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Utility of the Wavelet Transform for
LAI Estimation Using Hyperspectral Data

Asim Banskota, Randolph H. Wynne, Shawn P. Serbin, Nilam Kayastha, 
Valerie A. Thomas, and Philip A. Townsend

Abstract 
We employed the discrete wavelet transform to refl ectance 
spectra obtained from hyperspectral data to improve esti-
mation of LAI in temperate forests. We estimated LAI for 
32 plots across a range of forest types in Wisconsin using 
 hemispherical photography. Plot spectra were extracted from 
AVIRIS data and transformed into wavelet features using the 
Haar wavelet. Separately, subsets of spectral bands and the 
Haar features selected by a genetic algorithm were used as 
independent variables in linear regressions. Models using 
wavelet coeffi cients explained the most variance for both 
broadleaf plots (R2 = 0.90 for wavelet features versus R2 = 0.80 
for spectral bands) and all plots independent of forest type 
(R2 = 0.79 for wavelet features vs. R2 = 0.58 for spectral 
bands). The forest-type specifi c models were better than the 
models using all plots combined. Overall, wavelet features 
appear superior to band refl ectances alone for estimating 
temperate forest LAI using hyperspectral data.

Introduction
Leaf area index (LAI) of vegetation canopies controls and 
 moderates different climatic and ecological functions (Gong 
et al., 1995; Huemmrich et al., 2005; Leblanc and Chen, 2001). 
In forests, LAI determines light interception and thereby CO2 
fi xation, canopy photosynthesis, and stand productivity  
(Turner et al., 2003). It affects hydrological processes and 
litter production and thus the dynamics of soil water and 
nutrient cycling (Oren et al., 1998). As such, most ecosystem 
process models that simulate carbon and hydrologic cycles 
require LAI as an input variable (Gower, 2001). LAI is one of 
the principal factors controlling canopy refl ectance (Asner, 
1998). However, LAI alone cannot fully describe the effects of 
canopy structure on refl ectance as canopies with similar LAI 
often have signifi cantly different near infrared (NIR) refl ectance 
(Ollinger, 2011). As such, a large body of research has inves-
tigated the use of airborne and satellite remote sensing data 
for its accurate estimation (Fassnacht et al., 1997; Gong et al., 
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1995; Huemmrich et al., 2005; Ilames et al., 2008; Jensen 
et al., 2012). The most widely used approach is to establish 
an empirical relationship between LAI measured in situ and 
spectral vegetation indices (SVIs) calculated from spectral 
refl ectance in two or three bands (Haboudane et al., 2004). 
However, most empirical approaches are limited in applica-
tion because the relationship between LAI and SVIs saturates at 
dense canopy conditions characterized by high LAI (Broge and 
Leblanc, 2000). The other shortcoming is that SVIs are sensi-
tive to many different factors apart from variation in LAI, such 
as variation in leaf optical properties and background spectral 
refl ectance (Goward et al., 1994). 

Hyperspectral sensors enable measurement of surface 
refl ectance in narrow spectral bands, providing a capability  
to analyze canopy by absorption features and over a near 
continuous spectrum ( Asner, 1998; Pu et al., 2008; Thenkabail 
et al., 2002). Both the absorption features and overall shape 
of the refl ectance curve have been found to be sensitive to 
variability in LAI (Asner, 1998). Darvishzadeh et al. (2008) and 
Lee et al. (2004) found that the relationship between meas-
ured and estimated LAI can be better explained by multiple 
regression using a combination of narrow bands from imaging 
spectroscopy (hyperspectral) data than univariate methods 
using narrow band SVIs. However, one of the major caveats of 
using hyperspectral imagery is the greater noise and correla-
tion among spectral bands. Statistical models can suffer from 
multi-collinearity (Geladi and Kowalski, 1986) and overfi t-
ting (Coops et al., 2003) when a large number of redundant 
bands are used as predictive variables. Hence, effective use 
of hyperspectral data for empirical estimation of LAI requires 
reduction of dimensionality. Such data reduction also leads to 
the loss of useful features offered by spectroscopic data, such 
as information about the overall shape of a refl ectance con-
tinuum, as well as gradual and abrupt slope changes between 
neighboring bands.

