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A B S T R A C T   

Observation-based statistical models have been widely used in forecasting solar energy; however, existing models 
often lack a clear relation to physics and are limited largely to global horizontal irradiance (GHI) forecasts over 
relatively short time horizons (<1 h). Incorporating physics into observation-based models, increasing forecast 
time horizons and developing a model system for forecasting not only GHI but also direct normal irradiance 
(DNI) and diffuse horizontal irradiance (DHI) remain challenging, especially under cloudy conditions because of 
complex cloud-radiation interactions. This work attempts to address these challenges by developing a hierarchy 
of four new physics-informed persistence models that can be used to simultaneously forecast GHI, DNI and DHI. 
The decade-long measurements (1998 to 2014) at the U.S. Department of Energy’s Atmospheric Radiation 
Measurement (ARM)’s Southern Great Plains (SGP) Central Facility site are used to evaluate the performance of 
the new models. The results show that the new physics-informed forecast models generally outperform the 
simple and smart persistence models, and improve the forecast accuracy at lead times from 1.25 h up to 6 h. 
Further analysis reveals that the forecast error is highly related to the error and temporal variability of the 
assumed cloud predictor. The best model for forecasting different radiative components can be explained by the 
relationship between solar irradiances and cloud properties.   

1. Introduction 

The growing demands for solar energy call for accurate solar 
resource forecasting to optimize energy management and grid operation 
(Beltran et al., 2012; Inman et al., 2013; Kleissl, 2013). Observation- 
based models have been widely used in forecasting solar radiation 
over short-term timescales, from 5 min up to 6 h (Reikard, 2009). The 
simplest form of those models, exploiting the temporal persistence of a 
variable, has been often used as a reference to evaluate more advanced 
models (Diagne et al., 2013). The simple persistence model, assuming 
persistent solar irradiance, predicts solar irradiance without knowledge 
of cloud or weather conditions, but it degrades quickly at lead times > 1 
h due to neglecting cloud impacts and sun movement (Martín et al., 
2010; Kleissl, 2013). The smart persistence model, which assumes the 
persistence of clear-sky index defined as the ratio of all-sky global hor-
izontal irradiance (GHI) to clear-sky GHI (Liu and Jordan 1960), im-
proves the simple persistence model by accounting for the overall effect 

of cloud on solar irradiance. However, it does not differentiate between 
radiative influences from different cloud properties. Machine learning 
models and statistical techniques —e.g., Auto-Regressive Integrated 
Moving Average (ARIMA), and multiple regressions and exponential 
smoothing—are also applied to improve the solar irradiance forecast 
(Yang et al., 2012; Lauret et al., 2015; Yang et al., 2015; Voyant et al., 
2017; Yang et al., 2017). Most such models rely on statistical relations 
between prediction and observation with empirically determined 
weights that are hard to interpret with a clear physical meaning. 
Furthermore, the observation-based models are often confined to fore-
cast GHI, although a few attempts have been made to infer direct normal 
irradiance (DNI) or diffuse horizontal irradiance (DHI) (Law et al., 2014; 
Chu et al., 2015; Bailek et al., 2018). 

Solar irradiance forecasting under cloudy conditions is particularly 
challenging due to complex cloud-radiation interactions (Ramanathan 
et al., 1989; Rosenfeld, 2006; Matus and L’Ecuyer, 2017) and multiscale 
variability of cloud properties (Liu, 2019). On one hand, clouds can 
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change the energy budget by scattering and absorbing solar radiation, 
which in turn depends on cloud microphysical properties (Kobayashi, 
1989; Pfister et al., 2003; Kubar et al., 2009), macroscopic properties (e. 
g., cloud fraction, cloud thickness), and multiscale structures of a cloud 
field (Shonk et al., 2010; Shonk and Hogan, 2010). On the other hand, 
radiative heating and cooling can alter the atmospheric vertical struc-
ture and atmospheric dynamics, changing energy redistribution of the 
cloud-laden atmospheric system, convective process, and cloud activ-
ities (Okata et al., 2017). 

In search of a theoretical framework that connects cloud properties 
with solar irradiances for retrievals and model evaluation, we (Liu et al., 
2011; Xie and Liu, 2013) developed a set of equations that relates cloud 
fraction and cloud albedo physically to reduced dimensionless quanti-
ties derived from a combination of solar irradiance components. Kumler 
et al. (2019) recently presented a cloud-optical-depth-based persistence 
model and showed improved GHI forecast over intra-hour time horizons 
compared to the simple and smart persistence models. 

In this work, we first present a hierarchy of four physics-informed 
persistence models based on the theoretical formulation under 
different levels of physical approximations that permit forecasting not 
only GHI but also its partitioning into DNI and DHI. We then evaluate 
the performance of the new models, in comparison with the simple and 
smart persistence models, using decade-long (1998 to 2014) measure-
ments at the U. S. Department of Energy (DOE) Atmospheric Radiation 
Measurement (ARM)’s Southern Great Plains (SGP) Central Facility site. 
The reasons underlying the performance discrepancies are dissected as 
well. The results shed new light on further improving observation-based 
models to forecast GHI, DNI, and DHI. 

The rest of this paper is organized as follows: the theoretical 
framework for the physics-informed persistence models is described in 
Section 2; the performances of the new models against the simple and 
smart persistence models are given in Section 3. Further analyses ac-
counting for the performance behavior are discussed in Section 4. The 
conclusion and further work are given in Section 5. 

