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Abstract 30 

Mechanistic photosynthesis models are at the heart of terrestrial biosphere models (TBMs) 31 

simulating the daily, monthly, annual, and decadal rhythms of carbon assimilation (A). These models 32 

are founded on robust mathematical hypotheses that describe how A responds to changes in light and 33 

atmospheric CO2 concentration. Two predominant photosynthesis models are in common usage: 34 

Farquhar (FvCB) and Collatz (CBGB). However, a detailed quantitative comparison of these two 35 

models has never been undertaken. In this study, we unify the FvCB and CBGB models to a common 36 

parameter set and use novel multi-hypothesis methods (that account for both hypothesis and parameter 37 

variability) for process-level sensitivity analysis. These models represent three key biological 38 

processes: carboxylation, electron transport, triose phosphate utilization (TPU), and an additional 39 

model process: limiting rate selection. Each of the four processes comprises 1-3 alternative hypotheses 40 

giving 12 possible individual models with a total of 14 parameters. To broaden inference, TBM 41 

simulations were run and novel, high-resolution photosynthesis measurements were made. We show 42 

that parameters associated with carboxylation are the most influential parameters but also reveal the 43 

surprising and marked dominance of the limiting-rate selection process (accounting for 57 % of the 44 

variation in A versus 22 % for carboxylation). The limiting-rate selection assumption proposed by 45 

CBGB smooths the transition between limiting rates and always reduces A below the minimum of all 46 

potentially limiting rates, by up to 25 %, effectively imposing a fourth limitation on A. Evaluation of 47 

the CBGB smoothing function in three TBMs demonstrated a reduction in global A by 4-10 %, 48 

equivalent to 50-160 % of current annual fossil fuel emissions. This analysis reveals a surprising and 49 

previously unquantified influence of a process that has been integral to many TBMs for decades, 50 

highlighting the value of multi-hypothesis methods. 51 

 52 

Key words: photosynthesis, terrestrial biosphere model, multi-hypothesis modeling, carbon 53 

assimilation, process sensitivity analysis, high-resolution A-Ci curve     54 



Introduction 55 

As the gateway for carbon entry into terrestrial ecosystems, photosynthesis plays the keystone 56 

role in the biosphere of transferring atmospheric CO2 into terrestrial ecosystems. Since its inception 40 57 

years ago the Farquhar et al. (1980; hereafter FvCB) model of C3 photosynthesis has revolutionized 58 

photosynthesis research (>5,000 citations, at time of writing). The FvCB model describes 59 

photosynthetic carbon assimilation (A) using a set of mathematically-described hypotheses that 60 

represent the enzymatic sub-processes of photosynthesis and their integration, including: light-61 

stimulated electron transport, CO2 fixation in the Calvin-Benson cycle, and photorespiration. The 62 

FvCB model is an integrated set of mathematically-described hypotheses, a system hypothesis, that 63 

yields quantitative predictions to accurately describe the dynamics of A in response to incident 64 

radiation (I), carbon dioxide concentration (Ca) and temperature. Observation, experiment, and model-65 

based photosynthesis research has seen substantive advances due to the availability of this 66 

mathematically rigorous hypothesis. However, variants of the FvCB model exist, chief among them is 67 

that proposed by Collatz et al. (1991; hereafter CBGB). Differing hypotheses for three key sub-68 

processes distinguish the models: 1) electron transport, 2) limiting process selection, and 3) triose 69 

phosphate use.  70 

Terrestrial biosphere models (TBMs)—which simulate global land ecosystems and their role in 71 

the Earth System—rely on the FvCB and CBGB models (as well as various hybrids and additions to 72 

these core models) to simulate leaf-scale photosynthesis and its response to global change, in particular, 73 

increasing Ca. The CBGB model and hybrids with the FvCB model are employed by several prominent 74 

TBMs (Table 1) (e.g. IBIS, JULES, CLM, and ELM; Foley et al. 1996; Clark et al. 2011; Oleson et al. 75 

2013). Yet despite the keystone role of photosynthesis in the biosphere and the wide variation in TBM 76 

simulations of photosynthesis (Anav et al., 2015; Rogers et al., 2017), a rigorous, quantitative 77 

comparison of the FvCB and CBGB models has not been undertaken. In part this is because rigorous 78 

methods to compare and evaluate competing sets of hypotheses have not been available until recently.   79 

Sensitivity analysis (SA) is used to determine the sensitivity of model output to variability in 80 

individual model components. Variability in model output can be introduced through a number of 81 

sources (Beven, 2016), two key sources are parameter choice and differences in mathematical 82 

representations of the multiple processes that a model simulates, e.g. photosynthetic electron transport. 83 

SA methods to assess model sensitivity to various parameters in TMBs are common (e.g. Dietze et al., 84 

2014; Gupta & Razavi, 2018; Koven et al., 2019; Ricciuto et al., 2018; Zaehle et al., 2005) while SA 85 

methods to assess model output sensitivity to alternative process representations are rare. Parameter 86 



SA methods can be applied in the context of multiple-models and sensitivity indexes averaged to get an 87 

overall assessment of parameter influence under model uncertainty (Dai & Ye, 2015). However, these 88 

methods miss a key element of model output variability—the difference in the means among models, or 89 

between-model variation. Parametric SA can only account for within-model variation, necessitating a 90 

process SA that is designed to account for both within (parametric) and between (process 91 

representation) model variation (e.g. Dai et al. 2017).  92 

A further obstacle to rigorous process SA is that the majority of commonly used modeling 93 

codes are not sufficiently flexible to switch between all of the various hypotheses for all of the various 94 

processes under investigation. The Multi-Assumption Architecture and Testbed (MAAT) has been 95 

designed to overcome this issue (Walker et al., 2018). MAAT is a hyper-modular, multi-hypothesis 96 

modeling framework designed to easily pose multiple alternative models by combining alternative 97 

mathematically-described hypotheses for the processes that form the building blocks of a model, or 98 

system hypothesis (Walker et al. 2018). Through hyper-modularity MAAT allows a factorial 99 

combination of each hypothesis across all processes and sub-processes, exploring the full range of 100 

possible models and ensuring that each representation of each process is evaluated against all other 101 

representations for all other processes, i.e. it is fully comprehensive. MAAT’s ability to combine 102 

models at the scale of individual process hypotheses enables the application of rigorous process (SA) 103 

algorithms, such as that of Dai et al., (2017) which was designed to work with modeling codes like 104 

MAAT.  105 

In this study we use MAAT to formally compare the leaf-scale enzyme-kinetic models of C3 106 

photosynthesis by comparing the FvCB and CBGB model formulations. The choice of electron 107 

transport model, limiting-rate selection, TPU limitation, and parametric variability are examined. We 108 

ask the questions: 1) which processes are most influential for simulating carbon assimilation at various 109 

levels of atmospheric CO2 concentration and incident radiation, 2) which parameters are most 110 

influential, and 3) are the influential process and parameters different when considering absolute 111 

assimilation or the response of assimilation to a change in CO2? We further evaluate the outcome of 112 

this sensitivity analysis using global TBM simulations and measurements of leaf-scale photosynthesis.      113 

Comparison of the FvCB and CBGB models of photosynthesis 114 

Enzyme-kinetic models of photosynthesis (Farquhar et al., 1980) simulate net CO2 assimilation 115 

(A—µmol CO2 m-2 s-1) in response to CO2 concentrations in the inter-cellular airspace of the leaf (Ci—116 

Pa) and incident photosynthetically active radiation (I—µmol photons m-2 s-1). The model scales the 117 



gross carbon assimilation rate (Ag—µmol CO2 m-2 s-1) to account for photorespiration, minus “dark” 118 

respiration (Rd—µmol CO2 m-2 s-1): 119 

𝐴𝐴 = 𝐴𝐴𝑔𝑔(1 − 𝛤𝛤* 𝐶𝐶𝑖𝑖⁄ ) − 𝑅𝑅𝑑𝑑         (Eq. 1) 120 

where Γ* is the photorespiratory CO2 compensation point (Pa), the Ci at which Ag is equal to the rate 121 

of CO2 release from oxygenation. Ag is simulated as a change point model (Gu et al., 2010) where one 122 

of two (FvCB) or three (CBGB) potentially limiting processes (Ac,g, Aj,g, and Ap,g—µmol CO2 m-2 s-1), 123 

described in detail below, are selected. FvCB simply identifies the minimum of the potentially limiting 124 

rates: 125 

  𝐴𝐴𝑔𝑔 = min�A𝑐𝑐,𝑔𝑔, A𝑗𝑗,𝑔𝑔, A𝑝𝑝,𝑔𝑔�        (Eq. 2) 126 

resulting in discontinuities in the derivative of the A-Ci or A-I curves at the change points where Ac,g = 127 