The wavelet transform, a signal processing  technique, has 
become increasingly important to numerous  vegetation-related 
applications of hyperspectral remote sensing (Banskota et al., 
2011; Blackburn, 2007; Blackburn and Ferwerda, 2008; Bruce 
et al., 2001; He et al., 2012; Pu and Gong, 2004; Ranchin et al., 
2001; Wang, 2010; Zhang et al., 2006). The wavelet transform 
reduces the dimensionality of hyperspectral data by project-
ing them into a new feature space in which just a few wavelet 
coeffi cients represent most of the information in the original 
data. Wavelet representation of hyperspectral data also con-
veys additional information such as the location and nature of 
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possible number of decomposition levels. For example, 
if n = 16 = 24, four levels of Haar transforms can be computed.

Mallat (1989) developed an effi cient way to implement the 
Haar DWT scheme by representing the wavelet basis as a dyadic 
fi lter tree, or set of high-pass and low-pass fi lters. The high-
pass and low-pass fi lters are related (their power sum is equal 
to one) and called quadrature mirror fi lters. Thus, the 1-level 
DWT decomposition of a signal splits it into a low pass version 
(approximation coeffi cients) and a high pass version (detail 
coeffi cients). The 2-level decomposition is performed on the 
low pass signal obtained from the fi rst level of  decomposition. 
The fi nal results of a DWT decomposition of a spectrum are sets 
of wavelet coeffi cients, with each wavelet coeffi cient directly 
related to the amount of energy in the signal at different posi-
tions in the spectrum and at different scales. 

Background to Genetic Algorithms 
The genetic algorithm (GA; Holland, 1975) is used to solve 
optimization problems. In the process of variable selection, 
the “fi tness” of random subsets of potential variables can be 
assessed similar to Darwin’s biological theory of “natural 
selection” and “survival of the fi ttest” (Lin and Sarabandi, 
1999) in which more genetically fi t individuals have a greater 
chance of selection. Subsets with greater fi tness are allowed 
to survive and undergo exchange of variables. A genetic 
algorithm is initialized with input parameters and a random 
population of a subset of variables. Each subset is assessed 
according to a specifi ed fi tness function (e.g., goodness of 
fi t), with subsets performing below the average fi t discarded. 
When the population of variables is shrunk to half its original 
size, the genetic algorithm cross-breeds the retained subsets of 
variables to replace the discarded subsets. The population of 
variables returns to the original size and the process continues 
again at the fi tness evaluation step. The entire process stops 
once a predefi ned criterion is met or convergence is reached 
and best subset of identifi ed variables is returned. Genetic 
algorithms have been found useful for selecting variables for 
different remote sensing applications (Kooistra et al., 2003; 
Luo et al., 2003; Vaiphasa et al., 2007). 

Methods
Study Area
The study area comprises a range of coniferous, broadleaf 
deciduous, and mixed forest types across different ecoregions 
within the state of Wisconsin (Figure 1). The northern-most 
forest sites were located within the Northern Lakes and Forest 
ecoregion and Chequamegon-Nicolet National Forest, near 
Park Falls, Wisconsin, which is dominated by a mixed-hard-
wood forest originating from large-scale clear-cut practices 
of the early twentieth century (Curtis, 1959). The overstory 
vegetation was comprised mostly of northern hardwoods 
dominated in the uplands by sugar maple (Acer saccharum), 
basswood (Tilia americana), quaking aspen (Populus tremu-
loides), and white ash (Fraxinus americana); and in the low-
lands by speckled alder (Alnus incanta), black ash (Fraxinus 
nigra) and red maple (Acer rubrum). The dominant coniferous 
species are balsam fi r (Abies balsamea), white pine (Pinus 
strobus), red pine (Pinus resinosa), tamarack (Larix laricina), 
and black spruce (Picea mariana). The southern sites were 
located in the Baraboo Hills of the “Driftless” (unglaciated) 
ecoregion of Wisconsin. Most of the forests in the Baraboo 
Hills were cleared by the 1870s and have since recovered 
to forests dominated by red oak (Quercus rubra), white oak 
(Quercus alba), green and white ash (F. pennsylvanica and 
F. americana), hickories (Carya spp.), sugar maple, red maple, 
and basswood.

high frequency features (narrow absorption features, red-edge 
infl ection point, and noisy bands), and the magnitude and 
shape of the refl ectance continuum at different scales and 
positions (Banskota et al., 2011). 