2. Theoretical framework for the physics-informed persistence 
models 

2.1. Simple and smart persistence models 

The simple and smart persistence models are well known in the solar 
forecast community; we briefly introduce here to allow the readers to 
clearly see the connection to our new models as physics is gradually 
incorporated. Based on the assumptions of the persisted solar irradiance 
and clear-sky index, the simple persistence model directly projects the 
historical solar irradiance to the future time steps, and the smart model 
decomposes the forecasting of GHI into the computation of clear-sky 
index and clear-sky irradiance. Mathematically, the corresponding 
forecasting equation for the simple persistence model is given by 

Fdn
all,i

(
tf
)
= Fdn

all,i(t), (1)  

where Fdn represents the downward solar irradiance, the subscript ‘all’ 
denotes the all-sky condition; tf and t are the target and historical time 
such that tf = t+Δt with Δt being the forecast lead time. The subscript i 
can represent GHI, DNI, and DHI (note that Fdn

all,DNIrefers actually to the 
vertical component of DNI here). The forecast equation for the smart 
persistence model can be written as 

Fdn
all,GHI

(
tf
)
= K(t) × Fdn

clr,GHI

(
tf
)
, (2a) 

where the subscript ‘clr’ refers to the estimated clear-sky condition, 
and the clear-sky component is assessed with the method reported in 
Long and Ackerman (2000) and Long and Gaustad (2004). The clear-sky 
index K in Eq. (2a) is defined as 

K = Fdn
all,GHI/Fdn

clr,GHI (2b) 

Despite its utility, the simple persistence model is not capable of 
forecasting solar irradiances beyond an hour as a result of neglecting the 
impacts of clouds and sun movement (Martín et al., 2010; Kleissl, 2013). 
The smart persistence model reduces such effects somewhat, but it is 
limited to forecasting GHI only. Also, as will be shown later, the smart 
persistence model lumps together the different effects of cloud fraction 
and cloud albedo on GHI without clear differentiation. 

2.2. Physics-informed persistence model systems 

To further improve on the simple and smart persistence models and 
explore the potentials of incorporating physics and developing a model 
system that consistently forecasts not only GHI but also DNI and DHI, we 
build a hierarchy of four physics-informed persistence model systems 
based on the theoretical framework relating solar irradiances (GHI and 
DNI) and cloud properties (cloud fraction and cloud albedo) formulated 
by Liu et al. (2011) and Xie and Liu (2013). This section briefly in-
troduces the theoretical framework in the context of developing the 
forecast systems and clarifying the underlying physics; details are 
referred to the original publications. 

Based on the concept of cloud radiative forcing widely used in 
climate studies, Liu et al. (2011) introduced the concept of relative cloud 
radiative forcing (RCRF) for GHI defined as 

RCRFGHI = (Fdn
clr,GHI − Fdn

all,GHI
)/Fdn

clr,GHI (3) 

They further showed theoretically that RCRFGHIis an approximate 
product of cloud fraction and cloud albedo. Xie and Liu (2013) extended 
this work by combining GHI and DNI to derive the following set of 
theoretical relationships among cloud albedo (αr), cloud fraction (f), 
GHI, and DNI given by 

Fdn
all,GHI = Fdn

clr,GHI − αr × f×(Fdn
clr,GHI − Fup

all,GHIT
2), (4a)  

Fdn
all,DNI = [1 − f + f × exp( − τ/μ0) ] × Fdn

clr,DNI , (4b)  

τ = 2αrμ0/[(1 − αr) × (1 − g)], (4c)  

where Fup
all,GHI is the all-sky upwelling flux; T ≈ 2

∫ 1
0 μ0Tclr

dd (μ0)dμ0 is the 
transmittance of diffuse radiation of the atmosphere with μ0 represent-
ing the cosine of zenith angle and Tclr

dd indicating the transmittance of 
direct radiation that can be computed by a radiative transfer model in 
clear sky (e.g., Bird and Hulstrom, 1981); τ is the cloud optical depth; the 
mean value of asymmetry factor g is set as a constant 0.86. A combi-
nation of Eq. (4) yields 

αr

1 − exp[− 2αr μ0
(1− αr )×(1− g)]

=
B1
B2

, (5a)  

where B1 =
Fdn

clr,GHI − Fdn
all,GHI

Fdn
clr,GHI − Fup

all,GHIT
2, and B2 is the RCRF for DNI given by 

B2 = RCRFDNI = (Fdn
clr,DNI − Fdn

all,DNI
)/Fdn

clr,DNI (5b) 

Eq. (5) reveals that cloud albedo is essentially a function of the ratio 
B1/B2, and can be well approximated by the following piecewise 
polynomials 
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αr =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for B1B2 = 0 or 0.07 <
B1

B2
< 0.07872

1 − 31.1648
B1

B2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

31.1648
B1

B2

)2

− 49.6255
B1

B2

√

, for 0.07872 ≤
B1

B2
≤ 0.11442

2.61224B1 − B2 +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
24.2004B1

2 − 9.0098B1B2 + B2
2

√

18.3622B1 − 4B2

, for 0.11442 ≤
B1

B2
≤ 0.185

0.89412
B1

B2
+ 0.02519 , for 0.185 <

B1

B2
≤ 0.23792

B1

B2
for 0.23792 <

B1

B2
≤ 1.0

(6) 

Once αr is determined, cloud fraction f can be estimated by Eq. (4a). 
Two points are worth highlighting for this study. First, B1 can be 
approximated by RCRFGHI because the term Fup

all,GHIT2 is much smaller 
than Fdn

clr,GHI in the B1 denominator (5%~7%) and thus can be ignored. 
Thus, the theoretical formulation reveals that cloud albedo is essentially 
a function of the ratio of the RCRF for GHI and DHI defined as 

R = RCRFGHI/RCRFDNI . (7) 

In other words, the RCRF ratio R is essentially determined by cloud 
albedo. Second, with the approximation of B1 = RCRFGHI, Eq. (4a) is 
reduced to 

Fdn
all,GHI= (1− αr × f ) × Fdn

clr,GHI (8a)  

or f = B1/ar ≈ RCRFGHI/ar ≈ RCRFDNI . (8b) 

Equation (8b) reveals that RCRFDNI is essentially determined by 
cloud fraction. It is noteworthy that Yang et al. (2012) showed an 
empirical relationship between cloud fraction and DNI clear-sky index 
defined as the ratio of all-sky DNI to the clear-sky DNI, providing 
observational support for the theoretical Eq. (8a). 

