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Projected Global Temperature Change Resulting 
from Different CO2 Emission Scenarios
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Biophysical Feedbacks to Climate in the Arctic

(e.g., Samuelsson et al., 2011; Wyser et al., 2008) argued that the effect of snow aging processes on albedo
might be too weak in RCA, and precipitation might be too frequent in mountainous areas where mixed
forests and Arctic tundra were located. This led to the overall surface albedo being closer to the
prognostic snow albedo over open land, normally ranging from 0.6 to 0.85. Moreover, snow redistribution
due to wind is an important factor in determining albedo during the snow season. This is not accounted
for in the current model setup.

The future changes (2071–2010 relative to 1961–1990) of albedo and LHF are comparable to estimates from
previous studies. For instance, the albedo decline in the lower RCP scenarios is close to the estimate of Chapin
et al. (2005), that is, an albedo reduction of approximately 0.06 resulting from a complete conversion of tun-
dra to forest in the postsnowmelt season. Euskirchen et al. (2009) used a terrestrial ecosystem model driven
with climate fields generated from three GCMs (CSIRO2, HadCM3, and PCM) following the IPCC Special
Report: Emissions Scenarios (SRES) A2 scenario to estimate the maximum decline in summer albedo, which
was approximately 0.02 in Alaska. In our simulations, the BF-induced decline in albedo in Alaska was 0.05
to 0.1 in the RCP8.5 simulation. Bonfils et al. (2012) used the Community Climate System Model version 4
following an RCP8.5 scenario and estimated the difference in the summertime LHF between ecosystems
dominated by tall and short shrubs to be about 7.5 W/m2. Moreover, an uncoupled simulation using the
Arctic-enabled version of LPJ-GUESS adopting tall and low shrubs, arctic open-ground vegetation, and

Figure 5. The relative importance of albedo feedback and evapotranspiration feedbacks to near-surface warming under different RCP scenarios in spring ((a)–(c)
March to May) and summer ((d)–(f) June to August). The relative importance was quantified by summing up Pearson’s correlation coefficient for albedo changes
and near-surface warming change and Pearson’s correlation coefficient for latent heat flux change and near-surface warming change. The index shown ranges from
!1 to 1, where !1 represents a perfect correlation between albedo change and warming change, +1 represents a perfect correlation between LHF change and
warming change, and 0 signifies no correlation.
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Primarily Albedo feedback Primarily ET feedbackZhang et al. (2018)



Ten-year project to reduce uncertainty in Earth System Models (ESMs) 
through the development of a predictive understanding of carbon-rich 
Arctic ecosystem processes and feedbacks to climate – focusing on:
• Synthesis activities
• Experiments & manipulations
• Observations across scales
• Model-data integration

NGEE-Arctic

Office of Biological and Environmental Research

Ivotuk, AK



Shrub Expansion in the Arctic

Myers-Smith et al. 2011 (Environmental Research Letters)

Infilling Growth Migration of 
existing shrubline



Shrub Expansion in the Arctic

Mekonnen, Riley, and Grant, 2018 (Global Change Biology)

Change in Shrub Net Primary Productivity (NPP)
2100 – 2010 (ecosys model, RCP8.5)



Improving Model Parameterization



Multi-scale Remote Sensing of Arctic 
Vegetation to Inform Modeling

Kougarok
CouncilTeller



Unmanned Aerial Systems (UASs)

(I) Osprey UAS (II) Sensor Footprints (III) UAS Data Products

(b) Multi-sensors

(a) UAS Platform (c) Images & spectra (d) RGB & TIR imagery

(F) Reflectance spectra

(d) RGB & TIR imagery

Meng et al., in prep



UAS data acquisition & flight management
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Software infrastructure (MoDaCS) that links UAS mission planning 
and flight control to the instrument packages which enables 
automated data acquisition linked to customizable flight plans 
and monitored in real time or completely autonomous  

Trigger

Key Features
Open Source
Instrument agnostic
Fully customizable
Interactive viewing and inst. control Control station, tablet, etc

McMahon et al., (in prep) 



UAS Data Processing Workflow

*Alt.
OpenDroneMap
https://opendronemap.github.io/

Meng et al., in prep



UAS Remote Sensing of Arctic Vegetation

Kougarok

Imaging systems (RGB & TIR) generate high resolution ortho-mosaic imagery and a 
corresponding digital elevation model (DEM) from SfM.  We then calculate vegetation 
height using the DEM and an interpolated digital terrain model (DTM)

Meng et al., in prep



UAS Remote Sensing of Arctic Vegetation

Tussock Shrub

TellerCouncil

We are measuring the variation in surface reflectance across each UAS flight using our 
dual OceanOptics FLAME spectrometer configuration, which can account for variable 
illumination conditions
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~1-cm resolution terrain data
Point density: >10K points / m2



Spatial Variation in Surface Temperature

TIR overlaid on RGB DEM

TIR ortho-mosaic



Fine-scale Temperature Variation – Driven by 
Vegetation Composition & Structure 

Temperature (ºC)17 28



Landscape Variation in Vegetation Optical Properties

NDVI (-)

Higher surface reflectance in shrub dominated areas



Multi-sensor Vegetation Characterization
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Mapping Species Composition at Fine Scales

Alder Birch Willow Tussock Lichen

Dwarf shrub
Tall shrub
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Lichen/moss
Tussock

Water

Shadow
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Water trackKougarok

Teller



Spatial Patterns Driven by Species Composition & Structure
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Scaling Arctic Vegetation Functional Traits

Leaf Canopy



Scaling Arctic Vegetation Functional Traits

Leaf

Canopy

Leaf Canopy

Serbin et al. (in prep)



Mapping Arctic Vegetation Function

Leveraging NASA AVIRIS-NG ABoVE Airborne Campaign data

Serbin et al. (in prep)



Integrating Remote Sensing and Modeling

ELM
“Big-Leaf” vegetation

FATES
Demographic vegetation

ELM-FATES
Patch & Cohort Dynamics  

Year 1

Year 10

Year 100

DOE E3SM Land Model Functionally Assembled 
Terrestrial Ecosystem 
Simulator

Provide initialization, 
parameterization, and 
benchmarking data to 
test ELM/FATES
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