Pu and Gong (2004) compared wavelet “energy features” 
(Bruce et al., 2001; Zhang et al., 2006) from Hyperion hyper-
spectral imagery to the original spectral bands and principal 
components to estimate LAI. Although the energy features 
approximate the partitioning of the energy across multiple 
scales, the features do not provide any measure of the energy 
distribution at specifi c wavelength positions. For vegetation 
applications in particular, the latter is more critical because 
the coeffi cients related to specifi c wavelength regions of 
hyperspectral data resolved at different scales might be more 
useful than coeffi cients related to other regions and scales. 
Banskota et al. (2011) found energy features performed poorly 
compared to both spectral bands and wavelet coeffi cients for 
pine species discrimination. Similar to species discrimina-
tion, narrow band refl ectance at some specifi c wavelength 
regions (such as red-edge and NIR water absorption regions) 
have been found to be greatly sensitive to variation in LAI 
(Asner, 1998). As such, this study focuses on the selection 
of the appropriate coeffi cients to better utilize the wavelet 
transform for estimating LAI. Our principal objective was to 
determine whether empirical estimation of LAI using hyper-
spectral data can be improved by using Haar wavelet coeffi -
cients rather than the original spectral bands as the independ-
ent variables. Additionally, we wished to identify the wavelet 
coeffi cients that provide the best LAI estimates in diverse 
temperate forest types.

Background on Wavelet Transforms
A wavelet transform enables signal (data) analysis at different 
scales or resolutions by creating a series of shifted and scaled 
versions of the mother wavelet function (Banskota et al., 2011; 
Hsu, 2007). The term “mother” implies that a set of basis 
functions {Ca,b(λ)} can be generated from one main function, 
or the mother wavelet C(λ) by the following equation 
(Bruce et al., 2001):

ψ λ ψa b a, ( )λλ .= ( )λ b
a
–1  (1)

where a is the scaling factor of a particular basis function, 
and b is the translation variable along the function’s range. 
In this study, we employ the Haar wavelet transform (DWT), 
which separates a discrete signal f of length n into two sub-
signals, each with length n/2, one being a running average 
and the other a running difference (Walker, 1999). We refer to 
the running average, or trend, as the approximation vector, a. 
For each m = 1, 2, 3,…, n/2, the approximation coeffi cient is 
calculated as:

a
f f

m
mf= 1ff m 2ffff

2
.  (2)

We refer to the running difference, or fl uctuation, as the 
detail vector, d. Each of the detail coeffi cients is calculated as:

d
f f

m
mf= 1ff m 2ffff

2
.  (3)

The sub-signals of the original signal defi ne the fi rst 
level of the Haar transform, usually referred to as 1-level. As 
such, the approximation coeffi cients and detail coeffi cients 
from the fi rst level can be referred to as a1 and d1, respec-
tively. Computation of approximation and detail coeffi cients 
for  subsequent levels is achieved by recursively applying 
Equations 2 and 3 to the approximation coeffi cients of the 
previous level. Since the sub-signals have half the length of 
the previous signal, a2 and d2 will have half the length of a1, 
or n/4. The number of times n is divisible by two yields the 
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growing seasons in 2008 and 2010 during uniformly overcast 
skies or during dusk or dawn when the sun was hidden by the 
horizon. The measurements for majority of the broadleaf plot 
estimates were collected in 2008 (82 percent). We did not fi nd 
any large differences in LAI for similar forest types collected in 
2008 and 2010. None of our plots experienced any signifi cant 
disturbances, and we did not expect any signifi cant changes 
in LAI for these sites over two years. 