According to the above theoretical analysis, we can build a hierarchy 
of persistence model systems to forecast GHI, DNI, and DHI, with 
different levels of incorporating physics as summarized in Table 1. The 
corresponding forecast systems are described next. 

The 1st level persistent model directly assumes the persistence of 
GHI, DNI and GHI; an example is the well-known simple persistence 
model for GHI. The 2nd level forecast model assumes the persistence of 
clear-sky index or RCRFs (RCRF-based persistence model hereafter), and 
the forecasting equation is given by 

Fdn
all,i

(
tf
)
= [1 − RCRFi(t) ] × Fdn

clr,i

(
tf
)
, (9)  

where the subscript i denotes GHI, DNI, and DHI. It can be readily shown 
that RCRFGHI has a linear relationship with K given by 

RCRFGHI = 1 − K. (10) 

Eq. (10) reveals that the smart persistence model is equivalent to the 
RCRF-based forecast model for GHI, and thus the RCRF-based forecast 
system (hereafter RCRF-PM) can be viewed as an extension of the smart 
persistence model to encompass DNI and DHI in addition to GHI. Based 
on Liu et al. (2011), RCRFGHI equals approximately to cloud fraction 
times cloud albedo; thus the RCRF-PM essentially assumes persistence of 
the overall cloud effects on solar irradiances. 

The R-based forecast model (hereafter R-PM) takes a further step to 
apply the ratio of RCRFGHI and RCRFDNI to the forecast as defined in Eq. 
(7), assuming the persistence of R such that 

Fdn
all,GHI

(
tf
)
=

[
1 − R(t) × RCRFDNI

(
tf
)* ]

× Fdn
clr,GHI

(
tf
)
, (11a)  

Fdn
all,DNI

(
tf
)
=

[
1 − RCRFGHI

(
tf
)*
/R(t)

]
× Fdn

clr,DNI

(
tf
)
, (11b)  

where the variable with a superscript * in Eqs. (11a) and (11b) is esti-
mated with 

V
(
tf
)
=

∑t
j=0(1 − a)jV(t − j)
∑t

j=0(1 − a)j , (12)  

where V denotes the variable to be estimated; j denotes the time step in 
the past 5 time steps; a is a smoothing parameter set as 1/3 for the 
exponential weighted moving average over 5-time steps. 

The 4th level forecast system has two models. One assumes the 
persistence of cloud albedo (cloud albedo-based forecast model and 
denoted by CA-PM hereafter), and the forecast equation is given by 

Fdn
all,GHI

(
tf
)
= [1 − αr(t) × f (tf )

*
] × Fdn

clr,GHI

(
tf
)

(13a)  

Fdn
all,DNI

(
tf
)
= [1− f

(
tf
)*

+ f
(
tf
)*

× exp[− τ
(
tf
)/

μ0(tf )] × Fdn
clr,DNI

(
tf
)

(13b)  

τ
(
tf
)
=

2αr(t)μ0(tf )

(1 − αr(t)) × (1 − 0.86)
(13c)  

where the variable marked with a superscript * also can be approxi-
mated by Eq. (12). 

The other 4th level forecast model assumes the persistence of cloud 
fraction (cloud fraction-based forecast system and denoted by CF-PM 
hereafter), and the forecast equation is given by 

Fdn
all,GHI

(
tf
)
=

[
1 − αr

(
tf
)*

× f (t)
]
× Fdn

clr,GHI

(
tf
)
, (14a)  

Fdn
all,DNI

(
tf
)
= [1 − f (t) + f (t) × exp[(− τ

(
tf
)/

μ0(tf )] × Fdn
clr,DNI

(
tf
)
, (14b)  

τ
(
tf
)
=

2αr
(
tf
)*μ0(tf )

(
1 − αr(tf )

*)
× (1 − 0.86)

(14c) 

Note that the prediction for DNI and DHI of all the new forecast 
systems are derived by 

Fall,DNI = Fdn
DNI/μ0, (15a)  

Fdn
all,DHI

(
tf
)
= Fdn

all,GHI

(
tf
)
− Fdn

all,DNI

(
tf
)
, (15b)  

where the cosine of the solar zenith angle μ0 can be calculated with the 
method reported by Reda and Andreas (2004); the solar zenith angle 
from the dataset is used in this study. 

3. Forecast and evaluation 

3.1. Measurement data 

We have tested the hierarchy of new forecast systems with the 

Table 1 
A summary of cloud-radiation relationships at different levels of approximation.  

Hierarchy 
level 

Persistent 
predictor 

Cloud physics incorporated 

1st level Fdn
all,GHI,F

dn
all,DNI ,

Fdn
all,DHI  

No direct cloud physics 

2nd level K or RCRFs Overall cloud effects 
3rd level R Approximate separation of radiative effects from 

cloud albedo and cloud fraction 
4th level αr,f Clear separation of radiative effects from cloud 

albedo and cloud fraction  
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decade-long (from 1998 to 2014) and quality-controlled measurements 
of GHI, DNI, and DHI with the 15-minute resolution at the U. S. DOE 
ARM SGP Central Facility site. The site is also chosen for its availability 
of co-located measurements of detailed data on atmospheric processes 
relevant to clouds and solar radiation (www.arm.gov). The clear-sky 
components are assessed based on the method proposed by Long and 
Ackerman (2000) and Long and Gaustad (2004). 

