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Abstract—The efficient inversion of complex, three-dimensional
(3-D) radiative transfer models (RTMs), such as the discrete
anisotropy radiative transfer (DART) model, can be achieved
using a look-up table (LUT) approach. A pressing research pri-
ority in LUT-based inversion for a 3-D model is to determine the
optimal LUT grid size and density. We present a simple and com-
putationally efficient approach for populating an LUT database
with DART simulations over a large number of spectral bands. In
the first step, we built a preliminary LUT using model parame-
ters with coarse increments to simulate reflectance for six broad
bands of Landsat Thematic Mapper (TM). In the second step, the
preliminary LUT was compared with the TM reflectance, and the
optimal input ranges and realistic parameter combinations that
led to simulations close to Landsat spectra were then identified.
In the third step, this information was combined with a sensitivity
study, and final LUTs were built for the full spectrum of Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) narrow bands
and six Landsat broad bands. The final LUT was inverted to esti-
mate leaf area index (LAI) in northern temperate forests from
AVIRIS and TM data. The results indicate that the approach used
in this study can be a useful strategy to estimate LAI accurately by
DART model inversion.
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I. INTRODUCTION

T HE leaf area index (LAI, m2m−2) of vegetation canopies
controls and moderates different climatic and ecological

functions [1]–[6]. Since LAI is one of the principal factors influ-
encing canopy reflectance [7], a large body of research has
investigated the use of airborne and satellite remote sensing
data for its accurate retrieval over broad landscapes [8]–[16]. A
common approach for estimating LAI is to employ empirically-
based statistical techniques, which are generally site-specific or
difficult to parameterize over broad regions [17]–[19]. In con-
trast, a mechanistic, physically-based approach using canopy
radiative transfer model (RTM) is based on our best under-
standing of the physical laws governing the transfer and the
interaction of solar radiation in a vegetative canopy. With suf-
ficient complexity, RTMs can be extended over areas with
different environmental conditions and canopy structure char-
acteristics (e.g., broadleaf, needle-leaf, and grassland), and is
better suited for many large-scale applications [17], [19]–[24].
Physically-based methods can also make full use of the high
dimensional spectral and multiangular information provided by
many modern sensors [24], [25].

Physically-based RTMs range from a simple one-
dimensional (1-D) to a more complex three-dimensional
(3-D) models. 1-D models assume that canopies vary only with
the height above the ground surface but are homogenous in the
horizontal direction [3]. However, most plant stands contain
the partial cover and generally exhibit horizontal variability
in their structural and optical properties, and are thus may
be imprecisely modeled using 1-D models depending on the
spatial scale of interest. A more realistic description of forest
canopy-reflected radiation can be provided by 3-D models [6],
[20], [26]–[29], however, at the expenses of computational
complexity and increased parameterization challenges [3]. The
models are referred to as 3-D because the extinction and scat-
tering coefficients that define photon interactions are explicit
functions of the spatial coordinates [29]. Additionally, there are
families of geometric-optical models such as Li-Strahler [30]
and five-scale models [31] that specify coefficients in three
dimensions based on some parametrized statistical distribution
models rather than specifying the photon interactions explicitly.
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The discrete anisotropy radiative transfer (DART) model
is a widely used 3-D model in remote sensing research [6],
[32]–[34]. DART uses simplifying hypotheses for simulating
vegetation landscapes by dividing the scene into rectangular
cells characterized by the volume and scattering properties of
landscape elements. As with other 3-D RTMs, DART con-
tains a large suite of input parameters; however, some of
these have a lower impact on modeled reflectance than oth-
ers. Parameters that have a small influence [based on existing
knowledge or sensitivity analysis (SA)] can be represented as
constants, ultimately lowering the dimensionality of the model
inversion [26]. Since its release [26], the accuracy, range of
applications, and graphical user interface of DART have been
significantly improved [6], [32]. It was compared and tested
within the European Commission Radiation Transfer Model
Intercomparison (RAMI) experiment [35]. The experiment
indicated that DART simulations of heterogeneous canopy
spectra were in close agreement with the simulations from other
3-D candidate models such as FLIGHT, Rayspread, Raytran,
and Sprint3 [34]. A detailed description of the DART model is
provided in [26] and [27].