Images were collecte d in the JPEG format at the highest 
resolution (2560 × 1920 pixels) to maximize the detection 
of small canopy gaps (Leblanc et al., 2005). At each plot, 
we measured Le at nine subplot locations: the plot center, 
30 meters from the plot center in each of the four cardinal 
directions, and the mid-point of each 30 m transect. Images 
were processed using DHP-TRAC software (Leblanc et al., 
2005) to estimate Le and V, using a nine ring confi guration 
but selecting only the fi rst six rings for analysis to minimize 
the impacts of large zenith angles on the Le retrievals and the 
calculation of LAI (Chen et al., 2006; Leblanc et al., 2005). 
Descriptive statistics for plot LAI are given in Table 1.

AVIRIS Image Processing
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data 
used in this study (Flight ID: f080713t01 and f080714t01) 
were acquired in July 2008 on NASA’s ER-2 aircraft at an 
altitude of 20 km, yielding a pixel (i.e., spatial) resolution of 

LAI Measurement Protocol
Optical measurements of effective LAI (Le) were estimated 
from hemispherical photos collected at one meter above the 
forest fl oor using a Nikon CoolPix 5000 digital camera, leveled 
on a tripod with an attached Nikon FC-E8 183° lens (Chen 
et al., 2006; Leblanc et al., 2005). Le represents the equivalent 
leaf area of a canopy with a random foliage distribution to 
produce the same light interception as the true LAI (Fernandes 
et al., 2004) and is derived from the canopy gap fraction at 
selected zenith angles beneath the canopy following Leblanc 
and Chen (2001):

 LAI = Le

Ω ( – ).!  (4)

where Le  is the effective LAI, V is the clumping index and a is 
the woody-to-total leaf area ratio (a = W/Le (1/V)), in which W 
represents the woody-surface-area-index (half the woody area 
per m2 of ground area). In this study, we calculated LAI from Le 
by correcting the effect of clumping but neglecting the effect 
of woods and branches in Equation 4 (i.e., LAI = Le /V). This 
form of LAI was employed instead of Le because the clumping 
correction (especially for conifers) facilitated better relative 
estimates of LAI among vegetation types.

Hemispherical images were collected at 33 plots 
(60 m × 60 m) characterized by broadleaf (18 plots), 
 coniferous (11 plots), and mixed (4 plots) forest types. All 
measurements were made during the peak of the summer 

(a)

(b1) (b2) (b3)

 Figure 1. Study area: (a) State of Wisconsin showing general location of the three fi eld sites, and 
(b) plot locations overlaid on a grey scale AVIRIS image. 
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separately for two datasets (combined plots and only broad-
leaf plots) to fi nd optimum subsets of features out of two 
different sets of variables: (a) original spectral bands, and 
(b) wavelet coeffi cients. Since the sample size for coniferous 
(11 plots) and mixed plots (4 plots) were low, we decided to 
analyze for broadleaf plots only for a single vegetation type 
analysis. For the fi tness function, we used leave-one-out 
cross-validation (CV-RMSE) between observed LAI and esti-
mated LAI. We used GA to fi nd the optimal subset of variables 
that minimized the fi tness function for different numbers of 
features (two to six). To avoid multicollinearity, the CV-RMSE 
was set to one for subsets with highly correlated variables 
(correlation coeffi cient greater than 0.8), ensuring that their 
fi tness was minimized. The GA was run fi ve times for each 
dataset to fi nd the best subsets, with GA parameters (a) popu-
lation = 100, (b) mutation rate = 0.5, (c) cross over rate = 0.5, 
and (d) stopping  criterion = 100 generations or 25 generations 
with no improvement in the best fi tness value. 

Statistical Analysis
We used multiple linear regression to predict LAI as a  function 
of the wavelet variables and spectral bands. Two  subsets 
of variables were used as independent variables in both 
the analysis of all plots and the analysis using exclusively 
broadleaf plots: (a) wavelet coeffi cients selected by GA, and (b) 
spectral bands selected by GA. Selected models were subject 
to the following constraints: (a) all independent variables 
were signifi cant at a = 0.05, and (b) there could not be multi-
collinearity, i.e., all variance infl ation factors (VIFs) had to be 
less than 10. Consideration was also given to model parsi-
mony, i.e., a model with fewer variables was preferred to one 
with many variables. To ensure the assumptions of multiple 
regression analysis were met, the regression residuals for all 
selected models were tested for normality using the Lilliefors 
test (Lilliefors, 1969). Leave-one-out cross validation was 
then used to evaluate the best models. The cross-validation 
coeffi cient of determination (CV-R2) and cross-validation RMSE 
(CV-RMSE) were calculated to assess the prediction capabilities 
of the best models.