Aj,g and Aj,g = Ap,g. In order to “introduce a more realistic, gradual transition from one limitation to 128 

another, and to allow for some co-limitation,” CBGB proposed non-rectangular hyperbolic (quadratic) 129 

smoothing between the three potentially limiting rates:  130 

 0 = 𝜃𝜃𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐,𝑔𝑔
2 − �A𝑐𝑐,𝑔𝑔+A𝑗𝑗,𝑔𝑔�𝐴𝐴𝑐𝑐𝑐𝑐,𝑔𝑔 + A𝑐𝑐,𝑔𝑔A𝑗𝑗,𝑔𝑔 ,     (Eq. 3a) 131 

 0 = 𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴𝑔𝑔2 − �𝐴𝐴𝑐𝑐𝑐𝑐,𝑔𝑔+𝐴𝐴𝑝𝑝,𝑔𝑔�𝐴𝐴𝑔𝑔 + A𝑐𝑐𝑐𝑐,𝑔𝑔𝐴𝐴𝑝𝑝,𝑔𝑔 ,      (Eq. 3b) 132 

where Acj,g is a latent variable resulting from smoothing between Ac,g and Aj,g. Parameters θcj and θcjp 133 

(θ and β in CBGB’s original notation) are curvature parameters that take a value 0-1 with lower values 134 

leading to greater smoothing. The FvCB method is a special case of the CBGB method where both θcj 135 

and θcjp take the value 1, while if θcj and θcjp take the value 0 smoothing becomes rectangular 136 

hyperbolic (Johnson & Thornley, 1984). 137 

Ac,g, Aj,g, and Aj,g are modeled as Michaelis-Menten functions of Ci. For Ac,g, Vcmax (µmol CO2 138 

m-2 s-1) determines the asymptote: 139 

𝐴𝐴𝑐𝑐,𝑔𝑔 = 𝑉𝑉cmax𝐶𝐶𝑖𝑖
𝐶𝐶𝑖𝑖+K𝑐𝑐(1+𝑂𝑂𝑖𝑖 𝐾𝐾𝑜𝑜⁄ )         (Eq. 4) 140 

where Oi is the internal O2 partial pressure (kPa), and Kc (Pa) and Ko (kPa) are the Michaelis-Menten 141 

half-saturation constants of the RuBisCO enzyme for CO2 and for O2. For Aj,g, the asymptote is 142 

proportional to the electron transport rate (J—µmol e m-2 s-1) where: 143 

𝐴𝐴𝑗𝑗,𝑔𝑔 = 𝐽𝐽
4

𝐶𝐶𝑖𝑖
(𝐶𝐶𝑖𝑖+2𝛤𝛤*)         (Eq. 5) 144 

A number of hypotheses to represent J exist, most commonly used are the following three. 145 

Based on Smith (1937), two representations of J saturate at a maximum electron transport rate (Jmax), 146 

1) Farquhar & Wong, (1984) used non-rectangular smoothing (Eq 6a), or 2) Harley et al. (1992) uses 147 



an alternative non-rectangular hyperbola (Eq 6b), while 3) CBGB proposed a linear model that has no 148 

maximum (Eq 6c), respectively: 149 

 0 = 𝜃𝜃𝑗𝑗𝐽𝐽2 + 𝑎𝑎𝛼𝛼𝑖𝑖𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝐽𝐽 + 𝑎𝑎𝛼𝛼𝑖𝑖𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚       (Eq. 6a) 150 

𝐽𝐽 = 𝑎𝑎𝛼𝛼𝑖𝑖𝐼𝐼

�1 + �
𝑎𝑎𝑎𝑎𝑖𝑖𝐼𝐼
𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚

�
2
�
0.5         (Eq. 6b) 151 

𝐽𝐽 = 𝑎𝑎𝛼𝛼𝑖𝑖𝐼𝐼          (Eq. 6c) 152 

where a is leaf absorptance (the fraction of I absorbed by the leaf, unitless), αi is the intrinsic quantum 153 

efficiency of electron transport (the number of electrons transported per absorbed photon, e photon-1), 154 

and θj is a non-rectangular hyperbola smoothing parameter. aαi is the apparent quantum efficiency of 155 

electron transport (electrons transported per incident photon). Following FvCB, in this study we define 156 

αi as 0.5(1-f), where f is the fraction of photons absorbed by the leaf but not absorbed by the light 157 

harvesting complexes, and 0.5 represents the requirement of two photons for full linear transport of a 158 

single electron.   159 

Subsequent to the development of the FvCB model, a third potential limitation was identified 160 

under high Ca and high irradiance (I). Triose phosphate use (TPU) in sucrose and starch synthesis 161 

releases phosphate needed for the regeneration of RuBP, thus low rates of sucrose and starch synthesis 162 

can limit RuBP regeneration and therefore A (Sharkey, 1985). CBGB proposed this additional rate-163 

limiting cycle in their model (Ap,g), which was refined (von Caemmerer, 2000) to account for reversed 164 

sensitivities of A to Ci and Oi in the TPU limiting state (Harley & Sharkey, 1991):  165 

 𝐴𝐴𝑝𝑝,𝑔𝑔 = 3𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝑖𝑖
𝐶𝐶𝑖𝑖+�1+3𝛼𝛼𝑡𝑡𝑡𝑡𝑡𝑡�𝛤𝛤*

         (Eq. 7) 166 

where αT is the fraction of glycolate exported but not returned to the chloroplast during 167 

photorespiration. CBGB assumed a closed photorespiratory cycle (αT = 0) such that multiplication by 168 

the first term in Eq. 1 yields 3TPU.  169 



Methods 170 

As described above, the Multi-Assumption Architecture and Testbed (MAAT) (Walker et al., 171 

2018) (https://github.com/walkeranthonyp/MAAT) is a hyper-modular, multi-hypothesis modeling 172 

framework. MAAT is written in R (R Core Team, 2020) and provides a general framework and code 173 

structure for building models that allows for new processes to be added easily. Higher-level “system 174 

models” integrate multiple processes into a coherent representation of a given system. A number of 175 

these system models have been coded into MAAT and in this study we use the leaf-scale enzyme-176 

kinetic model of photosynthesis (Walker et al. 2018). MAAT also encodes process and parameter 177 

sensitivity analysis (SA) algorithms. In this study we used MAAT (tag: v1.2.1_walkeretal2020_GCB, 178 

commit hash: 09b1479).  179 

Additional model details  180 

Fig. 1 shows a dependency diagram of the general C3 photosynthesis model. Parameters, state 181 

parameters (variables that are calculated during model execution but are not the main model state), 182 

state variables (i.e. carbon assimilation rate), and their dependencies are shown categorised by the four 183 

processes: limiting-rate selection, electron transport, triose phosphate use (TPU), and carboxylation. 184 

Each process is composed of multiple parameters and, excepting carboxylation, multiple ways in which 185 

they can be represented. Some processes have more than one mathematical function in their 186 

representation, e.g. carboxylation which includes Eqs 1, 4, 5, and 8.  187 

Note that in the original studies, FvCB and CBGB describe the enzyme kinetic models using 188 

different units and slightly different parameter definitions. In this study we use the unification of 189 

definitions and units presented in Walker et al., (2018) that are built upon Gu et al., (2010) and 190 

predominantly follow FvCB. Building on the model details presented in the introduction, Γ* can be 191 

simulated as a function of Kc and Ko: 192 

𝛤𝛤* = 𝑘𝑘𝑜𝑜𝐾𝐾𝑐𝑐𝑂𝑂𝑖𝑖
2𝑘𝑘𝑐𝑐𝐾𝐾𝑜𝑜

,         (Eq. 8) 193 

where ko and kc are the turnover numbers for the oxygenase and carboxylase functions of 194 

RuBisCO. At 25ºC ko is 0.21 times kc , and their activation energies are the same so this ratio is 195 

preserved across a range of temperatures (Farquhar et al. 1980). 196 

Jmax can be represented in a number of ways but many studies have demonstrated the tight 197 

correlation between Jmax and Vcmax (Leuning et al., 1995; Walker, Beckerman, et al., 2014; 198 

Wullschleger, 1993) and for the basis of this study we use the commonly employed linear relationship 199 

based on the relationship proposed by (Wullschleger, 1993):   200 



𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚,25 = 𝑎𝑎𝑗𝑗𝑗𝑗 + 𝑏𝑏𝑗𝑗𝑗𝑗𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,25,        (Eq. 9) 201 

where ajv and bjv are calculated from linear regression of Jmax,25 on Vcmax,25 (which are Jmax and 202 

Vcmax at a reference temperature of 25 ºC). We use a similar relationship to calculate TPU: 203 

𝑇𝑇𝑇𝑇𝑇𝑇25 = 𝑏𝑏𝑡𝑡𝑡𝑡𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,25,         (Eq. 10) 204 

We focus on the core components of the FvCB and CBGB models and do not consider choices 205 

of CO2-diffusion resistance models (i.e. leaf boundary layer, stomata, and internal; see Collatz et al., 206 

1991; Walker et al., 2018) nor temperature response models, which would substantially increase scope. 207 

