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Aerosols can reflect and absorb solar radiation, as well as alter 
cloud albedo and lifetime by serving as cloud condensation 
nuclei and ice-nucleating particles1–3. Thus, changes in aero-

sol concentration influence the planetary energy balance4,5. The net 
impact of cloud radiative forcing from anthropogenic aerosols is 
to cool the Earth’s surface. As estimated by the Intergovernmental 
Panel on Climate Change Fifth Assessment Report6, the anthro-
pogenic aerosol cloud radiative forcing is −0.45 W m–2 with a 90% 
uncertainty range of 0 to −1.2 W m–2, partially offsetting the warm-
ing from greenhouse gases (GHGs)7. In addition to aerosol radiative 
effects, aerosol-induced air quality deterioration can impact human 
health. Long-term exposures to particulate matters with diameters 
<2.5 μm (PM2.5) can elevate the risks of having cardiovascular and 
respiratory diseases, resulting in premature mortality8–12.

Among the processes affecting the atmospheric aerosols, wet 
scavenging is a major sink for submicron particles, which occurs both 
in clouds by nucleation scavenging and below clouds by Brownian 
diffusion and impaction13. Both rain intensity and frequency impact 
the atmospheric aerosol burdens, especially PM2.5 and its effects on 
air quality14–16. The global mean rainfall is projected to increase in 
future climate, which is thus expected to reduce aerosol burdens17–19. 
However, changes in rainfall intensity, frequency and storm track 
may compensate for potential increases of wet scavenging associ-
ated with a projected increase in rainfall19. Recent modelling stud-
ies suggest that GHG-induced warming may result in an overall 
increase of aerosol burden15,20–22. It has been primarily attributed to 
decreased wet removal associated with decreasing rainfall over land 
due to reductions in lower-tropospheric humidity from enhanced 
land–sea warming contrast as climate warms23,24.

Although global climate models (GCMs) have been widely used 
for investigating the impact of rainfall on aerosols and associated 

radiative effects in current and future climates, how the deficiencies 
in simulated rainfall intensity spectrum influence aerosol burden 
is rarely discussed25,26. A well-known problem in all GCMs is ‘too 
much light rain and too little heavy rain’ compared with observa-
tions, which remains unresolved in Coupled Model Intercomparison 
Project, Phase 6 (CMIP6) models27. This can have a huge impact 
on the realism of the aerosol burden and distribution in simulated 
current climate and future climate projections if the efficiency of 
aerosol wet removal is sensitive to rainfall intensity.

Observation-validated rainfall intensity spectrum
The problem of too much light rain and too little heavy rain is 
largely eliminated in the National Center for Atmospheric Research 
Community Atmosphere Model version 5 (NCAR CAM5) 
(Methods), especially over the tropics (Fig. 1a) after a stochastic 
convective parameterization is introduced28–30. It greatly reduces 
the frequency of rainfall events <20 mm d−1 and enhances the 
frequency of rainfall events >20 mm d−1 (the stochastic (STOC) 
convection simulation; see Supplementary Table 1 for experiment 
design). Related to the reduction of light-rain frequency, the dis-
tribution of rainfall amount (defined by daily cumulative rainfall) 
shifts towards heavier rain rates with a reduced peak contribution 
to the total rainfall (Fig. 2a). Thus, the stochastic convection scheme 
makes both the modelled rainfall intensity spectrum and the contri-
bution from different rainfall intensities to the total rainfall amount 
in much better agreement with Tropical Rainfall Measuring Mission 
(TRMM) and Global Precipitation Measurement (GPM) observa-
tions (Methods). The spatial distribution of the simulated rain-
fall intensity is also improved28. The decrease of the frequency of  
total rainfall events <20 mm d−1 over the tropics is predominantly 
from convective rainfall while both convective and large-scale  
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rainfall contribute to the increase of the frequency of the total 
rainfall events >60 mm d−1 (Extended Data Fig. 1). By making 
convection occur less frequently28,31,32, it allows the build-up of the 
atmospheric instability necessary to develop stronger convection 
and heavier rainfall33. In addition to the improved rainfall intensity 
spectrum, other climate variables, including cloud radiative forcing, 
are also improved or comparable to those in the default model28,29,33 
(Methods). A qualitatively similar change in the simulated rainfall 
intensity spectrum is also achieved in the US Department of Energy 
(DOE) Energy Exascale Earth System Model (E3SM) Atmosphere 
Model version 1 (EAMv1) (Methods and Extended Data Fig. 2). 
The improved rainfall intensity probability distribution function 
validated by observations provides a unique opportunity to explore 
its impact on aerosol burdens.