The confi dence intervals for the regression statistics for 
best models were calculated using a bootstrap procedure in 
Matlab (version 7.4; The Mathworks, Inc.). The bootstrap 
method involves resampling of the original data in order 
to generate a distribution for the statistic. For each model, 
the residuals for each observation were calculated as the 
 difference between fi tted and original LAI values. Efron and 
Tibshirani (1993) suggested that basing bootstrap confi dence 
intervals on 2,000 bootstrap replications provides accurate  
confi dence intervals. Hence, a 2,000 bootstrap sample of 
residuals with replacement were created, and bootstrap 
samples of LAI were calculated. Finally, the bootstrapped LAI 
values were regressed on the best subset of variables and the 
statistics of interest (R2 and RMSE) for each model were calcu-
lated on the bootstrapped subsample.

Results
Wavelet Coeffi cients and Spectral Bands Selection by GA
The genetic algorithm was initially used to select fi ve best 
subsets with two to six variables for each dataset (Tables 2 
and 3). For wavelets, the model with fi ve coeffi cients 
 provided the best accuracy (adjusted R2 = 0.75, CV-R2 = 0.71, 
CV-RMSE = 0.46). The variables were signifi cant at a = 0.05 
and the VIF of all variables were below fi ve. A fi ve-band 
combination provided the best accuracy using spectral data 
(adjusted R2 = 0.60, CV-R2 = 0.52, CV-RMSE = 0.59). However, 
there was no signifi cant difference in either CV- RMSE or CV-R2 

approximately 17 m (16.8 to 17.0 m). The AVIRIS instrument 
produces 224 spectral bands (or wavelengths), with an approx-
imate full-width half-maximum of 10 nm for each wavelength 
over the spectral range of 370 to 2500 nm (Green et al., 1998).

AVIRIS image preprocessing involved manual delineation 
of clouds and cloud-shadows, cross-track illumination correc-
tion, and conversion to top-of-canopy (TOC) refl ectance using 
atmospheric correction. Redundant bands between detectors 
were also removed. Cross-track illumination effects arise from 
a combination of fl ight path orientation and relative solar azi-
muth. We removed this effect by developing band-wise bilin-
ear trend surfaces, ignoring all cloud/shadow-masked pixels, 
and trend-normalizing the images by subtracting the illumina-
tion trend surface and adding the image mean. Atmospheric 
correction of the cross-track illumination corrected images 
to TOC refl ectance employed the ACORN5b™ software 
(Atmospheric CORrection Now; Imspec LLC, USA). Due to 
the low ratio of signal to noise at both spectral ends (366 nm 
to 395 nm and 2467 nm to 2497 nm), and in bands around 
the major water absorption regions (1363 nm to 1403 nm and 
1811 nm to 1968 nm) those wavelength regions were dropped, 
resulting in a fi nal total of 184 bands. The pixel spectra corre-
sponding to the centers of the plot locations were extracted for 
the fi nal 184 atmospherically corrected AVIRIS channels. 

One broadleaf plot of our 33 total was removed from the 
analysis based on Cook’s Distance, which identifi es infl u-
ential observations on the basis of how a linear function 
changes when a certain observation is deleted (Cook, 1979). 
The removed plot had the highest LAI (6.67) and unusually 
low refl ectance throughout the near-infrared (NIR) region 
(maximum refl ectance of 42 percent at NIR plateau). Cook’s 
test identifi ed the plot as suspicious (partial F-statistic = 0.83; 
Cook’s distance = 0.97), and the reason for the discrepancy of 
this one plot was indeterminate, but likely due to either GPS 
error or disturbance to the plot between the times of data col-
lection and imaging.