Further, while stomatal models do influence Ci, the response to I and Ca of many stomatal models used 208 

by TBMs is similar, i.e. gs = f(A/Ca). In order to preserve realism in the calculation of A we used the 209 

unified stomatal model (Medlyn et al. 2011) with a g1 of 4.3, the global C3 mean (Lin et al. 2015), and 210 

a typical value of 0.01 mol m-2 s-1 for g0. We assume that leaf internal resistance and leaf boundary 211 

layer resistance are 0, 1 kPa vapour pressure deficit, and no soil water limitation. Leaf temperature was 212 

set to a standard of 25 ºC (which assumes that all temperature sensitive parameters were at 25 ºC 213 

reference values). 214 

To generate Ca and I response curves, the two models were run from a Ca of 50 to 1500  µmol 215 

mol-1 in 50  µmol mol-1 increments at I of 960 μmol m-2 s-1, and from I of 10 to 1960 μmol m-2 s-1 in 216 

increments of 50 μmol m-2 s-1 at Ca of 400 µmol mol-1. 217 

Sensitivity analysis 218 

We use statistical, variance-based process SA and parameter SA which both rely on an 219 

ensemble of model simulations to calculate model output variance and ascribe this variance to variation 220 

in processes or parameters. The photosynthesis model process SA was broken into four processes: 221 

limiting-rate selection (2 representations, Eqs. 2 or 3), electron transport (3 representations, Eqs 6a-c), 222 

TPU limitation (included or not included, Eq 7), and carboxylation (1 representation, Eq. 4). Factorial 223 

combination of the alternative process representations gives a total of 12 individual models. For both 224 

the process SA and parameter SA, 14 parameters were varied ±10 % from a central, commonly used 225 

value (Table 2). Thus the model ensemble comprises 12 individual models and variation of 14 226 

parameters. 227 

Both methods calculate sensitivity indexes that represent the proportion of variance in model-228 

ensemble output (both between and within-model variance for the process SA, and just within model-229 

variance for the parameter SA) caused by variance in either a specific process or a specific parameter. 230 

Process SA provides a quantitative assessment of the influence of processes on model output and 231 

includes both variation caused by alternative hypotheses for the mechanics of a given process, and 232 



variation caused by parameters within a given process, i.e. between-model and within-model variability 233 

(Dai et al., 2017). Parameter SA can assess the influence of individual parameters on within-model 234 

variance. The parameter SA method does not account for variance caused by the different central 235 

tendencies (means) of each model combination. For process SA the algorithm of Dai et al (2017) was 236 

used and for parameter SA the algorithm of Saltelli et al. (2010) was used (see Walker et al., 2018 for 237 

additional description of both methods).  238 

In this analysis we calculate and focus on first order sensitivity indexes, analogous to main 239 

effects in ANOVA. We do not calculate 2-way or higher order interactions among processes or 240 

parameters. While some interactions are likely to be interesting, the sum of first order sensitivity 241 

indexes sum to around 0.95 in many cases indicating that over 95 % of variance in model output was 242 

explained by first order effects.  243 

For both analyses, we investigated sensitivities of simulated carbon assimilation (A, Eq. 1) 244 

across a number of environmental scenarios that were a factorial combination of atmospheric CO2 (Ca; 245 

280, 400, and 600 µmol mol-1) and incident light (I; 200, 500, and 1000 µmol photons m-2 s-1) 246 

conditions. The sensitivity of the absolute assimilation response (ΔA) to changes in Ca (from pre-247 

industrial to present-day, 280 to 400 µmol mol-1, and from present-day to projected future 248 

concentrations, 400 to 600 µmol mol-1) were also calculated under the three incident light conditions. 249 

Variance-weighted means of the sensitivity indexes across different environment combinations allow 250 

us to quantify the general influence of a process or parameters across environment combinations. For 251 

parameters this can also be done across model combinations, but again still only accounts for within 252 

model variance.  253 

Parameter samples were drawn from uniform distributions and was multi-dimensional (all 254 

parameters varied together) but no covariance among parameters was assumed. CBGB used values of 255 

0.95 and 0.98 for θcj and θcjp, see Table A1 in CBGB. Note values are switched in the text of CBGB, 256 

i.e. 0.98 and 0.95 for θcj and θcjp. Other values have since been used by TBMs; e.g. 0.9 in IBIS (Foley 257 

et al., 1996) and 0.83 in JULES (Clark et al., 2011). The possible values for these smoothing 258 

parameters are from 0 ≤ θ ≤ 1 and so to maintain values within this range and preserve the ±10 % 259 

variation in all parameters, we use a central value of 0.9 for θcj and θcjp.  260 

To assess convergence in sensitivity index calculations, preliminary SAs were run with an n of 261 

1,000 for the process SA and 1,000,000 for the parameter SA. Sub-sampling and bootstrapping 262 

indicated that an n of 300 for the process SA and 300,000 for the parameter SA were ample to achieve 263 

convergence (standard deviations of the sensitivity indexes were less than 0.001). The results of the SA 264 

shown in this study were generated using these smaller values of n, resulting in a total of 4,320,000 265 



executions for the process SA and 50,400,000 for the parameter SA. These total numbers of executions 266 

are larger than n as n is the base number of samples and the full SAs require multiple sets of iterations 267 

that are a function of the number of model combinations and parameters investigated (see Walker et al., 268 

2018). 269 

Estimation of θcj from high-resolution A-Ci curves 270 

High-resolution A-Ci curves were used to evaluate limiting-rate selection hypotheses. Populus 271 

canadensis Moench. [deltoides x nigra] clone OP367 was grown outside at Brookhaven National 272 

Laboratory, NY, USA in 200 l pots containing 52 Mix (Conrad Fafard, Inc., Agawam, MA, USA). 273 

Hardwood cuttings were planted on 1st May 2019 and plants were watered to field capacity 2-3 times a 274 

week. Photosynthetic CO2 response (A-Ci) curves were measured using a LI-6800 Portable 275 

Photosynthesis System (LI-COR, Lincoln, Nebraska, USA) in June 2019.  276 

Preliminary measurements identified saturating I, and Ca where photosynthesis transitioned 277 

from RuBP saturated (Ac,g) to RuBP limited (Aj,g) photosynthesis. These preliminary measurements 278 

informed a commonly used A-Ci response protocol (Rogers, Serbin, et al., 2017), developed to include 279 

a high density of measurements around the transition point (when Ac,g = Aj,g). Leaves were first 280 

acclimated to chamber conditions (I = 2000 µmol m-2 s-1, Ca = 400 µmol mol-1, flow rate = 600 µmol s-281 
1, relative humidity = 70-75%, leaf temperature = 30°C) and measurements began once steady-state gas 282 

exchange was achieved. Ca was taken from 400 µmol mol-1 to 50 µmol mol-1 then returned to a 283 

conservative estimate of the start of the transition zone (305 µmol mol-1) and raised progressively in 5 284 

µmol mol-1 increments to 1000 µmol mol-1 (a value comfortably higher than the end of the transition 285 

zone). Ca was then raised in larger increments to capture the full extent of a standard A-Ci curve. These 286 

data are publicly available1. 287 

Bayesian machine-learning, Markov chain Monte Carlo (MCMC), algorithms were used to 288 

numerically approximate the posterior distribution of the smoothing parameter, θcj (Eq. 3a), and Vcmax 289 

and Jmax, from these high-resolution A-Ci curves. Numerical approximation is achieved by randomly 290 

sampling from a specified prior distribution, stochastically generating a proposal for the parameters to 291 

be estimated, evaluating the likelihood of the proposed parameter values against observed data, and 292 

iterating the generation of new proposals to search the prior parameter space until convergence of the 293 

joint posterior distribution is reached. MCMC algorithms are then further iterated post-convergence to 294 

sample the joint posterior distribution. For this analysis, the Differential Evolution Adaptive Metropolis 295 

 
1  Note to editor. These data will be made publicly available upon publication of the paper. 



(DREAM) algorithm (Vrugt et al., 2009) was chosen due to its efficient search of parameter space and 296 

rapid convergence relative to other MCMC algorithms.  297 

The DREAM algorithm optimizes parameter space sampling in several ways (Vrugt, 2016). 298 

First, the algorithm employs multiple parallel MCMC chains and parameter proposals are generated 299 

from a randomly selected chain pairs. A scaling factor is used to scale the “jump” distance of the new 300 

proposal from the previously accepted proposal. At approximately every fifth iteration the scaling 301 

factor is set to 1 to avoid convergence in local minima. The algorithm avoids the inefficiency that arises 302 

from updating all parameters of a chain simultaneously by updating only a randomly selected subset 303 

(the “crossover”) of the parameters on a chain with optimized probability. Outlier chains are identified 304 

based on the interquartile range of the posterior likelihood and replaced with the sample history of 305 

another randomly chosen non-outlier chain. 306 

Coded within the MAAT software framework, the DREAM algorithm used the high-resolution 307 

A-Ci data to formally estimate the parameter values for Vcmax,25, Jmax,25, and θcj for each leaf. Uniform 308 

priors were used, taking the values: 100-200 μmol CO2 m-2 s-1 for Vcmax,25, 70-400 μmol e m-2 s-1 for 309 

