Commentary

The effects of rising CO₂ concentrations on terrestrial systems: scaling it up

Since the Industrial Revolution, atmospheric CO₂ concentrations have increased by c. 50%, from 280 ppm to a current level of 415 ppm and rising (Ciais et al., 2013). But CO₂ concentrations would be even higher if the terrestrial biosphere was not acting as a carbon sink, absorbing c. 30% of the CO₂ we emit every year (Le Quéré et al., 2016). Understanding how increasing CO₂ concentrations will alter the ability of vegetation and soils to sequester carbon is therefore critical for predicting the trajectory of future climate change, since a reduction in this carbon sink would cause a more rapid accumulation of CO₂ in the atmosphere (Dusenge et al., 2019). In a recently published article in New Phytologist, Walker et al. (2020; doi: 10.1111/nph.16866) synthesize data from an incredibly broad range of sources, including herbaria, free air CO₂ enrichment (FACE) studies, ice cores, eddy covariance sites, and remote sensing, and examine an enormous diversity of measurements (such as soil respiration rates, glucose isotopomers from leaves, tree ring width data, stream-gauges for runoff, and direct atmospheric CO₂ measurements) to address the question of how increasing CO₂ concentrations are affecting the carbon uptake capacity of our planet.

‘...changes in plant carbon, nitrogen and water dynamics due to rising CO₂ concentrations cascade throughout ecosystems, with global impacts that are much less well understood’

The type of data synthesis Walker et al. undertake is rare but exceedingly valuable, since it collates biological responses to elevated CO₂ that may not be familiar to researchers who focus on a particular scale or domain. To enable direct comparison between such disparate data streams, Walker et al. express the results of the collected studies as relativized β-factors, which provide an estimate of the change in the measured variable per unit change in CO₂ concentration (i.e. a β-factor of 1 means that the variable rises in direct proportion to the increase in CO₂ concentration). To help the reader weigh the degree of agreement among studies of a given variable, Walker et al. also assigned a simple confidence metric to aid interpretation. The authors find that there is strong evidence and high confidence that carbon uptake, water use efficiency, and biomass production have increased concurrently with rising CO₂ concentration, consistent with theoretical expectations. However, they also report a lower confidence in our ability to quantify the magnitude of these changes, or to attribute these shifts to rising CO₂ concentrations. Furthermore, the theoretical magnitude of many responses is not consistent with observations, highlighting the need for improved process knowledge of ecosystem feedbacks.

A change in atmospheric CO₂ cascades through biological systems to affect many processes. The immediate effects of exposing vegetation to elevated CO₂ are an increase in photosynthesis, a decrease in stomatal conductance and an increased growth rate (Dusenge et al., 2019). Over longer timescales, these changes in leaf carbon and water fluxes can induce acclimation, whereby plants reduce their investment of leaf nitrogen in the carbon-fixing enzyme Rubisco, alter their stomatal traits, and adjust their canopy structure, hydraulic architecture and biomass allocation patterns (Ainsworth & Long, 2005; De Graaf et al., 2006). These short- and longer-term effects of elevated CO₂ levels on plant physiology and productivity are well known and relatively well understood.

However, these changes in plant carbon, nitrogen and water dynamics due to rising CO₂ concentrations cascade throughout ecosystems, with global impacts that are much less well understood. If reductions in leaf-level stomatal conductance decrease whole plant canopy transpiration, this could reduce plant water stress (Leakey et al., 2009) and lead to increased run-off at continental scales (Betts et al., 2007). Yet an increase in leaf area index (i.e. canopy density) under high CO₂ could offset leaf-level water savings at the whole plant level (Way et al., 2010; Gray et al., 2016), thereby increasing drought stress and minimizing changes in water cycling at the ecosystem level. Similarly, increased soil water availability due to lower whole-plant transpiration rates in high CO₂ can alter competition and increase the abundance of less drought-adapted species (Fay et al., 2012), which could eventually negate the original change in soil water content at the community level. One can consider similar types of feedbacks on litter decomposition. Increased litter production and allocation of carbon to belowground tissues and processes is common under elevated CO₂ concentrations (De Graaf et al., 2006), and these effects can stimulate microbial biomass and soil respiration rates, which can, in turn, increase soil organic matter (SOM) decomposition rates (Drake et al., 2011; van Groenigen et al., 2014). However, the higher carbon : nitrogen ratios of leaves produced in a high CO₂ environment can reduce the decomposability of litter generated by elevated CO₂-grown plants (Cotrufo et al., 1994), which may instead suppress SOM decomposition rates. Thus, the
net effect of rising CO$_2$ at the ecosystem level on SOM decomposition may vary considerably, depending on the relative strengths of these various effects.