3.2. Overall performance 

For convenience of discussion, various quantities assumed to be 
persistent (e.g., RCRFs, R, cloud albedo, and cloud fraction) are gener-
ically referred to as cloud predictors. A common criterion 1 W⋅m− 2 <

Fall(tf) < 1361 W⋅m− 2 (mean solar constant) (Kopp and Lean, 2011; 
Kopp, G., 2014) is used to determine the valid data for the models. As 
indicated in Table 2, the maximum percentages of the outliers at all the 
lead times examined, are less than 0.47%, 8.8% and 5.2% for GHI, DNI 
and DHI, respectively. These results suggest a minimal influence of the 
excluded outliers on the evaluation and subsequent analysis. The higher 
percentage for DNI and R-PM may result from the operation of division 
and approximations involved (Eqs. (11)–(14)). To further assure the 
consistency of comparison across the different models and radiative 
components, the same set of data are used for performance evaluation 
that produce valid predictions of GHI, DNI and DHI in all the models. 

Fig. 1 compares the overall performance of different forecast systems 
in terms of percentage error (PE) defined as the root mean squared error 
normalized by the mean measurement at lead times from 15 min up to 6 
h. A few points are evident. First, for GHI, although the simple persis-
tence model has a comparable PE at lead times less than 1 h, all the 
physics-informed persistence models outperform the simple persistence 
model at all lead times, with significant improvements especially over 
longer forecasting horizons beyond 1 h. These results are consistent with 
the previous studies on the GHI forecast (Martín et al., 2010; Kleissl, 
2013). Second, all the other physics-informed forecast systems have 
smaller PEs than the smart persistence model (note the equivalence of 
RCRF-PM for forecasting GHI with the smart persistence model) beyond 
1.25 h, indicating better accuracies of the new forecast systems in 
forecasting GHI. The performances of the fourth level models, CF-PM 
and CA-PM, are even better than that of the third level R-PM in fore-
casting GHI despite the minor differences among those three models. 
Third, the physics-informed persistence models successfully partition 
GHI into DNI and DHI with forecasting accuracies comparable to the 
conventional smart persistence model for GHI. Generally, CF-PM has the 
best performance in forecasting GHI, but CA-PM outperforms the other 
models in predicting DNI and DHI at lead times longer than 1 h. Finally, 
the forecast accuracy for GHI is generally better than those for DNI and 
DHI at the same lead time. 

To better illustrate the quantitative improvement over the simple 
and smart persistence model, we calculate the PE skill score (S) for all 
the models with lead times from 15 min to 6 h. The PE skill score is 
defined as (Yang et al., 2020) 

sreference =

(

1 −
PEmodel

PEreference

)

*100%, (16)  

where the subscript “model” denotes one of the new models, and the 
subscript “reference” indicates that the reference persistence model is 

the simple (Ssimple) or smart persistence model (SRCRF). Note that RCRF- 
PM is equivalent to the smart persistence model for GHI, and can be 
regarded as the extension of the smart persistence model for DNI and 
DHI. Positive and negative values of S indicate that the new model im-
proves and degrades the forecast relative to the reference persistence 
model, respectively. The magnitude of the skill score quantifies the de-
gree of forecast improvement or degradation as compared to the refer-
ence persistence model. Fig. 2 shows the PE skill scores as a function of 
lead time for different models in forecasting GHI (a,d), DNI (b,e) and 
DHI (c, f) relative to the simple and smart (RCRF) persistence model. 
Several points are noteworthy. First, for GHI, all the new models 
outperform the simple and smart persistence model at all the lead times 
examined (from 15 min to 6 h), and the improvement increases with 
increasing lead times. CF-PM has the best performance with improve-
ment up to 68% and 29% at 6-hour lead time compared to the simple 
and smart persistence model, respectively. It is noteworthy that the 
difference between CA-PM and CF-PM is negligible, and both models 
have slightly better performance than the third-level model, R-PM. The 
results clearly demonstrate the enhancement of the skill scores in fore-
casting GHI resulting from incorporating physics into the forecast 
models at different levels of the hierarchy, and the model at the higher 
level tends to have better performance. Second, for DNI, the improve-
ments of the third and fourth level models increase with increasing lead 
times similar to GHI, and they all outperform the simple persistence 
model and RCRF-PM from 0.75-hour and 1.25-hour lead time, respec-
tively. CA-PM performs the best, with improvements up to 47% and 15% 
relative to the simple model and RCRF-PM. It is noted that the perfor-
mance of R-PM is worse than the simple persistence model and RCRF-PM 
in forecasting DNI (s < 0) at lead times less than 0.75 and 1.25 h, 
respectively. Third, for DHI, the improvement starts from 1-hour lead 
time for all but R-PM. Despite the general increase of the skill score with 
increasing lead times as well, the improvements are less than 30% for 
DHI based on Ssimple, smaller than those for GHI and DNI forecasts, which 
is likely related to the error propagation/enhancement, since it is 
essentially calculated as a difference between forecasted GHI and DNI. 
R-PM starts to forecast DHI better than the simple persistence model at a 
later lead time of 3 h, and it is postponed to 4 h regarding SRCRF. The 
relatively poor performance of R-PM for DNI and DHI might be related 
to the above-mentioned approximations involved in deriving the R ratio. 

Another metric to gauge forecast models lies in the improvements in 
the forecast lead time given a reference forecast accuracy. It is recog-
nized that the simple persistence models generally have acceptable 
forecasting accuracy within the 1-hour forecasting horizon (Diagne 
et al., 2013), which is also shown in Fig. 1. Thus, we choose the PEs of 
simple persistence models at the lead time of 1 h as the reference to 
identify the lead time of the other models with similar PEs and quantify 
the improvement in forecast lead time over the simple persistence 
model. The results are summarized in Table 3. Relative to the simple 
persistence model, RCRF-PM, R-PM, CA-PM and CF-PM extend the lead 
times from 3 h up to 6 h (longest lead time examined) for GHI; the 
corresponding extensions for DNI are 1.75 h, 2 h, 2.5 h, and 2 h, 
respectively. The improvements in lead time for DHI are not as signifi-
cant as the other two components with all being smaller than 1.25 h. 
Similarly, Table 4 lists the improvements in forecast lead times of the 
third and fourth level models over the smart (RCRF) persistence model. 