Jmax,25, and  0.9-1.0 for θcj (unitless). Environmental variables were set to the conditions used to 310 

generate the A-Ci curves (see above). Given the high rates of photosynthesis in these plants, 311 

temperature optima of Vcmax and Jmax were assumed high at 35 ºC and 30 ºC. Seven Markov chains 312 

were run for 80,000 iterations. The standard error probability density function with independent and 313 

identically distributed (iid) error residuals was used to compute the log-likelihood of the proposal 314 

generation. On completion of the 80,000 iterations convergence was determined using the Gelman & 315 

Rubin (1992) R-statistic. Pre-convergence samples were discarded yielding 25,000 post-convergence 316 

samples on each chain, these were then thinned to 1 % to remove auto-correlation. 317 

Terrestrial Biosphere Model simulations 318 

We use three terrestrial biosphere models (TBMs) to test the impact of quadratic smoothing on 319 

global GPP simulations: 1) the Energy Exascale Earth System Model (E3SM) land model (ELM) 320 

(release: v1.1.0) (Burrows et al., in review), a coupled carbon, nitrogen, and phosphorus model with 321 

sun/shade big-leaf canopy photosynthesis scaling. 2) The Functionally Assembled Terrestrial 322 

Ecosystem Simulator (FATES, tag: sci.1.30.0_api.8.0.0) (Koven et al., 2019), coupled with the 323 

Community Land Model (CLM, version 5) (Lawrence et al., 2019), a carbon-only vegetation 324 

demography model with multi-leaf and multi-canopy layers for scaling photosynthesis, and with a leaf 325 

area index (LAI) optimisation scheme. 3) The Sheffield Dynamic Global Vegetation Model (SDGVM, 326 

tag: Walkeretal2020_GCB), a carbon-only model with multi-leaf-layer canopy photosynthesis scaling 327 



and also with an LAI optimisation scheme (Walker et al., 2017; Woodward & Lomas, 2004). The leaf 328 

photosynthesis model in both ELM and FATES is based on CBGB but with an electron transport 329 

function that includes a Jmax term (Eq. 3a). While SDGVM uses the FvCB model with a similar 330 

electron transport function (Eq 3b). For more information about the models see Notes S1.  331 

Models were run each using their common configurations and input datasets to allow for a 332 

cross-section of results. The goal was to assess the possible impacts of smoothing in global TBM 333 

simulations across a range of model types rather than to quantify the exact impact under a specific set 334 

of conditions. Thus, commonly-used configurations allowed a broader sampling of the possible model 335 

configuration space. The only strict protocol was to use consistent values for the smoothing parameters. 336 

Two simulations were conducted: a simulation using smoothing parameters (0.95 for θcj and 0.98 for 337 

θcjp) and a no-smoothing simulation in which the minimum of limiting rates were taken or where 338 

smoothing was effectively disabled by setting their parameter values to 1 or 0.9999 (for both). Decadal 339 

average annual GPP from the two simulations were then compared to determine the impact of the 340 

smoothing parameters. Model results were re-gridded to a common 0.5o x 0.5o spatial grid, using 341 

bilinear interpolation where necessary (ELM). A 0.5o land mask was then applied to constrain model 342 

output to a common areal extent on which to base annual calculations and maps of global GPP.    343 



Results 344 

In their original parameterizations, the Ca response of CBGB is smoother and more sensitive 345 

than FvCB at both low and high Ca (Fig. 2a). With unified parameters the models are similar at low to 346 

intermediate Ca but at high Ca the CBGB model is again more sensitive to Ca and the difference in A 347 

approaches 10 μmol m-2 s-1 at 1500 µmol mol-1 (Fig. 2b). Comparison of A implied by each of the two 348 

or three potentially limiting rates (i.e. calculating A from Ac,g, Aj,g, and Ap,g in Eq. 1) explains these 349 

responses (Fig. 2c,d).  350 

A in the FvCB model tracks exactly A implied by one of the two potentially limiting rates and 351 

consequently shows a sharp transition at the point where carboxylation-limited and light-limited rates 352 

are equal (Fig. 2c). Above this transition point light limits A, though some sensitivity to Ca remains due 353 

to competitive-inhibition of photorespiration. For the CBGB model, A also closely tracks the 354 

carboxylation limited rate at low Ca. Between 300-400 µmol mol-1 A begins to deviate from any A 355 

implied by the three potentially limiting rates (Fig 2d); a consequence of quadratic smoothing (Eqs. 356 

3a,b). The largest departure of A from any of the implied rates (a difference close to 10 μmol m-2 s-1) is 357 

at the transition point which, notably, is between the carboxylation-limited rate and the TPU-limited 358 

rate, not the light-limited rate. The light-limited rate is much greater than A, by over 20 μmol m-2 s-1 for 359 

most of the range in Ca concentrations (Fig. 2d). Thus the continued sensitivity of A to Ca above the 360 

transition point results not from suppression of photorespiration, but from less influence of quadratic 361 

smoothing as TPU limitation becomes the dominant limiting rate (reduction of A by smoothing 362 

increases as limiting rates become more similar, discussed in more detail below). 363 

With their original parameterizations the light responses of the two models are very different 364 

(Fig. 2e). The FvCB model shows a curve similar in nature to its Ca response, a steep increase, an 365 

abrupt transition followed by saturation; while the CBGB model shows a close to linear increase across 366 

the range of I. The linear response to I of CBGB results from the 1) very high Vcmax (200 μmol m-2 s-1, 367 

Table 2) in the original parameterization, which prevents Ca limitation at 400 µmol mol-1 across the 368 

range of I, and 2) the absence of a Jmax term in the electron transport response (Eq. 6c) which therefore 369 

hypothesizes a linear response of electron transport to I. At common parameter values (Fig. 2f), the 370 

curves are much more similar. This is because at the lower, common Vcmax (98 μmol m-2 s-1) Ac 371 

becomes limiting at 400 µmol mol-1. For light, A in both models tracks A implied by the potentially 372 

limiting rates more closely than for CO2 (Fig. 2g,h). This is because the transition between the implied 373 

rates is more abrupt and therefore the range of I where of smoothing occurs is narrower. The greatest 374 

difference among the two models are in their light-limited rates, FvCB shows strong non-linearity and 375 



saturates (due to the Jmax term in Eq 6a) while CBGB shows a linear response to light (Eq. 6c). 376 

Curvature in the light response of realised assimilation rates come from the θj parameter for the FvCB 377 

model and the θcj parameter for the CBGB model. 378 

Sensitivity Analysis of Assimilation (A) 379 

Fig. 3a shows distributions of A when varying representations of the three processes and the 380 

values of the 14 parameters (Table 3) across nine combinations of Ca and I (i.e. different environmental 381 

conditions). As Ca increases, A and variance of A increases (Figure 2a, Table 1). Distributions are 382 

primarily unimodal, though several bimodal distributions are apparent.  383 

Across all environmental conditions, limiting-rate selection was responsible for 57 % of the 384 

variation in A, carboxylation responsible for 22 %, electron transport 10 %, and TPU 2 % (Table 3). 385 

The strong influence of limiting-rate selection was borne out across the majority of environmental 386 

conditions (Fig. 3b). However, at saturating I (1000 μmol m-2 s-1) the process of carboxylation was 387 

most influential at pre-industrial Ca (280 µmol mol-1), and at present day Ca (~400 µmol mol-1) the 388 

influence of carboxylation was about equal to limiting-rate selection. This pattern was similar at close 389 

to saturating I (500 μmol m-2 s-1), but limiting-rate selection had a generally higher influence. At low 390 

values of I (200 μmol m-2 s-1), the process of electron transport was more influential than carboxylation 391 

with the sensitivity of A to electron transport increasing as Ca becomes less limiting. Bimodality was 392 

most apparent when limiting-rate selection was most influential (the alternative modes corresponding 393 

with the two alternative representations of limiting-rate selection).       394 

When all 12 models and all nine environmental scenarios were combined, variation in A of 395 

more than 5 % was caused by only five of the 14 parameters (Fig. 3c and Table 4). Vcmax was the most 396 

influential parameter responsible for 35 % of the variation in A, followed by Kc with 22 %, θcj with 19 397 

%, Ko with 7 %, and a with 7 %.  398 

The influence of these parameters somewhat reflects the influence of the processes to which 399 

they belong. However, if we were to only consider variability in A caused by parametric variation, the 400 

influence of carboxylation would be over-estimated. Vcmax, Ko, and Kc are all parameters in the process 401 

of carboxylation and together they were responsible for 64 % of the variation in A in the parametric SA 402 

(total variance—0.94). Together θcj and θcjp, the parameters of limiting-rate selection, were responsible 403 

for only 23 % of variance in the parametric SA. On the other hand, the process SA suggested that 404 

carboxylation was responsible for a more modest 22 % of the variation in A (total variance—2.59), 405 

while limiting-rate selection was responsible for 57 %. The results presented here suggest that variation 406 

in A between the alternative limiting-rate selection models (hypotheses) was substantial, and not solely 407 



a result of variation in parameters. The difference in variance accounting by the two methods is 408 

demonstrated by the difference in variance calculated by the parametric SA (0.94) and the process SA 409 