RTM inversion for important biophysical parameter, such
as LAI, requires the efficient comparison of observed against
modeled spectral optical properties across a range of wave-
lengths, pixel sizes, vegetation types, and spatial domains.
Several model inversion techniques are available [36]–[38].
Traditional methods such as optimization techniques iteratively
adjust model parameters until the modeled reflectance “fits” or
match the measured signal. Such approaches require significant
computing resources for a large number of spectral channels
or spatial domain and are generally much less computationally
efficient to operate on a per-pixel basis [37].

Computationally efficient statistical inversion approaches
such as neural network can be used to train models to invert
the signal [36]–[38]. The major drawbacks of neural network
include time-consuming training phase and the unpredictable
behavior when the characteristics of the targets are not well
represented by the modeled spectra [38]. Look-up table (LUT)-
based inversion methods in which a database of “solutions” is
precalculated as a function of input parameters are also widely
used in remote sensing applications [25], [39]–[42]. In this
approach, the observed image spectrum is compared with sim-
ulated spectra in the LUT database, and the closest match, or
an ensemble of close matches, is found. The parameter com-
bination that yields the closest spectra in the database [32], or
a summary statistic of ensemble matches [43], is considered
the inversion solution [44]. The major advantage of the LUT-
based approach over the iterative optimization approaches is
that the forward modeling is divorced from the inversion pro-
cedure, and hence can be used for any complex model like
DART [27], [46]. If a suitable LUT is built, it can be used
to invert spectra across a range of conditions. A key prob-
lem is to identify a suitable range and appropriate number of
cases (incremental steps) for parameters to keep the size of
the LUT as small as possible. The incremental steps should
be fine enough to achieve a high degree of precision for the
estimated parameters [43]–[46]. This requires a large number

of model simulations for a single reflectance band, which is sig-
nificantly cost prohibitive in the case of a 3-D model like DART
and practically infeasible for hyperspectral bands; however, this
computational cost is divorced from the inversion step and is
done once.

Peddle et al. [48] suggested a two-stage process to initially
produce a table based on wide ranges and coarse increments
to identify the general range of the model inputs producing
reflectance values similar to those of the remote sensing image.
The output can then be used to identify narrower input ranges
where matches occurred, for which a final table can be pro-
duced with fine increments. Such a two-stage process might
help find the optimal input range for DART parameters, but
does not inform users about the appropriate incremental steps.
Furthermore, not all parameter combinations within the iden-
tified range produce output similar to the image reflectance.
Identification of such infeasible combinations might signifi-
cantly reduce the computation time for DART. Banskota et al.
[49] developed an efficient strategy for building an LUT
for Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
hyperspectral bands using plot-extracted spectra to constrain
the LUT size and grid density. The plot spectra were sampled
across a range of temperate deciduous forests in the Northern
United States. Such requirement of plot spectra limits the geo-
graphical scope of the LUT and also makes the approach
empirical in nature. In this follow-on study, we build on the
approach by substituting the Landsat image spectra for plot
spectra to expand the scope of the method in regional and
broader applications. We tested our new strategy for building an
LUT of DART-simulated reflectances for AVIRIS and Landsat
bands, and compared the utility of the sensors for estimating
LAI via the LUT approach.

II. METHODS

A. Study Area

This study area is the same as Banskota et al. [49] and com-
prises a broad range of broadleaf deciduous forest types within
the state of Wisconsin, USA. Briefly, the northern-most forest
sites were located within the Northern Lakes and Forest ecore-
gion, dominated by a mixed-hardwood forest originating from
the large-scale clear-cut practices of the early 20th century [51].
The southern sites were located in the Baraboo Hills of the
“Driftless” (unglaciated) ecoregion of Wisconsin.

B. LAI Measurement Protocol

We used the same field dataset as Banskota et al. [49],
which describes the detailed measurement and processing pro-
tocol. Briefly, hemispherical images were collected at 18 plots
(60m× 60m) characterized by broadleaf deciduous forest
types. Optical measurements of effective LAI (Le) were esti-
mated from these photos collected at 1 m above the forest
floor using a Nikon CoolPix 5000 digital camera, leveled on
a tripod with an attached Nikon FC-E8 183◦ lens [52]–[54].
Understory (i.e., vegetation below 1 m height) was not included



This�article�has�been�accepted�for�inclusion�in�a�future�issue�of�this�journal.�Content�is�final�as�presented,�with�the�exception�of�pagination.