Since the potential for these types of feedbacks increases as we consider systems with greater biological complexity, we may expect that as we scale up from a leaf to a whole plant to an ecosystem and, finally, to the globe, the effects of elevated CO$_2$ should become weaker and more variable (Fig. 1). Walker et al. report on how a number of different variables are affected by rising CO$_2$ concentrations, including variables related to plant carbon gain, water use efficiency and biomass production, and for some of these variables, they provide data across a broad range of biological scales. We therefore examined whether the β-factors in Walker et al. for plant carbon uptake (i.e. either leaf-level light-saturated net photosynthetic rates (A_{sat}) or ecosystem and global estimates of gross primary productivity (GPP)) and instantaneous water use efficiency (iWUE) varied in a predictable manner across biological scales as proposed in Fig. 1. To do this, we grouped the A_{sat} and GPP data in Table 2 of Walker et al. into either leaf, ecosystem or global scale estimates of vegetation carbon gain (as there were no whole plant-level data) and similarly grouped the iWUE data into leaf, tree, ecosystem or global data categories. While we appreciate that there are significant limitations to our analysis – e.g. small sample sizes, some studies are over-represented, and many other limitations, many of which are detailed by Walker et al. themselves – there are few data sets of this nature available, and the standardized β-factors allow one to compare data across scales in a way that the original publications do not.

With those (substantial) caveats in mind, let’s look at the data. For carbon gain, we found no decrease in β-factor with increasing biological scale (Fig. 2). While there was considerably more variation in estimates of global responses of GPP to rising CO$_2$ than there was in the leaf and ecosystem-level GPP data (Fig. 2), this is correlated with the greater sample size in the global-scale data and is likely artifactual. By contrast, there was some indication that the impact of rising CO$_2$ concentration on iWUE may decline as the biological scale considered increases (Fig. 2), though there are far too few data at the ecosystem and global scales to make broad
conclusions. Overall, what the analysis really emphasizes is the need for more data on how elevated CO₂ alters plant carbon, nutrient and water cycling across multiple scales. We therefore fully support the recommendation from Walker et al. that researchers should quantify the effect of high CO₂ concentrations at multiple scales within their own study site whenever possible, such as by measuring leaf-level gas exchange and sampling tree rings at eddy covariance sites, to better allow us to improve our understanding and model representation of processes at leaf-, whole plant-, ecosystem- and global-scales.

The Walker et al. review provides us with the clearest view yet of how rising CO₂ concentrations are affecting carbon cycling on Earth. That one of the main conclusions of such a herculean effort is that we have relatively little confidence in attributing recent increases in GPP, iWUE and biomass production to increasing CO₂ concentrations should be taken as a call to arms by the global change biology community to invest in multi-disciplinary research that aims to improve mechanistic understanding.

Acknowledgements

DAW acknowledges funding from the NSERC Discovery program and support from the University of Western Ontario’s Undergraduate Summer Research Internship program to AC. AR and DAW were also supported in part by the US Department of Energy contract number DE-SC0012704 to Brookhaven National Laboratory.

ORCID

Alistair Rogers https://orcid.org/0000-0001-9262-7430

Danielle A. Way1,2,3*, Andrew Cook1 and Alistair Rogers2

1Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
2Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA;
3Nicholas School of the Environment, Duke University, Durham, NC 27708, USA

(*Author for correspondence: email dway4@uwyo.edu)

References

Key words: atmospheric CO₂ concentration, biological responses to elevated CO₂, ecosystem feedbacks, future climate change, nitrogen and water dynamics, plant carbon, plant physiology and productivity, scaling up, β-factor.