(2.59) despite both algorithms using all possible model combinations and the same parameter ranges 410 

(the means of A calculated by the algorithms were equivalent—11.49 and 11.49; Table 3 and 4). 411 

 Sensitivities for individual models (integrated across environmental scenarios) showed that, 412 

given equal variation (±10 %), Vcmax and θcj share similar maximum sensitivities—48 % and 52 % 413 

respectively (Fig. 3e and Table 4). θcjp has a maximum sensitivity of 21 % in the model with 414 

smoothing, TPU, and no Jmax term in electron transport (M1223). Leaf light absorption, a, features in 415 

all models of electron transport, and therefore all models, and sensitivity to a varied between 9-13 % or 416 

3-6 % depending on minimum or smoothing limiting-rate selection respectively. Similarly, Vcmax, Ko, 417 

and Kc were all more influential in the models that used the minimum for limiting-rate selection. 418 

Sensitivities for individual environmental conditions (integrated across models) showed that as 419 

expected a was influential under low-light conditions while Vcmax, Ko, and Kc were influential under 420 

high-light conditions (Fig. 3d). Sensitivities for individual model and environmental condition 421 

combinations showed that for some cases some of the previously unmentioned parameters were 422 

influential (e.g. θj, f), while others remained with very little influence (e.g. ajv, bjv, btv, αTPU).  423 

 Sensitivity Analysis of the Assimilation Response (ΔA) to Changes in Ca 424 

Fig. 4a shows the distribution of ΔA in response to changes in Ca (from pre-industrial to 425 

present-day, 280 to 400 µmol mol-1, and from present-day to projected future concentrations, 400 to 426 

600 µmol mol-1) at three levels of I. Variation of ΔA was greatest at intermediate light levels and going 427 

from present to future Ca (range about 2 to 5 μmol m-2 s-1). Variation was similar at high light. For both 428 

Ca changes and at both high and intermediate light, the distribution of ΔA were highly bimodal, with 429 

stronger bimodality going from preset to future Ca. As for A, the alternative modes were associated 430 

with the alternative representations of limiting-rate selection. 431 

When all environmental scenarios were combined, limiting-rate selection was responsible for 432 

65 % of the variation in ΔA (total variance—0.50), carboxylation responsible for 5 %, electron 433 

transport 13 %, and TPU 3 % (Table 3). The strong influence of limiting-rate selection was borne out 434 

across the majority of environmental conditions (Fig. 4b). For both Ca changes and at high and 435 

intermediate I, sensitivity of ΔA to limiting-rate selection ranged from 64 % to 76 %, with the higher 436 

sensitivities at intermediate I. At low I electron transport was the most influential process, accounting 437 

for 50 % of the variation in ΔA at the lower Ca change and 32 % at the higher Ca change. At low I 438 

sensitivity of ΔA to limiting-rate selection increased from 7 % at the lower Ca to 37 % at the higher Ca.  439 



In contrast with the sensitivity of A, seven parameters were responsible for over 5 % variation 440 

in ΔA (total variance—0.09) when models and environmental scenarios were combined. Of these seven 441 

parameters, four were in common with A (Vcmax—26 %, Kc—9 %, θcj—20 %, and a—9 %; Fig. 4c and 442 

Table 4), Ko did not feature, and θcjp—11 %, brv—7 %, and θj—5 % were also influential.  443 

Consequences of limiting-rate selection assumptions 444 

Given the sensitivity of A and ΔA to the processes of limiting-rate selection, we now investigate 445 

these models in more detail. Mathematical analysis shows that FvCB sets the upper limit for A while 446 

CBGB smoothing always reduces A below that of the minimum (see Supporting Information). The 447 

greatest reduction in A caused by smoothing is when all three limiting rates—Ac,g, Aj,g, and Ap,g—are 448 

equal, and yields Eq. S3 (see Supporting Information). With θcj = 0.95, θcjp = 0.98, Eq. S3 shows that 449 

the smoothing scalar on Ag is 0.77, i.e. when Ac,g = Aj,g = Ap,g quadratic smoothing reduces Ag by 23 450 

%. When only Ac,g and Aj,g are equal and substantially lower than Ap,g (so Ap,g effectively has no 451 

influence on smoothing), Ag is reduced by 18 %. Fig. 5a shows that Ag is reduced below the minimum 452 

rate across a wide range of Ac,g and Aj,g values and that the reduction in Ag approaches 0 monotonically 453 

as the difference between the minimum rate and the larger rate increases.  454 

The results so far are all based on a leaf-scale sensitivity analysis. To investigate the global-455 

scale impact of the most influential leaf-scale processes, a suite of three different TBMs were run with 456 

the two alternative versions of limiting-rate selection, and parameter values for smoothing from CBGB 457 

(Figure 5c,d). The three models simulate quite different magnitudes and patterns of global GPP (Fig 458 

5c), and in all three models quadratic smoothing reduces global GPP by 5.0-16.4 Pg C y-1 (4.4-9.7 %).  459 

Discriminating among hypotheses for limiting rate selection 460 

High-resolution A-Ci curves were taken on three individuals of Populus canadensis  (Fig. 5e) in 461 

order to estimate the θcj parameter, and thus discriminate among the two competing hypotheses for 462 

limiting-rate selection. A value close to 1.0 would indicate FvCB and values close to 0.95 or less would 463 

indicate CBGB. Bayesian MCMC estimated θcj  for the three curves at 0.98, 0.99, and 0.999 (mean 464 

0.99±0.011 95 % CI) (Fig. 5f), suggesting that the only data-driven estimate of θcj made to-date is not 465 

significantly different from 1.0 and providing support for the FvCB method of limiting-rate selection.  466 



Discussion 467 

A novel, mathematically rigorous, process sensitivity analysis that accounts for both hypothesis 468 

(process representation) and parametric variability in common models of photosynthesis has shown that 469 

limiting-rate selection was the most influential process, accounting for 57 % of variation in A and 65 % 470 

of variation in ΔA in response to a change in CO2. For simulating A, carboxylation was the next most 471 

influential process (which was all due to parameter variability) followed by electron transport. When 472 

simulating ΔA, electron transport was the next most influential process followed by carboxylation. The 473 

process of triose phosphate use (TPU) had almost no influence on simulating either A or ΔA under the 474 

environmental conditions of this analysis. The substantial influence of the non-mechanistic limiting-475 

rate selection propagates to global simulation of photosynthesis (reducing mean annual global GPP by 476 

5-10 %) and undermines the mechanistic reasoning for including FvCB and CBGB in TBMs. Analysis 477 

of novel, high-resolution A-Ci curves provides support for the FvCB method of limiting rate selection. 478 

The influence of limiting-rate selection 479 

Finding the smaller roots of the quadratics described by Eqs 3a,b is intended to smooth the 480 

abrupt transition between Ac,g, Aj,g and Ap,g, and has been described as representing co-limitation 481 

between limiting rates. In so doing, smoothing also imposes a reduction of modeled A (Fig. 5), 482 

reducing Ag by 23 % compared with FvCB when all potentially limiting rates are equal and with 483 

CBGB parameter values. In models that have chosen to adjust these parameters (e.g. IBIS, JULES; 484 

Table 1) the reduction can be even greater. For example, in IBIS the reduction increases to 36 % and in 485 

JULES to 38 % (Eq. S3). This scenario, when all potentially limiting rates are equal, results in the 486 

greatest smoothing-related reduction in Ag and A, but it is not an extreme physiological scenario. 487 

Potential assimilation rates Ac,g and Aj,g are often observed to be close to co-limiting in saturating light 488 

(e.g. Ainsworth et al., 2003; Bernacchi et al., 2005) and the co-ordination hypothesis assumes that Ac,g 489 

and Aj,g are equal under mean environmental conditions (Maire et al., 2012). Co-ordination hypotheses 490 

are used in a number of optimization schemes (Smith et al., 2019; Wang et al., 2017), which maintains 491 

photosynthesis close to the transition given a changing environment. If combined with quadratic 492 

smoothing, these methods would maximize the influence and reduction of A caused by smoothing, or 493 

may have other untoward consequences (e.g. potentially increasing Vcmax and hence nitrogen demand). 494 

Until now, the parameter values used in the smoothing function have not been based on data-495 

driven estimates of their values (to the best of our knowledge). We provide initial data-driven estimates 496 

of θcj (0.99±0.11) using high-resolution A-Ci curves, which provide support for the FvCB approach and 497 

that smoothing parameters in CBGB and the TBMs which use CBGB are too low. However, the 498 



support for the simple FvCB minimum is not definitive, leaving the door open for potential co-499 

limitation. Additional high resolution A-Ci curves collected across a broad range of species and growth 500 

conditions would help determine if estimates of θcj could be significantly lower than 1, potentially 501 

justifying continued inclusion of quadratic smoothing, albeit that the data presented here suggest it 502 

would likely be at a lower level than CBGB and the TBMs that currently use quadratic smoothing. 503 