To further examine the error components determining PE, we modify 
the Taylor diagram (Taylor, 2001) to show the individual error com-
ponents (correlation coefficient r between the measurement and fore-
cast, normalized standard deviation σ = σpre/σobs (σpreandσobs represent 
the standard deviation of model and measurement, respectively), and 
the centered root-mean-squared error (CRMSE) (1 + σ2 − 2σ*r) at all 
lead times (Fig. 3). The shorter the distance between each point and the 
reference point ‘Ref’, the smaller the CRMSE. The modification lies in 
the additional representation of the magnitude of mean bias between the 
measured and predicted solar irradiances by different colors and lead 

Table 2 
Maximum percentage (%) of the outliers for individual models.  

Model GHI DNI DHI 

Simple 0.0029 2.4 0.0012 
RCRF-PM (smart) 0.019 2.2 0.048 
R-PM 0.47 8.8 5.2 
CA-PM 0.055 0.62 0.14 
CF-PM 0.055 2.7 0.11  
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times by different symbol sizes. With all the error components of PE 
represented, the modified Taylor diagram helps to determine the indi-
vidual factors resulting in the differences in the performances among 

various models. Some features are noteworthy. First, model perfor-
mance gradually degrades with an increasing CRMSE as the lead time 
increases. With the exception of RCRF-PM, the increase of CRMSE is 

Fig. 1. Overall performance of all forecast systems as a function of forecast lead time.  

Fig. 2. PE skill score as a function of lead time for different models. Ssimple and SRCRF mean the PE skill scores are referenced by the simple and smart (and RCRF) 
persistence models, respectively. 

Table 3 
Improvement in forecast lead times of the new models over simple persistence 
model.   

RCRF-PM R-PM CA-PM CF-PM 

GHI 3 h 5.5 h 6 h 6 h 
DNI 1.75 h 2 h 2.5 h 2 h 
DHI 1.25 h 0 h 1.25 h 1.25 h  

Table 4 
Improvement in forecast lead times of the new models over smart (RCRF) 
persistence model.   

R-PM CA-PM CF-PM 

GHI 1.5 h 1.5 h 1.75 h 
DNI 1 h 1.25 h 1.25 h 
DHI 1 h 1 h 1 h  
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mainly caused by the decrease of the correlation coefficient, since the 
variation of the normalized standard deviation with lead time is mini-
mal. Similarly, the smaller CRMSE for GHI compared to DNI and DHI 
results mainly from the higher correlation as well. As for RCRF-PM, a 
distinction from the other models is embodied in the increasing 
normalized standard deviation with lead time, which is responsible for 
the growing CRMSE as well. Second, at the lead times with positive 
Ssimple as shown in Fig. 2, the physics-informed forecast systems 
outperform the simple persistence models mainly due to smaller mean 
biases and higher correlation. At the lead times with positive Ssmart, the 
physics-informed forecast systems have better performance mainly 
resulting from smaller mean biases and smaller standard deviation 
rather than higher correlation; the correlation coefficients are similar for 
RCRF-PM and the other physics-informed models. Nevertheless, at the 
lead times with negative S, relative to the simple or smart persistence 
model, the worse performance of the physics-informed models stems 
from a lower correlation and/or a higher mean bias. For example, R-PM 
has negative SRCRF at the lead times less than 1.25 h and 4 h for DNI and 
DHI forecasts, respectively, and the Taylor diagram suggests that the 
lower correlation coefficient and larger mean bias are responsible for the 
poor performance in R-PM at those lead times. Third, the fourth level- 
based models have the best performance in forecasting irradiances due 
to their improvements in forecasting correlation, mean bias as well as 
low standard deviation. 

In addition to PE (or PE skill score) and its various error components, 
Yang et al. (2020) recently recommended the use of the Murphy–Win-
kler framework to conduct distribution-oriented forecast verification 
whereby the marginal occurrence probability distributions of 

observations and forecasts can be compared, and more detailed joint 
distribution can be evaluated. Fig. 4 further shows an example of 
comparing different forecasts at the lead time of 3 h against the corre-
sponding measurements. As can be seen that the scatters of the simple 
persistence model are much broader than the other models for all the 
solar radiative components. In general, the fourth-level based models, 
CA-PM and CF-PM, outperform the other models with the data points 
centering around the perfect one-to-one line. Without referencing the 
modified Taylor diagram or PE, it is difficult to determine which model 
is the best due to the visually similar scatters between these two. The 
second and third level-based models, RCRF-PM and R-PM, tend to 
overestimate the high-value irradiances, with the high occurrence fre-
quency zone shifting upward from the one-to-one line. Moreover, the 
histograms display the marginal distributions of measurement (on the 
top) and forecast (on the right). For clarity, the forecasted and measured 
marginal cumulative distributions are further compared in Fig. 5 for GHI 
(a), DNI (b), and DHI (c). Visually, the new persistence models can well 
capture the observed GHI distribution. A larger discrepancy between the 
forecasted and observed marginal distributions exists under low DNI and 
DHI conditions (<100 W⋅m− 2) for most models, suggesting the limita-
tions of low irradiance conditions and plausible stronger effects of 
clouds (see Section 4 for more detailed analyses). The relatively larger 
discrepancy in DNI and DHI between the forecast and observed marginal 
distributions also supports the preceding result that the improvement in 
forecasting DNI and DHI stems mainly from correlation (or joint PDF). 
Note that the discussion above is based on the percent error gauging the 
overall model performance; careful inspection of Figs. 4 and 5 suggests 
that CF-PM better captures the events of first DNI bins (DNI < 20 