Reduced aerosol wet removal
The aerosol wet removal by rainfall varies approximately exponen-
tially with rainfall intensity (Fig. 1b). Consequently, most of the 
wet removal is accomplished by light rain, with little contribution 
from intense rain. With an excessively high frequency of occur-
rence compared with observations, light rain in CAM5 plays a 

disproportionate role in aerosol wet removal. For example, in the 
tropics, 77% of the total aerosol wet removal is done by rainfall 
rates <10 mm d−1 and nearly 95% of the total wet removal is done 
by rainfall <20 mm d−1 in CAM5 (Fig. 1c). It decreases to 63% by 
rainfall rates <10 mm d−1 and 80% by rainfall <20 mm d−1 after the 
light-rain frequency is reduced by using the stochastic convection 
parameterization (Fig. 1c). While both rainfall frequency and inten-
sity can affect aerosol wet removal, the rain rates associated with 
the most rainfall contribution are larger than those corresponding 
to the most contribution to the total aerosol scavenging (compar-
ing distribution peaks in Fig. 2a,b, Methods), which implies that 
rainfall frequency plays a more important role than rainfall inten-
sity in regulating aerosol wet removal. The total amount of aerosol 
wet removal by different rainfall intensities decreases and the dis-
tribution shifts towards heavier rain rates. The tropical mean total 
aerosol wet removal is reduced from 18.8 to 16.1 mg m−2 d−1 in the 
CAM5 model with the stochastic convection scheme (Fig. 2b). Over 
Northern Hemisphere midlatitudes where there is heavy emission 
of anthropogenic aerosols, the rightward shift of the distribution  
of rainfall amount (Extended Data Fig. 3a) and aerosol wet 
removal by different rainfall intensities (Extended Data Fig. 3b) are  
similar to those over the tropics although the reduction of the total 
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Fig. 1 | Rainfall intensity spectrum and aerosol wet removal as functions 
of rain rates. a, Frequency distributions of rainfall intensity over the 
tropics (20°!S–20°!N) from GPM, TRMM observations, CAM5 and STOC 
simulations. b,c, Contributions of wet removal of aerosols (including all 
aerosol species) by different rainfall intensities to the total wet deposition 
(b) and cumulative contributions to wet removal (c) over the tropics 
(20°!S–20°!N) in the CAM5 and STOC runs. Bin intervals of 0.5!mm!d−1 are 
used for rainfall rates.
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Fig. 2 | Rainfall and wet removal amount. a,b, Amount distributions  
of total daily rainfall (a) and wet removal of all aerosols (b) by different 
rainfall intensities over the tropics (20°!S–20°!N). The total rainfall  
rate in the range from 0.1 to 1,000!mm!d−1 is logarithmically scaled,  
with equal bin width of Δ ln Rð Þ ¼ ΔR=R ¼ 0:1

I
, where R is rainfall rate 

and Δ$ is the bin interval. Numbers in the right upper corner of b are 
regional mean aerosol wet deposition rates, which equal areas under 
respective curves.
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aerosol wet removal is slightly less in absolute amount (from 12.0 to 
10.0 mg m−2 d−1). For individual aerosol species, the results are simi-
lar (Extended Data Figs. 4 and 5), as they are for EAMv1 (Extended 
Data Figs. 6 and 7). The reduced light-rain frequency has a huge 
impact on aerosol wet removal. In terms of the absolute amount, the 
aerosol wet removal by rainfall rates <10 mm d−1 is reduced from 
14.48 (=77% × 18.8) mg m−2 d−1 to 10.14 (=63% × 16.1) mg m−2 d−1, a 
relative reduction of 43% of wet removal by light rain of <10 mm d−1.