The global-scale reduction in GPP caused by quadratic smoothing, demonstrates that leaf-scale 504 

sensitivities scale through a suite of processes and scales to have global impact in our current 505 

generation of TBMs. This propagation of leaf-scale sensitivities holds true across a spectrum of 506 

different model assumptions and representations, including: nutrient cycling (ELM), multi-layered 507 

canopy scaling (FATES, SDGVM), and competition among PFTs (FATES). 508 

Given that models which include quadratic smoothing have subsequently been evaluated 509 

against larger-scale observations (e.g. eddy covariance towers, Bonan et al., 2011), replacing CBGB 510 

smoothing with the FvCB minimum could result in a reduction in model skill. Indeed, smoothing, or 511 

co-limitation, among potentially limiting photosynthetic rates reduced GPP and therefore improved 512 

simulations of global GPP in CLM4 (Bonan et al., 2011). Bonan et al. (2011) used a number of 513 

methods to parameterize Vcmax, all of which were based on Vcmax values estimated using an FvCB type 514 

model. As we have shown, and has been previously demonstrated (Johnson & Thornley, 1984), CBGB 515 

smoothing reduces A and hence if a CBGB type model had been used to estimate Vcmax, Vcmax values 516 

would have been higher in order to compensate smoothing related reductions in A. That is to say, 517 

estimates of Vcmax are not independent of the limiting-rate selection method used in their estimation and 518 

that Vcmax and θcj parameter values should be applied in TBMs consistent with the method used to 519 

estimate Vcmax. For example, IBIS, in comparison with other TBMs has very high values for Vcmax 520 

(Rogers 2014) which may have been required during model calibration to compensate for the use of 521 

smoothing in limiting-rate selection. In models which tie Vcmax to leaf nitrogen and plant nitrogen 522 

demand, the implementation of smoothing would have implications for the coupling of carbon and 523 

nitrogen cycles by reducing carbon gained per unit leaf nitrogen. 524 

What process is smoothing intended to represent? CBGB introduce smoothing to represent a 525 

more realistic transition in the light response of A, and this could represent imperfect coupling among 526 

the cycles of electron transport, carboxylation, and photorespiration (Farquhar et al., 1980). It is also 527 

possible that smoothing is accounting for different limiting states of individual chloroplasts within a 528 

leaf (Buckley et al., 2017; Kull & Kruijt, 1998). For canopy scale big-leaf models, smoothing is also 529 

accounting for different limiting states of leaf layers within either the sunlit or shaded canopy fraction. 530 

There is also an intermediate scale where smoothing could be accounting for different limiting states of 531 



leaves within a canopy leaf layer (also potentially within either the sunlit or shaded fraction). To use a 532 

leaf-scale empirical function as a catch-all for all of these processes is not satisfying. An 18 % non-533 

mechanistic reduction of Ag at the light-limited to light-saturated transition point is not likely to be an 534 

accurate representation of all of these processes. It would be better to use a more mechanistic approach, 535 

or a defensible approximation of the mechanistic approach could be developed where computational 536 

efficiency is needed.  537 

We suggest removing CBGB smoothing from TBMs on mechanistic grounds and the evidence 538 

at hand. However, quadratic smoothing may be preferred by some TBMs as it provides a continuous 539 

derivative to A as a function of environment, and is thus preferable for use in numerical solutions to the 540 

coupled system of equations that describe A. Where quadratic smoothing is preferred, the data suggest 541 

a value of 0.99±0.011 for θcj which still would result in a reduction in Ag at the light-limited to light-542 

saturated transition of 9.1 %. We recommend at a minimum the higher value of 0.998 used by Buckley 543 

et al. (2017) that results in an Ag reduction of 4.3 %.  544 

Influence of other processes 545 

Electron transport, the process most commonly thought of as the key difference among FvCB 546 

and CBGB, was not a strongly influential process (10 % for A and 13 % for ΔA when integrated across 547 

environmental scenarios). And the influence of electron transport as a process was not greater than the 548 

sum of the influence of its parameters: a, ajv, bjv, f, and θj (sum of sensitivities indexes 11 % for A and 549 

16 % for ΔA). That is to say, the alternative representations of electron transport did not result in 550 

appreciable between model variability under the environmental and other conditions of the sensitivity 551 

analysis. This result suggests that under the conditions of this sensitivity analysis, a linear electron 552 

transport rate or a saturating rate with Jmax simulated as a linear function of Vcmax had very little effect 553 

on simulated assimilation rates. This inference is supported by the small sensitivity indexes of ajv and 554 

bjv (0 % and 0 % integrated across models and scenarios, for A).  555 

Our setup, based on a commonly used relationship in TBMs (Wullschleger 1993) and a Vcmax 556 

value at the upper end of the range for a tropical PFT (Rogers 2014), gave a range in the Jmax:Vcmax 557 

ratio at 25°C (JV25) of 1.95 to 2.52. This range is fairly high, e.g. Bonan et al. (2011) used a JV ratio of 558 

1.97, and likely contributed to the lower influence of electron transport as a process. A recent analysis 559 

showed the JV25 ratio to have the global range of approximately 1.0 to 2.5 (Kumarathunge, Medlyn, 560 

Drake, Tjoelker, et al., 2019). Nevertheless, the central values of ajv and bjv that we used are commonly 561 

employed by TBMs and a Vcmax of 50 μmol m-2 s-1 is a fairly representative value, so the parameter 562 



space of our sensitivity analysis is likely representative of a substantial proportion of parameter space 563 

across multiple TBMs.  564 

Electron transport in the FvCB models also uses empirical smoothing between Jmax and an 565 

electron transport rate that is linear with I. In models that employ non-rectangular smoothing in 566 

electron transport the parameter θj has a sensitivity index of 4-8 % when integrating across 567 

environmental scenarios. Smoothing of J in response to light has less influence than smoothing for 568 

limiting-rate selection because it only smooths the light response, thus can only influence the light-569 

limited rate, while CBGB smoothing is applied to every single calculation of A. Furthermore the 570 

empirical smoothing used to represent the response to I is the best representation of that relationship 571 

currently available and lacks the mechanistic understanding and representation possible for Ac,g using 572 

Michaelis-Menten kinetic theory (von Caemmerer, 2000).  573 

With the addition of TPU as a limiting rate, smoothing further decreases Ag compared with 574 

using the minimum (Figure 5a). The sensitivity analysis suggested that the inclusion of TPU limitation 575 

as a process was not strongly influential (2 % for A and 3 % for ΔA when integrated across 576 

environmental scenarios). Due to the co-ordination of photosynthetic apparatus, the rate of TPU export 577 

is usually simulated as a proportion of Vcmax (Eq. 9). (Collatz et al., 1991) used a value of btv equivalent 578 

to 0.167, which is commonly used and is the central value used in this sensitivity analysis. 579 

Lombardozzi et al. (2018) pointed out that this value of bjv may be too high based on Wullschleger 580 

(1993) and demonstrated a 9 Pg C (about 9 %) smaller increase in global terrestrial ecosystem C 581 

between 1850 and 2100 in CLM4.5 under RCP8.5 when a value of 0.083 was used for bjv. However, 582 

0.083 is >1 standard error lower than the Wullschleger (1993) mean and lower than the 95 % CI at 25 583 

ºC from a recent synthesis (Kumarathunge et al., 2019). Ellsworth et al., (2015) showed that TPU can 584 

be limiting under high-light and high-CO2 conditions, concluding with a general recommendation that 585 

modelers interested in simulating A should consider TPU limitation (as formulated by Eq. 7). However, 586 

their results demonstrate that TPU limitation is primarily influential under conditions of low O2 (2 %) 587 

or saturating Ci (>100 Pa). Given that these conditions are rather extreme, the low ratio of TPU to 588 

Vcmax chosen by Lombardozzi et al., (2018), and the results of our sensitivity analysis, we suggest that 589 

calculating TPU at the photosynthetic core of TBMs is probably an unnecessary computational cost.  590 

Despite the relative lack of influence of the process of carboxylation, Vcmax was still the most 591 

influential parameter (i.e. accounted for more of the within-model variance than any other parameter) 592 

when models and environment were combined. This discrepancy highlights the importance of 593 

considering the variability in model process representation when conducting model sensitivity analysis, 594 



as illustrated by the different variances calculated by the two SA types (for A, parameter SA variance = 595 