Fig. 3. Taylor diagram illustrating the model performances at all lead times. The top, middle, and bottom rows are for GHI, DNI, and DHI; different columns are for 
different models; different symbol sizes and colors are for various lead times and the mean absolute errors between the measured and forecasted solar irradiances, 
respectively. The radial distance from the origin is proportional to the normalized standard deviation. The centered RMSE (green dotted lines) between the forecast 
and observation field is proportional to their distance apart. The blue dotted lines indicate the correlation coefficient between the forecast and reference field. Note 
the error bar for the simple persistence model is not the same as the other models. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

W. Liu et al.                                                                                                                                                                                                                                      



Solar Energy 215 (2021) 252–265

258

W⋅m− 2). 
Together, the analyses demonstrate that the new physics-informed 

forecast systems are capable of predicting GHI, DNI, and DHI and 
outperform the simple and smart persistence model, especially over 
longer time horizons (>1.25 h) by reducing measurements of GHI and 
DNI into dimensionless cloud predictors that are related to different 
cloud properties. Furthermore, regardless of the detailed differences for 

various solar irradiances, the fourth-level models (CF-PM and CA-PM) 
perform the best. This makes physical sense considering that the third- 
level R-model framework is an approximation of the fourth-level 
framework, the second-level RCRF system considers the overall cloud 
radiative effects without separation, and the first level models consider 
solar radiation directly without explicitly considering any cloud effects. 

Fig. 4. Joint and marginal distributions of the predicted and observed solar irradiances at the lead time of 3 h. Different columns are for different models as marked 
on the center top of the plots in the top row. The top, middle and bottom rows are for GHI, DNI, and DHI, respectively; the plots in the same row share the same 
colorbar displayed at the end; the black dashed line is the one-to-one line; the top and right marginal distributions are for observations and forecasts, respectively. 

Fig. 5. Comparison between the observed marginal cumulative distributions and those forecasted by the different models. The radiative components are given on top 
of plots. 

W. Liu et al.                                                                                                                                                                                                                                      



Solar Energy 215 (2021) 252–265

259

4. Further analysis 

As qualitatively illustrated in Fig. 6, large forecast errors are often 
related to the cloudy episodes with a dramatic temporal variation of 
cloud properties, suggesting the possible linkage between the variability 
of cloud property and model performance. This section further explores 
the quantitative relationships between them. 

To quantify the temporal variation, we introduce the magnitude of 
the relative variability (ε) defined as 

ε = |
V(t + Δt) − V(t)

V(t)
| × 100%, (17)  

where V denotes the variable in question, t is the time, andΔt is the time 
difference between the steps (hereafter referred to interval time for 
convenience). The use of the relative variability permits the comparison 
of quantities with different physical units; taking the absolute value 
allows us to focus on the magnitude of the variation to better show the 
trend of the statistical meanε with interval time without being influ-
enced by the sign. Fig. 7 shows an example of the temporal variations of 
ε for solar irradiances and cloud properties at the interval time of 3 h in 

Fig. 6. A case on 09/07/2002; (a) ~ (e) show the temporal variation of GHI, DNI, DHI, cloud properties, and ground-based-observed cloud fraction; (f) ~ (h) are the 
forecasted errors from all the systems for GHI, DNI, and DHI at the lead time of 2 h. Four sky images from the top left to the bottom right correspond to the local time 
10:00, 12:00, 14:00, and 16:00, respectively. 
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2014. The mean ε for GHI is much smaller than that of DNI, indicating a 
gentle variation in GHI from t to t + Δt, which is potentially associated 
with the best performance among three radiative components by using 
one type model to forecast GHI (Figs. 1–3). Even though the smallest ε in 
DHI, it is derived in an indirect way with the forecast accuracy being 
both affected by the signature of GHI and DNI, leading to worse per-
formance in DHI compared to GHI. Furthermore, the fourth-level- 
properties (cloud fraction and cloud albedo) have smaller mean εthan 
the other level ones (R, RCRFs), supporting that the fourth-level-model 
systems outperform the other models in predicting individual radia-
tive components. To illustrate the connections between temporal vari-
ability and model performance extended to all interval times examined 
and the long-term periods, Fig. 8 relates the mean ε (from 1998 ~ 2014) 
of the cloud predictor with the PE from the corresponding predictor- 
based model when the lead time is equal to the interval time, showing 
that PE positively correlates with the mean ε for all the models, and both 
generally increase with lead time. In general, the smaller mean ε asso-
ciated with better performance in GHI and the fourth-level-based sys-
tems agrees well with Fig. 7; however, the minimum mean ε in cloud 
albedo only contributes the least to PE for DNI and DHI, but not for GHI, 
and meantime model performances are relatively independent of the 
mean ε among R-PM, CF-PM and CA-PM, since the discrepancy between 

the mean ε at the same lead time does not affect the PE significantly, 
both of which possibly imply other factors influencing the model per-
formance in addition to the temporal variability. Moreover, though a 
smaller ε in GHI than the other cloud predictors, the worst performance 
of the simple model could be possibly explained as by the physical un-
derstanding that this predictor does not embody a specific type of cloud 
influence, but the irradiance itself. These findings highlight the linkages 
among solar radiation changes, temporal variability of cloud properties, 
and model performances, and also suggest the minimal ε principle in 
general for choosing the cloud predictor among different hierarchy 
levels to build the corresponding forecast system. 

