ordered vertical column of 95 

the canopy, Se is the number of pulses entering the given voxel, St is the number of pulses exiting 96 

the same voxel, k is an extinction coefficient, and z represents the height of a voxel. Together, the 97 

term 1/k∆𝑧 represents a Beer-Lambert Law extinction coefficient, which relates reflectance and 98 

absorbance of light to the thickness and angle of a surface. Thus, as the canopy becomes denser 99 

and more leaves are encountered, the penetration of LiDAR pulses will diminish causing sample 100 

sizes for estimating LAD to decrease and error to increase.  101 

 102 