Calculation of Discrete Wavelet Coeffi cients
The DWT was implemented in Matlab (version 7.4; The 
Mathworks, Inc.) using a dyadic fi lter tree as previously 
discussed. The hyperspectral signal in the spectral domain 
extracted for each pixel location was passed through a series 
of low pass and high pass fi lters related to Haar wavelets. 
We chose the Haar mother wavelet as it is the simplest of all 
available wavelets, and recent investigations have illustrated 
its effectiveness for feature extraction of hyperspectral data 
(Bruce et al., 2001; Li, 2004; Zhang et al., 2006). The decom-
position level was chosen such that it was maximized (6 for 
184 bands using the Haar wavelet). All the detail wavelet 
coeffi cients calculated at each level and approximation coef-
fi cients at fi nal level were concatenated to produce a fi nal 
wavelet dataset. 

Variable Selection by GA
The genetic algorithm employed the GA toolbox in Matlab 
(version 7.1; Mathworks, Inc.). The algorithm was run 

TABLE 1. GENERAL DESCRIPTIVE STATISTICS OF LAI ACCORDING TO VEGETATION 
FUNCTIONAL TYPES

Plot type N Mean Min Max ∑
All 33 4.65 2.17 6.67 0.92
Broadleaf 18 5.00 2.99 6.67 0.80
Coniferous 11 4.02 2.17 5.62 1.00
Mixed 4 4.61 4.16 5.37 0.50
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with minimal bias characterized by slight over-prediction of 
LAI in low-LAI broadleaf forests. The independent tests for all 
regression residuals did not reject the null hypothesis that the 
residuals comes from a distribution in the normal family (a = 
0.05).

Results of the estimation of the mean and confi dence 
interval for the bootstrap RMSE and R2 are presented in Table 5 
and Figure 4. The confi dence interval was computed with a 
95 percent confi dence level. The confi dence intervals for both 
bootstrap RMSE and R2 (difference between upper and lower 
bound) are narrower for the models using wavelets than the 
models using spectral bands. The results suggest that the 
wavelet analysis can provide more robust estimates of LAI 
than spectral refl ectance alone. 

Discus sion
Spectral vegetation indices (SVIs) have been used extensively 
to estimate LAI in forests (Broge and Leblanc, 2000; Brown 
et al., 2000).Other studies have reported better performance 
by models with multiple bands than by univariate models 
using SVIs (Darvishzadeh et al., 2008; Lee et al., 2004). Gong 
et al. (1992) demonstrated that the fi rst and second deriva-
tives of refl ectance are less sensitive to background effects and 
more useful for LAI prediction than spectral bands or SVIs. We 
suggest that Haar DWT coeffi cients potentially combine the 
strengths of SVIs, derivatives, and spectral bands for LAI esti-
mation. First level detail coeffi cients from the Haar DWT are 
functionally equivalent to fi rst derivatives of the refl ectance 
data (Bruce et al., 2002). On the other hand, higher level detail 
coeffi cients are similar to some SVIs as they tend to measure 
the contrast over a broad spectral interval (e.g., between green 
and red bands, red band and red-edge region, etc.). In addi-
tion, these coeffi cients exhibit reduced correlation and noise 
compared to spectral bands and hence are more suitable for 
linear regressions. 

Canopy refl ectance around the red-edge (704 nm to 
724 nm) and within 1275 nm to 1350 nm has been found to 
be sensitive to changes in LAI (Asner, 1998; Lee et al., 2004). 
In this study, our Haar wavelet approach selected fi ne scale 
coeffi cients near both wavelength regions for broadleaf forests. 

between the models with fi ve and two variables. Signifi cance 
testing showed that none of the models with greater than two 
variables were signifi cant (a = 0.05). Hence, we chose the two 
spectral bands (841 and 2437 nm) for the combined set of 
plots as the best subset (Figure 2). With similar analyses, we 
chose four wavelet coeffi cients and four spectral bands (570, 
995, 1353, and 2467 nm) as fi nal subsets for just the broadleaf 
plots. Lilliefors test statistics of the regression residuals for all 
models with fi nal subset demonstrated the normality of the 
distribution at a = 0.05.