BANSKOTA et al.: LUT-BASED INVERSION OF DART MODEL 3

in our measurements as this was generally pretty minimal at
our plot locations. Le represents the equivalent leaf area of a
canopy with a random foliage distribution to produce the same
light interception as the true LAI [55], [56] and is derived from
the canopy gap fraction at selected zenith angles beneath the
canopy following Leblanc et al. [5]

LAI =
Le

Ω
(1− α) (1)

where Le is the effective LAI, Ω is the clumping index, and α is
the woody-to-total leaf area ratio (α = W/Le (1/Ω)), in which
W represents the woody-surface-area-index (half the woody
area m−2 ground area). In this study, we calculated LAI from
Le by correcting the effect of clumping but neglecting the effect
of woods and branches in (1) (i.e., LAI = Le/Ω).

Banskota et al. [49] identified one plot data with the highest
LAI value (6.67) as outlier and did not include the plot in final
analysis. Unlike the precursor study, we did not use plot data to
constrain LUT simulation. Hence, our method is not sensitive
to errors in plot measurement, and therefore we included all the
18 plots in this study.

C. Image Collection and Processing

The AVIRIS data used in this study were acquired in July,
2008 on NASA’s ER-2 aircraft at an altitude of 20 km,
yielding a pixel (i.e., spatial) resolution of approximately
17 m (16.8–17.0 m). The AVIRIS instrument produces 224
spectral bands (or wavelengths), with an approximate full-
width half-maximum of 10 nm for each wavelength over the
spectral range from 370 to 2500 nm [57]. AVIRIS image
preprocessing involved manual delineation of clouds and
cloud-shadows, cross-track illumination correction, and con-
version to top-of-canopy (TOC) reflectance via atmospheric
correction [50]. Atmospheric correction of the cross-track
illumination-corrected images to TOC reflectance employed
the ACORN5bTM software (Atmospheric CORrection Now;
Imspec LLC, USA). ACORN provides the choice for user-
selectable parameters for visibility and standard aerosol model.
We selected rural temperate aerosol model and used fixed vis-
ibility information obtained from the closest meteorological
station. ACORN used two water absorption channels (940 and
1140 nm) in AVIRIS data to estimate the amount of water vapor
at the time of acquisition.

Due to the low ratio of signal to noise (SNR) at both spec-
tral ends (366–395 and 2467–2497 nm), and in bands around
the major water absorption regions (1363–1403 and 1811–
1968 nm), those wavelength regions were removed, resulting
in a final total of 184 bands for our analysis.

Two Landsat TM surface reflectance products (Path/Row =
25/28: Julian date 2009250 and Path/row = 26/28: Julian
date 2009273) from the Landsat surface reflectance cli-
mate data record were downloaded from the United
States Geological Survey (USGS) EarthExplorer site
(http://earthexplorer.usgs.gov/). Images from 2009 were
used as cloud-free 2008 summer imagery over ground plots
were not available, and we did not see any major disturbances
or changes as compared to the AVIRIS images. Landsat

Fig. 1. Landsat versus AVIRIS (six narrow bands) pixel spectra extracted over
one of the study plots (LAI = 5.4).

surface reflectance climate data records are generated from
the Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS) software, which employs the 6S RTM [58].
The program estimates per-pixel AOT using the dense dark
vegetation (DDV) method and retrieves other ancillary data
from various sources that include the Total Ozone Mapping
Spectrometer (TOMS) data, column water vapor from the
NOAA National Centers for Environmental Prediction (NCEP)
reanalysis data, digital topography, and NCEP surface pressure
data. The images we employed were processed to Level 1 ter-
rain corrected (L1T) format, which have undergone systematic
radiometric and geometric corrections [59].

Both Landsat scenes and AVIRIS images were independently
georegistered with subpixel accuracy. We visually examined
the coordinate mismatch between Landsat scenes and AVIRIS
images and no discrepancy among two dataset was observed.
The pixel spectra corresponding to the centers of the plot loca-
tions were extracted from AVIRIS and Landsat images. Fig. 1
shows the extracted spectra for Landsat TM bands and corre-
sponding six narrow bands from one of the study plots (LAI =
5.4), which shows that the visible reflectance was higher in
the Landsat than AVIRIS spectra. Such discrepancies in the
visible reflectance were consistent for all the 18 plots. The dif-
ferent atmospheric procedures applied for two images might be
attributable to such discrepancies. ACORN, employed a default
aerosol model (temperate rural) and may have overcorrected the
atmospheric effects in the AVIRIS bands compared to 6S model
that used DDV approach to estimate aerosol optical thickness
in the Landsat image. However, ACORN is a commonly used
approach and the differences may just be related to the different
assumptions between ACORN and 6S.