0.94, while process SA variance = 2.59, despite equal means).  596 

Conclusions 597 

At the heart of TBMs lies the surprising dominance of the non-mechanistic, limiting-rate 598 

selection process. While empirical smoothing among limiting photosynthetic rates may account for a 599 

number of mechanistic processes at various scales, it is unsatisfying that empirical functions have such 600 

influence in a model that is intended to be highly mechanistic. Indeed the FvCB model is at the core of 601 

many TBMs specifically because of its mechanistic simulation of the response of the terrestrial 602 

biosphere to rising CO2 concentration, a principal driver of global change. In this sensitivity analysis, 603 

limiting rate selection accounts for 65 % of the variance in the CO2 response of A. That this 604 

empirically-driven variation lies within what is assumed to be highly-mechanistic process 605 

representation at the core of TBMs, it is perhaps not surprising that there is such a vast range of 606 

disagreement in Earth System model projections of the future terrestrial carbon sink. While FvCB 607 

limiting-rate selection represents selection of A at its upper bound, we suggest that this is a more 608 

defensible assumption than a highly influential non-mechanistic function with an essentially arbitrary 609 

choice of parameter values that are not supported by data.    610 

To increase confidence in our understanding and future projections of the carbon cycle, and 611 

thus climate, we need to understand how the process representations and parameters used by TBMs 612 

drive variation in TBM simulations (Medlyn et al., 2015). Previous methods to evaluate process 613 

representations have relied on model inter-comparison projects (MIPs) either with multiple models 614 

(e.g. Anav et al., 2015; Arora et al., 2019; Walker et al., 2014) or comparison of alternative 615 

representations of sub-models or processes within a single higher-level system model (e.g. Burrows et 616 

al., in review). Both of these methods sample only an extremely small fraction of possible model 617 

combinations (Abramowitz & Bishop, 2014; Fisher & Koven, 2020). By allowing a fully factorial 618 

combination of models, MAAT and the process-level SA (that includes hypothesis and parameter 619 

variability) in this study represents a new frontier for model analysis and development. We investigated 620 

a small but influential component of TBMs, finding a surprising leaf-scale sensitivity that has global-621 

scale implications. Yet the analysis presented here is just the beginning of what is possible. The 622 

quantitative multi-hypothesis tools provided by MAAT, and by other multi-hypothesis modeling 623 

groups, will provide rigorous advances in process-level understanding of the dynamics of complex 624 

ecosystems. 625 
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Table 1. Factorial list of possible models from the given hypotheses 
Model Carboxylation  TPU Limiting rate 

selection 
Electron 
transport 

TBMs etc. 

M1111 1.  Eqs. 1, 4, 5 1.  absent 1. Eq. 2  1.  Eq. 6a FvCB†, 
ORCHIDEE 

M1211 1 2. Eq. 7 1 1  
M1121 1 1 2. Eqs. 3a,b 1  
M1221 1 2 2 1 CLM4.5♪, 

FATES♪, ELM♪ 
M1112 1 1 1 2. Eq. 6b SDGVM; 

BETHY 
M1212 1 2 1 2  
M1122 1 1 2 2  
M1222 1 2 2 2  
M1113 1 1 1 3. Eq. 6c  
M1213 1 2 1 3 CLM4.0♪, LM3♪ 
M1123 1 1 2 3  
M1223 1 2 2 3 CBGB♪, 

CTEM♪, IBIS§, 
JULES♪ 

† strictly speaking FvCB used a different electron transport model but it was quickly superseded by Eq. 644 

6A in 1984 and the original is not widely used; ♪ while all of these models assume TPU limitation, they 645 

all assume αtpu = 0 so that TPU limited A = 3TPU, § IBIS uses a unique TPU formulation (Foley et al. 646 

1996).  647 

 648 

  649 



Table 2. Comparison of the parameters used in the original papers by Farquhar and Collatz unified to 650 

common units. 651 

Parameter Eq Description units FvCB CBGB SA range 
       

Vcmax 4, 9, 10 Maximum RuBisCO 
carboxylation rate  

μmol CO2 m-2 s-1 98 200 45-55 

Kc 4, 8 Michaelis-Menten constant 
of RuBisCO for CO2   

Pa 46 30 36.4-44.5 

Ko 4, 8 Michaelis-Menten constant 
of RuBisCO for O2   

kPa 33 30 25.1-30.6 
 

ko:kc 8 Ratio of RuBisCO turnover 
numbers for O2 and CO2 

- 0.21 0.38† 0.19-0.23 

Jmax 6a, 6b, 9 Maximum electron transport 
rate 

μmol e m-2 s-1 210 na na 

ajv 9 Intercept of Jmax to Vcmax 
relationship 

μmol e m-2 s-1 na na 
 

26.2-32.0 

bjv 9 Slope of Jmax to Vcmax 
relationship 

e CO2
-1 na na 

 
1.467-1.804 

a 6 Leaf absorbtance of visible 
solar radiation 

- na (0.80)♪ 0.86 0.72-0.88 

f (αi = 1-f) 6  Fraction of absorbed light 
not absorbed by 
photosystems 

- 0.23 0.52‡ 0.207-0.253 

θ j 6a Electron transport 
smoothing   

- na (0.67)♪ na 0.81-0.99 

θcj 3a Assimilation rate smoothing 
1 

- na 0.95 0.81-0.99 

θcjp 3b Assimilation rate smoothing 
2 

- na 0.98 0.81-0.99 

TPU 7 Triose phosphate utilisation μmol CO2 m-2 s-1 na 0.167Vcmax 0.15-0.183 
Vcmax 

αtpu 7 Fraction of phosphate 
exported from chloroplast 

not returned 

- na na 0.45-0.55 

Rd 1 Dark respiration μmol CO2 m-2 s-1 1.1 0.015 
Vcmax 

0.0135-
0.0165 Vcmax 

       
† calculated from Collatz CO2:O2 specificity ratio, τ in their notation, of 2600 where ko:kc = Ko / (Kcτ 652 

); ♪ parameters were not originally specified in Farquhar but values in parentheses featured in Farquhar 653 

and Wong (1984); ‡ calculated from Collatz value of intrinsic quantum yield, α in their notation, of 654 

0.08 where 0.5(1-f)/4 = α.      655 



Table 3: First order sensitivity to processes.

variable Ca I mean variance Carbox. E.Trans. Lim. TPU

A int1 int 11.49 2.59 0.22 0.10 0.57 0.02
280 200 7.77 1.46 0.10 0.15 0.71 0.00
400 200 9.15 1.54 0.05 0.30 0.59 0.01
600 200 10.31 1.49 0.03 0.43 0.47 0.01
280 500 9.16 1.11 0.51 0.02 0.41 0.01
400 500 12.38 2.61 0.31 0.03 0.57 0.01
600 500 16.08 6.19 0.13 0.09 0.68 0.02
280 1000 9.28 0.99 0.60 0.03 0.29 0.01
400 1000 12.61 2.21 0.40 0.05 0.43 0.02
600 1000 16.68 5.76 0.21 0.06 0.57 0.03

∆A int int 2.81 0.50 0.05 0.13 0.65 0.03
280 to 4002 200 1.38 0.10 0.10 0.50 0.07 0.01
400 to 600 200 1.16 0.04 0.11 0.32 0.37 0.05
280 to 400 500 3.22 0.40 0.07 0.05 0.76 0.02
400 to 600 500 3.70 1.11 0.02 0.18 0.64 0.03
280 to 400 1000 3.32 0.32 0.11 0.07 0.64 0.04
400 to 600 1000 4.07 1.02 0.05 0.07 0.69 0.04

1 integrated across environmental scenarios.
2 for a change in Ca from 280 to 400 µmolmol−1.

1



Table 4: First order sensitivity to parameters.
var.1 Ca I model mean variance a ajv αtpu Kc Ko Vcmax bjv brv btv f kc : ko θcj θcjp θj