The fi ve wavelet coeffi cients selected for all plots were 
fi ne-scale “detail” coeffi cients corresponding to fi rst and 
second levels of decomposition (two from 1-level, three from 
2-level). Figure 2 shows the plots of 1-level and 2-level DWT 
detail coeffi cients for two broadleaf plots (LAI = 2.98 and 
LAI = 5.66) and the location of the selected wavelet  coeffi cients 
relative to the original spectral bands. The two coeffi cients 
selected from 1-level were related to 1120 nm to 1130 nm and 
2208 nm to 2228 nm wavelength regions. The three coeffi -
cients from 2-level were related to 714 nm to 743 nm, 1110 nm 
to 1139 nm, and 2198 nm to 2238 nm wavelength regions. 

The four wavelet coeffi cients selected for broadleaf plots 
included three fi ne-scale detail coeffi cients from 1-level and 
2-level and one coarse scale detail coeffi cient from 5-level. 
Two coeffi cients from 1-level were related to 1120 nm to 
1130 nm and 1273 nm to 1293 nm, and one coeffi cient from 
2-level was related to 1263 nm to 1303 nm wavelength 
regions, respectively. The coarse scale coeffi cient at 5-level 
 corresponded to the broader wavelength region spanning from 
424 nm to 724 nm. 

Regression Results
The linear regression results (Table 4) indicate that the model 
derived from wavelets provided the best fi t when the regres-
sion models were built using observations from all plots, 
with a cross-validated error of 0.46 m2m–2 of LAI. For broad-
leaf plots only, the wavelet model (cross-validation error of 
0.31 m2m–2) provided better estimates of LAI than the spectral 
model (0.44 m2m–2). All analyses exhibited relatively tight 
relationships between observations and predictions (Figure 3), 

TABLE 2. MODEL STATISTICS FOR BEST MODELS WITH DIFFERENT NUMBER OF WAVELET COEFFICIENTS (2 TO 6) 
SELECTED BY GENETIC ALGORITHM FOR THE COMBINED SET OF PLOTS; CV-RMSE AND CV-R2  REFER TO THE 

LEAVE-ONE-OUT CROSS VALIDATION RMSE AND R2, RESPECTIVELY

Statistics 2 variable 3 variable 4 variable 5 variable 6 variable
RMSE 0.63 0.57 0.50 0.43 0.41
CV-RMSE 0.66 0.61 0.57 0.46 0.46
R2 0.50 0.60 0.70 0.79 0.81
CV-R2 0.40 0.49 0.56 0.71 0.70
Adjusted R2 0.47 0.56 0.64 0.75 0.77

TABLE 3. MODEL STATISTICS FOR BEST MODELS WITH DIFFERENT NUMBER OF SPECTRAL BANDS (2 TO 6) 
SELECTED BY GENETIC ALGORITHM FOR THE COMBINED SET OF PLOTS; CV-RMSE AND CV-R2 REFER TO THE 

LEAVE-ONE-OUT CROSS VALIDATION RMSE AND R2, RESPECTIVELY

Statistics 2 variable 3 variable 4 variable 5 variable 6 variable

RMSE 0.57 0.57 0.55 0.55 0.55

CV-RMSE 0.60 0.60 0.59 0.59 0.62

R2 0.58 0.60 0.64 0.66 0.67

CV-R2 0.50 0.50 0.52 0.52 0.50

Adjusted R2 0.55 0.56 0.59 0.60 0.60
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(a)

(b)

(c)

Figure 2. (a) AVIRIS refl ectances from two plots with LAI = 2.98 and LAI = 5.66, 
(b) Detail Haar wavelet coeffi cients spectra at 1-level coinciding with panel (a); 
note that exact coincidence is not possible because there are 92 coeffi cients 
and 184 spectral bands, (c) Detail Haar wavelet coeffi cients at 2-level coinciding 
with (a) and (b). The locations of the wavelengths and coeffi cients selected for 
combined plots are shown with dashed lines in (a), (b), and (c), respectively.