The increasing mean ε with the increasing interval time essentially 
indicates the growing forecast errors with lead time, which makes the 
assumption of the persistence of the key predictors used in the model is 
more questionable for long lead times. Based on the assumptions, a 
larger error between the actual and the assumed persistent cloud pre-
dictor (RCRF, R, cloud albedo, and cloud fraction) is likely translated 
into a larger error in the solar irradiance forecast (see the corresponding 
forecast equations in Section 2). To confirm this, Fig. 9 shows the rela-
tionship of the errors between cloud predictors and GHI (top panel), DNI 
(middle panel), and DHI (low panel) at the lead time of 2 h. Also shown 
are the PEs of the models. Several points are noteworthy. First, with 

Fig. 7. Temporal variation of the magnitude of relative variability ε for radiative components and cloud predictors at the interval time of 3 h. The red line represents 
the mean ε. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Percent error (PE) as a function of the mean ε for the cloud predictors at all the lead times.  
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three exceptions. All the error correlations are negative for GHI and DNI, 
suggesting that underestimated (overestimated) cloud properties (e..g, 
cloud fraction and cloud albedo) lead to overestimated (underestimated) 
solar irradiances. One exception is the relationship between the error in 
cloud fraction (and RCRFDNI, RCRFDNI≈f) and the error in forecasted 
DHI, which is positive, suggesting that an underestimated (over-
estimated) cloud fraction (and RCRFDNI) leads to underestimated 
(overestimated) DHI. These results seem consistent with the physical 
understanding that clouds normally enhance DHI, but reduce DNI and 
GHI. The other two exceptions are the relationships of the error in the 
forecasted DNI to the errors in R and cloud albedo, both of which are 
largely independent. This error independence seems to accord with the 
physical understanding that DNI is determined primarily by cloud 
fraction (Yang et al., 2012; Xie and Liu, 2013). Second, the details of the 
error relationships vary among different cloud predictors and radiative 
components. For example, on one hand, for individual cloud predictor, 
the error contributes a wider variation range to the error in DNI 
compared to GHI; on the other hand, for the same radiative component, 
the error in cloud albedo contributes the least to the error in DNI as well 
as in DHI with the smallest PE compared to the other three cloud pre-
dictors (RCRF, R and cloud fraction) but not shown in the GHI forecast. 
All these results indicate the different sensitivities of the radiation error 
to the cloud predictor error. 

The sensitivity of the radiation error to the cloud preditor error 
basically refers to the propagation strength from the predictor error to 
the solar irradiance error. As can be seen from Fig. 9, cloud albedo and R 
have relatively weaker propagation strength due to the visually inde-
pendent relationship between the errors in cloud predictor and 

radiation. To illustrate the point, Fig. 10 (a) ~ (c) show the slope (m) of 
the linear-fitting equation between the error in the cloud predictor (x) 
and the error in the solar irradiance (y) with the expression of y = mx, m 
is used as an indicator of propagation strength; the intercept is set as zero 
to eliminate its influence on the results when comparing different m at 
various lead times. Fig. 10 (e) ~ (f) show the correlation coefficient (r) 
between x and y. The negative m and r for all the physical models in GHI 
and DNI forecasts further confirm that the error in solar radiation 
negatively correlates with the error in cloud predictor at all the lead 
times as supplementary to Fig. 9. Meanwhile, regardless of the details on 
the variation in m and r with lead time, a consistent ranking order be-
tween them among different cloud predictors also indicates that the 
magnitude of m can roughly represent the correlation r between pre-
dictor error (x) and solar radiation error (y), and vice versa. The mag-
nitudes in m and r vary among cloud predictors, manifesting their 
different propagation strengths from predictor error to the solar irradi-
ance error and thus regulate the model performance by its integration 
with the error in cloud predictor. For example, the relatively larger error 
in RCRFs (Fig. 8) and the stronger propagation strength both contribute 
to a large radiation error (y) degrading performance with the largest PE 
in RCRF-PM except for the simple model. Conversely, a plausible reason 
for the best performance of CA-PM in DNI and DHI forecasts is due to the 
smallest error (Fig. 8) in cloud albedo as well as the relatively weaker 
propagation strength (Fig. 10). Moreover, the combined effects of the 
propagation strength (or correlation) and the error in cloud predictor 
are possibly responsible for the independent relationship of PE with the 
mean ε among R-PM, CA-PM and CF-PM as shown in Fig. 8, the differ-
ence in the ranking order between the mean ε and correlation among R, 
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Fig. 9. Relationships between the errors in cloud predictors and solar irradiances with the corresponding PEs at the lead time of 2 h. The top, middle, and bottom 
rows are for GHI, DNI, and DHI, respectively; different columns represent different models as marked on the top in the first row. 

W. Liu et al.                                                                                                                                                                                                                                      



Solar Energy 215 (2021) 252–265

262

cloud albedo and cloud fraction makes it possible to result in similar 
model performance. 

The preceding analysis discussed the relationship between the error 
in the key cloud predictor and the model performance without differ-
entiating the impact of the potential error from the other assumed var-
iables introduced by applying the exponential technique (i.e., assumed 
RCRFs in R-PM, assumed cloud fraction in CA-PM, and assumed cloud 
albedo in CF-AM). The joint impact of the errors from both variables on 
the solar radiation error is further investigated given by Fig. 11. Note 
that the x-axis denotes R or cloud albedo due to the relationship of R≈αr 
for better comparison regardless of the assumption technique (persis-
tence or exponential moving average) applied to cloud predictors. 
Different patterns are shown for various radiative components. In GHI 
forecast, large radiation errors mainly occur in the first and third 
quadrant with either negative or positive error in two cloud predictors. 
The underestimated (overestimated) solar radiations mainly occur when 
the error in cloud fraction or RCRFGHI is greater (less) than 0, but the 
variation in the sign of the cloud albedo error does not cause a signifi-
cant variation in the DNI error. In DHI forecast, the overestimation and 
underestimation in DHI are separated by a split line across the first and 
third quadrant with an angle to the x-axis around 45◦, the methodology 
in deriving DHI makes the relationship complicated and not straight-
forward. That DNI error mainly determined by the cloud fraction error is 
consistent with the results shown by Figs. 9 and 10, and agrees with 
Yang et al. (2012). 