Increased aerosol optical depth
The geographical distributions of aerosol optical depth (AOD) 
in Moderate Resolution Imaging Spectroradiometer (MODIS)  
and Aerosol Robotic Network (AERONET) observations and  

simulations (Fig. 3a,b and Supplementary Fig. 1) all show high 
AOD over land and low AOD over oceans. Due to the reduced wet 
removal by light rain, the AOD is increased almost globally, espe-
cially over the tropics and subtropics, by up to 0.3 in tropical rain 
belts (Fig. 3c). This translates to a relative increase of more than 
100% in the intertropical convergence zone (Fig. 3d), where rain is 
predominantly of a convective nature. Aerosol burdens from indi-
vidual aerosol species, especially sea salt and sulfate, also increase in 
tropical precipitation regions (Supplementary Fig. 2). Consequently, 
the lifetimes (defined as burden divided by total (dry plus wet) 
removal rate) of individual aerosols are prolonged (Extended Data 
Fig. 8), by percentages varying from 7.3% for sulfate to 16.7% for sea 
salt. The changes and improvements in the EAMv1 simulations are 
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qualitatively similar but with a smaller magnitude (Supplementary 
Figs. 3 and 4).

On global average or averaging over land and oceans separately, 
the underestimation of AOD compared with MODIS is alleviated 
(Fig. 3e) with the reduction of light rainfall. The global mean AOD 
is increased by nearly 17% from 0.12 to 0.14 (14% for land average 
and 27% for ocean average). The relative reduction of the mean bias 
is 50% globally (from −0.04 to −0.02), 40% over land and 100% over 
oceans. This suggests that the oversimulated light-rain frequency 
may be an important missing cause of the negative AOD biases 
common in GCMs. Compared with AERONET observations, the 
model simulations severely underestimate the AOD for high AOD 
values but overestimate it for low AOD values in all latitude zones 
(Fig. 3f and Extended Data Fig. 9). Despite this, the STOC simula-
tions consistently have smaller biases than the CAM5 simulations.

The global distribution of the AOD increase highly resembles 
the pattern of decrease in light-rain (1 < P < 20 mm d–1 (ref. 27)) 
frequency (Fig. 4), with a correlation coefficient of −0.7 at a sig-
nificance level greater than 99%, again demonstrating the dominant 
role of light-rain frequency in aerosol response. By contrast, the spa-
tial distribution of changes in total, convective and large-scale rain-
fall amount has no similarity to the AOD change pattern (Extended 
Data Fig. 10). In fact, in the tropical rain belts where the maximum 
increase of AOD exists, the total, convective and large-scale rainfall 
amounts all increase, which, if anything, would reduce AOD.

The aerosol wet removal is predominantly through scavenging 
by light rain. By reducing the frequency of light rain in two GCMs, 
we find that the aerosol burden in the atmosphere is increased sub-
stantially, by 17% for global mean AOD. Thus, light rainfall has a 
disproportionate control on aerosol burden. The common problem 
of too much light rain and too little heavy rain in GCMs may be an 
important missing cause for the underestimation of aerosol burden. 
In future climate projections, although precipitation is expected 
to increase, its impact on aerosol concentration in the atmosphere 
will critically depend on how the occurrence of light rain changes. 
Aerosol radiative effect is a major source of uncertainties in climate 
change projections. Therefore, the findings in this study have pro-
found implications for understanding the nature of aerosol–climate 
interaction and its impact on climate.
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