TABLE 4. REGRESSION RESULTS BETWEEN OBSERVED LAI AND ESTIMATED LAI FROM FOUR DIFFERENT SUBSETS OF DATA; CV- R2 AND 
CV-RMSE REFERS TO THE LEAVE-ONE-OUT CROSS VALIDATION R2 AND RMSE, RESPECTIVELY

Features Plots Variables (n) R2 Adjusted R2 CV- R2 RMSE CV-RMSE

Wavelets – All Plots 32 5 0.79 0.75 0.71 0.43 0.46

Spectral Bands – All Plots 32 2 0.58 0.52 0.50 0.58 0.60

Spectral Bands – Broadleaf Plots 17 4 0.80 0.73 0.69 0.36 0.44

Wavelets – Broadleaf Plots 17 4 0.90 0.86 0.79 0.28 0.31
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(a)

(c) (d)

(b)

Figure 3. Observed versus estimated LAI from (a) spectral bands for combined plots, (b) wavelet coeffi cients 
for combined plots, (c) wavelet coeffi cients for broadleaf plots, and (d) spectral bands for broadleaf plots.

It also selected one coarse scale coeffi cient (5-level) related 
to bands in the visible through red-edge region. The coarse 
scale coeffi cient was equivalent to the difference between 
4-level approximation coeffi cients from the fi rst 16 (424 nm to 
560 nm) and the next 16 bands (570 nm to 724 nm). Spectral 
differences between these broad band regions have not been 
addressed in the literature, but our work implies that coarse 
differences in visible refl ectance (probably associated with 
pigmentation) in combination with fi ne scale differences at 
the red-edge and in the NIR (associated with leaf structure) 
explain LAI variation in broadleaf forests. 

Previous studies reported poor accuracy for estimating 
LAI from spectra in areas with mixed vegetation and therefore 
recommend use of vegetation-type-specifi c models (Fassnacht 
et al., 1997; Turner et al., 1999). However, one of the major 
goals of remote sensing is to build models applicable over 
a range of vegetation conditions and types. We show that 

regression models using the Haar DWT outperform models 
using spectral bands. The fact that the wavelet model for all 
plots performed essentially the same as a spectral band model 
for broadleaf forests only suggests that Haar wavelets can 
be used with spectral data to predict LAI regardless of forest 
physiognomic type (broadleaf versus conifer).  

The wavelet analysis using all plots identifi ed only fi ne 
scale coeffi cients from 1-level and 2-level decompositions. 
Three of these fi ve coeffi cients were similar to the fi ne scale 
coeffi cients selected in the wavelet analysis of broadleaf plots. 
However, the wavelet analysis for all plots did not use any 
coarse scale coeffi cients, but rather identifi ed two coeffi cients 
related to 2198 nm to 2238 nm in the SWIR part of the spec-
trum. The discrete wavelet coeffi cients from different levels 
are functions of scale and position (fi ne detail versus global 
behavior at various locations in the hyperspectral signal). 
Because of their local nature, fi ne scale coeffi cients may 

TABLE 5. BOOTSTRAP RESULTS OF THE BEST REGRESSION MODELS FROM FOUR DIFFERENT SUBSETS OF DATA; MEAN AND 
MARGIN OF ERROR REFER TO THE MEAN AND PLUS/MINUS HALF OF THE WIDTH OF 95PERCENT CONFIDENCE INTERVAL OF 

THE RMSE AND R2 OF THE REGRESSION RESULTS FROM THE BOOTSTRAP SAMPLES

Features Bootstrap RMSE Bootstrap R2

Mean Margin of error (95%) Mean Margin of error (95%)

Spectral bands - All Plots 0.75 ± 0.16 0.43 ± 0.18

Wavelets - All Plots 0.50 ± 0.14 0.70 ± 0.13

Spectral Bands – Broadleaf Plots 0.39 ± 0.13 0.72 ± 0.18

Wavelets – Broadleaf Plots 0.28 ± 0.09 0.85 ± 0.09
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(a)

(e)

(f)

(g)

(h)

(b)

(c)

(d)

Figure 4. Histogram of the bootstrapped R2 and RMSE for models with different subsets. Figures (a) through 
(h) represent histograms of R2 and RMSE statistics from bootstrapped analysis of best models for  Spectral 
 Bands-All Plots (a, e), Spectral Bands-Broadleaf Plots (b, f), Wavelet Coeffi cients-All Plots (c, g), Wavelet 
Coeffi cients-Broadleaf plots (d, h), respectively. The solid line in each histogram shows the mean value and 
the dashed lines on either side of the mean show the upper and lower bounds for the 95 percent confi dence 
interval for mean R2 and RMSE.
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