To further investigate the physical reasons underlying the model 
behaviors, Fig. 12 shows the relationships between solar irradiances and 
cloud predictors based on the all measurements examined. Both GHI 
(top panel) and DNI (middle panel) irradiances decrease with increasing 
values of the cloud predictors. DHI (lower panel) exhibits more 

complicated relationships; it increases with cloud fraction, but it in-
creases with RCRFGHI, R and cloud albedo only when their values are less 
than 0.4, and then DHI decreases with them as they further increase. 
These results seem consistent with the physical understanding that 
clouds normally enhance DHI but reduce DNI and GHI, and that also 
accounts for the underestimated cloud predictors causing an over-
estimated GHI and DNI as well as underestimated cloud fraction leading 
to an underestimated DHI, as shown in Fig. 9. 

These findings also help explain the performance among different 
radiative components and different models. It is clear that the con-
trasting dependences of DNI and DHI on cloud fraction somewhat cancel 
each other as the cloud fraction varies, which only leads to a slightly 
decreasing trend in GHI with cloud fraction (first row, last column in 
Fig. 11) as GHI theoretically is the sum of DHI and the vertical 
component of DNI. The contrasting dependencies of DNI and DHI on the 
other predictors (RCRF, R, and cloud albedo), however, occur only when 
the value of the cloud predictor is less than 0.4; beyond that, obvious 
descending trends on GHI are shown because of the reductions both on 
DNI and DHI with RCRF, R and cloud albedo. The feature infers that GHI 
has a gentle variation with the increasing cloud fraction causing a 
smaller error in GHI when using CF-PM to make a forecast compared to 
the other models. Conversely, DNI is determined primarily by cloud 
fraction, and a small error in cloud fraction will introduce a noticeable 
error in DNI. However, DNI is relatively independent of cloud albedo or 
R, which not only supports the above-mentioned largely independent 
relationships of the error in forecasted DNI to the errors of R and cloud 
albedo, but also indicates a better performance on DNI when R-PM and 
CA-PM are used. Despite the similar relationships between solar radia-
tion and cloud albedo and R, the smaller error in cloud albedo than in R 
at the same lead time (Fig. 9, Fig. 11) seems to account for the better 

Fig. 10. (a) ~ (c) shows the slope (m) of the linear regression equation, y = mx, as a function of lead time, where y and x, respectively, denote the error of the solar 
irradiance and cloud predictor for each model. (d) ~ (f) show the correlation coefficient (r) between x and y as a function of lead time. 
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performance in CA-PM than R-PM in forecasting DNI. 

5. Concluding remarks 

A hierarchy of four new physics-informed persistence models is 
presented to improve the ability to forecast both GHI and its partitioning 
into DNI and DHI by incorporating clear physics into the persistence 
models based on the theoretical framework that connected solar irra-
diances with cloud properties (Liu et al., 2011; Xie and Liu, 2013). The 
decade-long measurements at the ARM SGP Central Facility site are 
utilized to evaluate the performance of these models and compared 
them with the commonly used simple and smart persistence models. An 
in-depth analysis is conducted as well to assess the model performance 
and associate it with specific cloud predictors. 

Our results show that the new physics-informed models outperform 
the simple and smart persistence models and improve the forecasting 
accuracy of GHI, DNI, and DHI at long lead times (>1.25 h). Generally, 
CF-PM demonstrates the best performance in predicting GHI, and CA- 
PM is the best forecast system for DNI and DHI forecast based on the 
overall performance evaluated by the percent error. Regardless of the 

detailed differences for various solar components, the fourth-level 
forecast systems (CA-PM and CF-PM) have the overall best perfor-
mance among the models. Further analysis shows that model perfor-
mance is related to the temporal variability of the cloud predictor 
assumed to be persistent: a larger variability between the actual and the 
assumed persistent cloud predictor will generally translate into a larger 
error in the solar irradiance forecast. 

The results clearly demonstrate the importance and utility of incor-
porating physics into developing observation-based forecast models. A 
few points are noteworthy. First, this study is primarily focused on the 
overall cloud influences without the separation of different cloud types. 
In the future, it is desirable to test the forecast systems under different 
cloud types. Also desirable is to evaluate the models in different climate 
zones and locations. Second, in this study, the prediction for DHI is 
obtained by use of the equality DHI = GHI-DNI*μ0, and thus the errors 
from GHI and DNI will both affect predicting DHI irradiance. A direct 
method is more desirable. Third, as the first proof of concept, this study 
focuses primarily on the persistence models, advanced approaches (e.g., 
machine learning) in time-series forecasting merits exploration in the 
future. Last, the theoretical framework presented in Liu et al. (2011) and 

Fig. 11. Relationships between the errors in two estimated cloud predictors in R-PM (first column), CA-PM (second column) and CF-PM (third column) at lead time 
of 3 h. The colorbar shows the error in solar irradiance; different rows are for different radiative components. 
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Xie and Liu (2013) have inherent assumptions that may not hold for 
ambient clouds. For example, the homogeneous cloud assumption 
cannot accurately represent 3-D radiative transfer in some clouds (e.g., 
deep convective clouds). Careful use of this method in such specific 
scenarios is needed. The impacts of the overlapped clouds, aerosols and 
the 3-D cloud effect are not yet considered in our model. The model is 
expected to be more accurate when considering these factors, and 
associated works in the future are needed to be explored. 
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