D. DART Scene Formulation

We used DART version 4.3.3 to simulate the LUT canopy
bidirectional reflectance factor (BRF: from herein referred to as
reflectance). The DART model was run in a UNIX environment
using a computer with 32 central processing units (eight
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Quad-Core AMD Opteron TM 8356 Processor) and 64 GB of
physical random access memory (RAM). However, conversely
to the new DART 5.5.1 version, DART version 4.3.3 was not
multithreaded, which constrained us to use one processing at
a time. In order to simulate the reflectance of any landscape
such as a forest or an urban area, DART requires users to build
a computer representation of that landscape. Ideally, the scene
area should be large and should include important details about
the landscape. For instance, a forest scene should be built with
a large number of trees, and the resolution of the scene (cell)
should be high enough to represent canopy elements such as
leaves, twigs, and branches. This level of detail leads to an
unacceptable computational time when building an LUT for
image inversion. Thus, a scene of reasonable size and detail
needs to be determined that allows one to operate the DART
model with an acceptable accuracy level. In this study, simula-
tions were conducted using a repetitive forest landscape pattern
made up of four trees with ellipsoid-shaped crowns; previous
studies have found this representation to be optimal [27], [30].
The trees were described by constant below crown (6 m) and
within-crown height (9 m). Both the scene size (20–30 m)
and the dimension of the tree crowns (major and minor axes:
5–10 m) were varied to obtain scenes of different ground cover.
The scenes were built using unitary cells of 1m× 1m× 1m
resolution. The canopy was represented by foliage with trunks,
and without woody branches and twigs. The architecture of
woody elements was not well known; therefore, we did not
include this level of detail to avoid introducing additional
uncertainties. As shown in Appendix I, we found that such
simulation in the absence of branches and twigs has negligible
effect on the reflectance especially at high LAI (relative error
less than 1% of the reflectance when the ground LAI is equal
to or greater than 4).

E. LUT Generation

Two LUT databases populated with AVIRIS and Landsat
reflectance information were created in three separate steps.
First, a preliminary LUT was built with DART simulations for
six Landsat TM bands using a wide range and coarse incre-
ments for parameters. In the second step, simulations in the
preliminary LUT were compared to the maximum and min-
imum band reflectances of broadleaf vegetation in Landsat
images, and those simulations within the range of image spec-
tra were retained. By analyzing parameter values in the reduced
LUT, a list of useful parameter combinations that produce
reflectance values within the range of image spectra were
identified. Based on the results of an SA, optimal input incre-
ments were determined. Finally, LUTs were built for 6 Landsat
bands and 184 narrow AVIRIS bands using the identified list
of useful parameter combinations and incremental levels. A
conceptual diagram for the LUT building process is shown
in Fig. 2, and the three steps are discussed below in detail.
PROSPECT-4 [60], integrated with DART 4.3.3, was used to
calculate leaf optical properties (reflectance and transmittance).
The PROSPECT-4 calculates leaf hemispherical transmittance
and reflectance over the solar spectrum from 400 to 2500 nm

as a function of four input parameters: 1) leaf structural
parameter (N); 2) leaf chlorophyll a + b concentration (Cab);
3) leaf dry matter content (DM); and 4) equivalent water
thickness (EWT).

1) Computation of Preliminary LUT: DART reflectance
was simulated for the bandwidth defined by six Landsat TM
bands (450–520, 530–600, 630–690, 760–900, 1550–1750, and
2080–2350 nm). The parameters that were varied were four
PROSPECT parameters (Cab, DM, N, and EWT), LAI, leaf
angle distribution (LAD), soil reflectance (SL), and canopy
cover (CC). A fixed value for fraction of diffuse incoming solar
radiation (0.1) was used across all wavelengths, as previously
done in other studies [38]. The simulations were conducted
for a single solar angle associated with an AVIRIS scene as
we found little variation among canopy reflectance at different
solar angles associated with the AVIRIS and Landsat scenes in
this study. The parameters, their ranges, and the incremental
steps are listed in Table I, which were kept reasonably wide and
coarse to minimize simulation time in the preliminary step. The
four LADs used were erectophile, planophile, plagiophile, and
extremophile distributions [61].