A int int int 11.49 0.94 0.07 0.00 0.00 0.22 0.07 0.35 0.00 0.01 0.00 0.01 0.01 0.19 0.04 0.02
280 200 int 7.77 0.44 0.22 0.00 0.00 0.16 0.09 0.05 0.00 0.00 0.00 0.02 0.05 0.29 0.00 0.05
400 200 int 9.14 0.52 0.39 0.00 0.00 0.07 0.05 0.02 0.00 0.00 0.00 0.03 0.04 0.27 0.01 0.08
600 200 int 10.30 0.55 0.49 0.00 0.00 0.03 0.03 0.02 0.00 0.01 0.00 0.04 0.02 0.21 0.03 0.10
280 500 int 9.15 0.69 0.00 0.00 0.00 0.36 0.11 0.37 0.00 0.00 0.00 0.00 0.02 0.13 0.01 0.00
400 500 int 12.37 1.11 0.00 0.00 0.00 0.28 0.08 0.41 0.00 0.00 0.00 0.00 0.01 0.19 0.03 0.01
600 500 int 16.07 1.52 0.02 0.00 0.00 0.15 0.05 0.38 0.00 0.03 0.00 0.00 0.01 0.25 0.06 0.03
280 1000 int 9.28 0.69 0.00 0.00 0.00 0.38 0.11 0.39 0.00 0.00 0.00 0.00 0.02 0.09 0.01 0.00
400 1000 int 12.61 1.12 0.00 0.00 0.00 0.30 0.08 0.44 0.00 0.01 0.00 0.00 0.01 0.14 0.03 0.00
600 1000 int 16.67 1.80 0.00 0.00 0.00 0.21 0.05 0.48 0.00 0.01 0.01 0.00 0.01 0.18 0.07 0.00
int int 1111 12.47 0.96 0.09 0.00 0.00 0.28 0.09 0.42 0.00 0.01 0.00 0.01 0.02 0.00 0.00 0.08
int int 1211 12.47 0.96 0.09 0.00 0.00 0.28 0.09 0.42 0.00 0.01 0.00 0.01 0.02 0.00 0.00 0.08
int int 1121 9.82 0.92 0.04 0.00 0.00 0.11 0.04 0.23 0.00 0.01 0.00 0.00 0.01 0.39 0.12 0.04
int int 1221 10.47 1.07 0.03 0.00 0.00 0.13 0.04 0.22 0.00 0.01 0.00 0.00 0.01 0.47 0.00 0.04
int int 1112 12.28 0.82 0.09 0.01 0.00 0.30 0.10 0.45 0.01 0.03 0.00 0.01 0.02 0.00 0.00 0.00
int int 1212 12.28 0.82 0.09 0.01 0.00 0.30 0.10 0.45 0.01 0.03 0.00 0.01 0.02 0.00 0.00 0.00
int int 1122 9.65 0.84 0.03 0.00 0.00 0.11 0.04 0.23 0.00 0.01 0.00 0.00 0.01 0.42 0.12 0.00
int int 1222 10.27 0.97 0.03 0.00 0.00 0.13 0.04 0.22 0.00 0.01 0.00 0.00 0.01 0.52 0.00 0.00
int int 1113 12.82 1.00 0.13 0.00 0.00 0.31 0.09 0.45 0.01 0.00 0.00 0.01 0.02 0.00 0.00 0.00
int int 1213 12.82 1.00 0.13 0.00 0.00 0.31 0.09 0.45 0.01 0.00 0.00 0.01 0.02 0.00 0.00 0.00
int int 1123 10.80 0.93 0.05 0.00 0.00 0.17 0.05 0.31 0.01 0.00 0.01 0.01 0.01 0.19 0.21 0.00
int int 1223 11.67 0.97 0.06 0.00 0.00 0.25 0.07 0.34 0.00 0.00 0.00 0.00 0.01 0.25 0.00 0.00

∆A int int int 2.81 0.09 0.09 0.01 0.00 0.09 0.02 0.26 0.00 0.07 0.01 0.01 0.00 0.20 0.11 0.05
280 to 400 200 int 1.38 0.07 0.38 0.00 0.00 0.11 0.03 0.17 0.00 0.01 0.00 0.04 0.01 0.02 0.02 0.05
400 to 600 200 int 1.16 0.02 0.34 0.00 0.00 0.15 0.09 0.02 0.00 0.01 0.00 0.03 0.07 0.09 0.10 0.07
280 to 400 500 int 3.22 0.07 0.01 0.00 0.00 0.07 0.01 0.41 0.00 0.01 0.00 0.00 0.00 0.36 0.10 0.02
400 to 600 500 int 3.70 0.21 0.07 0.01 0.00 0.11 0.01 0.10 0.00 0.15 0.00 0.00 0.00 0.13 0.08 0.10
280 to 400 1000 int 3.32 0.07 0.00 0.00 0.00 0.08 0.01 0.47 0.00 0.02 0.01 0.00 0.00 0.30 0.13 0.01
400 to 600 1000 int 4.07 0.12 0.01 0.01 0.00 0.04 0.01 0.42 0.00 0.03 0.02 0.00 0.01 0.27 0.21 0.01
int int 1111 3.20 0.10 0.04 0.00 0.00 0.08 0.01 0.29 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.20
int int 1211 3.20 0.10 0.04 0.00 0.00 0.08 0.01 0.29 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.20
int int 1121 2.05 0.09 0.03 0.01 0.00 0.04 0.02 0.08 0.00 0.03 0.02 0.01 0.01 0.33 0.36 0.07
int int 1221 2.44 0.10 0.03 0.00 0.00 0.01 0.00 0.09 0.00 0.04 0.00 0.00 0.00 0.65 0.00 0.11
int int 1112 3.10 0.11 0.11 0.03 0.00 0.20 0.02 0.29 0.00 0.21 0.00 0.01 0.01 0.00 0.00 0.00
int int 1212 3.10 0.11 0.11 0.03 0.00 0.20 0.02 0.29 0.00 0.21 0.00 0.01 0.01 0.00 0.00 0.00
int int 1122 1.98 0.07 0.03 0.01 0.00 0.05 0.02 0.08 0.00 0.04 0.02 0.01 0.01 0.36 0.38 0.00
int int 1222 2.35 0.08 0.04 0.00 0.00 0.02 0.00 0.09 0.00 0.05 0.00 0.00 0.00 0.74 0.00 0.00
int int 1113 3.33 0.10 0.21 0.01 0.01 0.11 0.03 0.55 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01
int int 1213 3.33 0.10 0.21 0.01 0.01 0.11 0.03 0.55 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01
int int 1123 2.53 0.11 0.05 0.01 0.01 0.03 0.02 0.15 0.01 0.01 0.05 0.01 0.01 0.12 0.61 0.01
int int 1223 3.11 0.07 0.11 0.00 0.00 0.05 0.00 0.35 0.00 0.00 0.00 0.01 0.00 0.45 0.00 0.00

3 variable.
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Figure captions 656 

Figure 1. Diagram of photosynthesis model to calculate net carbon assimilation (A, μmolm-2s-1, grey 657 
rectangle). Inputs (diamonds), parameters (triangles), functions (ellipses), and target state variable 658 
(rectangle) are shown, as is the breakdown on the model into the four processes (colors; limiting rate 659 
selection, carboxylation, electron transport, and triose phosphate use). Arrows represent the flow of 660 
information from distal parts of the model (inputs and parameters), through intermediate functions to 661 
the end goal. Concept modified slightly from Coon et al. (2016).   662 

 663 

Figure 2. Comparison of FvCB (solid black line) and CBGB (dashed black line) calculated carbon 664 
assimilation (A, μmolm-2s-1) in response to Ca (left column) and I (right column) for the models, a and 665 
e in their original state and parameterisation (Table 1), b and f in their original state but with common 666 
parameterisation (using FvCB parameters Table 1). c and d FvCB, and g and h CBGB showing the two 667 
or three potentially limiting rates Ac,g (green), Aj,g (blue), Ap,g (purple) in addition to A (black solid or 668 
dashed). Vertical grey lines show the transition points between limiting rates for the FvCB (solid) and 669 
CBGB (dashed) models. Common parameterisations are for shared parameters, i.e. the quadratic 670 
smoothing parameters are not common as quadratic smoothing is not considered by FvCB even though 671 
selection of the minimum can be represented by a special case of quadratic smoothing. 672 

 673 

Figure 3. Sensitivity of carbon assimilation (A, μmolm-2s-1) to variability in processes and parameters 674 
across various Ca and I environmental conditions. a, semi violin plots showing distributions of A 675 
against Ca (μmol mol-1, x-axis) and I (μmolm-2s-1, panels) boxes represent the inter-quartile range and 676 
median, whiskers the full range. b, first order sensitivity index of A to variability in the four processes 677 
against Ca (μmol mol-1, x-axis) and I (μmolm-2s-1, panels). c, first order sensitivity index of A to 678 
variability in the 14 parameters, indexes integrated across the 12 models and nine environmental 679 
conditions. d, first order sensitivity index of A to variability in the 14 parameters, indexes integrated 680 
across the 12 models and colour coded for each of the nine environmental conditions. e, first order 681 
sensitivity index of A to variability in the 14 parameters, indexes integrated across the nine 682 
environmental conditions and color coded for each of the 12 models. 683 

 684 

Figure 4. Sensitivity of the carbon assimilation response to an increase in Ca (ΔA, μmolm-2s-1) to 685 
variability in processes and parameters across I. Descriptions the same as for Figure 3. 686 

 687 

Figure 5. Relative reduction in calculated Ag of GPP (%) using quadratic smoothing compared to the 688 
minimum of the limiting rates. a, relative reduction in Ag (%) against the relative difference in Ac,g and 689 
Aj,g (% increase relative to the minimum of the two rates) when TPU is not simulated or simulated, 690 
colours represent relative difference in Ap,g and the minimum of Ac,g and Aj,g with orange representing 691 
the lowest difference and therefore the largest reduction in Ag. b, the relative reduction in Ag (%) as a 692 



function of both Ac,g and Aj,g when Ap,g is 20 μmolm-2s-1 (see color scale for d). c, global GPP (gC m-2) 693 
simulated by the three TBMs: ELM, FATES, and SDGVM. d, relative reduction in GPP (%) caused by 694 
non-rectangular hyperbolic smoothing in the three TBMs. e, high resolution A-Ca curves used to 695 
estimate θcj. f, MCMC posterior distributions for θcj estimated from the curves in e. The vertical grey 696 
line in e represents the Ca cutoff for the single high-res curve that showed a drop in A at high Ca. For 697 
GPP less than 250 gC m-2 (in c), values in d were screen to avoid over-emphasizing high relative 698 
changes on small absolute rates of GPP that do not contribute substantially to the global carbon cycle.   699 

 700 
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