2) Search for Realistic Parameter Combinations and SA:
We compared the preliminary LUT simulations with the spec-
tra of broadleaf deciduous vegetation from two Landsat scenes
to determine optimal parameter combinations and ranges.
Deciduous cover types in the Landsat scenes were identified
using the most recent national land cover product from the
Multi-Resolution Land Characteristics (MRLC) Consortium
(http://www.mrlc.gov/nlcd2011.php). We determined the max-
imum and minimum reflectance band values corresponding to
deciduous pixels in both sets of images and combined to form
a maximum and a minimum reflectance (max/min) spectrum.
A search filter was then applied to find the LUT simulations
confined within the max/min space. Model inputs that led to
simulations (candidate solutions) in the reduced LUT were
examined to infer information about optimal ranges and realis-
tic parameter combinations. The iterative procedure to identify
such optimal parameter combinations is further described in
Appendix II.

A simple univariate SA was performed as in [62] and [63]
to determine the importance of each parameter and the optimal
discretization of parameters within their identified ranges. Each
parameter was perturbed in turn keeping all other model param-
eters fixed at their reference values (base case). Equal numbers
of perturbation values with equal relative intervals were used
for all parameters (Table II). The process was performed for the
same set of bands previously used to compute the preliminary
LUT. A merit function F was computed using (2) and called
sensitivity

F ′ =
∑n

pert=1

(ρ0j − ρpertj )
2

ρ0j
(2)

where ρo is the base reflectance, ρpert is the perturbed
reflectance in band j, and n is the total number of perturbations.

Based on the SA results, the optimal number of cases
for each parameter was determined such that the number of
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Fig. 2. Conceptual framework for the LUT building technique used. CC refers to canopy cover (%), DM refers to leaf dry matter content (g/cm−2), EWT refers
to leaf equivalent water thickness (cm). Sensitivity F ′ was calculated using a base reflectance (ρo) and the perturbed reflectance (ρpert) in band j, and n number
of perturbations.

cases was proportional to the corresponding greatest magni-
tude of the sensitivity. The effects of four different LADs
on canopy reflectance were visually assessed by plotting
the reflectance with four LADs at constant values of other
parameters.

Independent LUTs for 6 Landsat broad bands and 184 nar-
row AVIRIS bands were built on the basis of optimal parameter
combinations and input increments determined in the previous
stages.

3) LUT Inversion: LUT inversion involved matching the
similarity between plot spectra (measured) and simulated spec-
tra (modeled). Spectrum matching was performed using a least
root mean square error (RMSE) comparison of the measured
and modeled spectra according to (3)

RMSE =

√∑n
i=1 (Rmeasured −Rmodeled)

2

n
(3)
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TABLE I
DART + PROSPECT PARAMETERS, THEIR RANGES, AND INCREMENTS

USED IN PRELIMINARY LUT BUILDING

The parameters are LAI, leaf EWT, leaf DM, leaf structural
parameter (N), leaf CAB concentration, CC, and SL.

TABLE II
BASE CASES AND THE RANGE OF PERTURBATIONS FOR THE

PARAMETERS CONSIDERED IN THE SENSITIVITY ANALYSIS

The parameters are LAI, leaf EWT, leaf DM, leaf structural
parameter (N), leaf CAB concentration, CC, and SL.

where Rmeasured is a measured reflectance at wavelength λ and
Rmodeled is a modeled reflectance at wavelength λ in the LUT,
and n is the number of wavelengths.

LUT inversion was performed using extracted plot
reflectance from Landsat and AVIRIS data and corresponding
LUTs. For AVIRIS data, the inversion was carried out using full
spectrum (184 bands) and 6 narrow AVIRIS bands having band
centers closest to Landsat bands. The solution to the inverse
problem was the set of input parameters corresponding to the
reflectance in the database that provided the smallest RMSE.
Because of the potential insufficiency in model formulation
and parameterization, and noise related to calibration and pre-
processing errors in the observed reflectance, the least RMSE
solution might not necessarily provide the best estimates of
LAI [43]. For this reason, for each observed spectrum, a range
of closest matching spectra (10–250) were selected from the
LUT. From the available multiple solutions (q), we chose the
median LAI value among the multiple solutions as a final
solution. Finally, we resampled LUTs of different dimensions
to understand the effect of the LUT size on the accuracy of LAI
retrieval. This was achieved by reducing the number of cases
for input parameters individually in the best performing LUT
followed by model inversion.

Fig. 3. Results of the SA in five Landsat TM bands: 560, 660, 830, 1650, and
2210 nm. The parameters are SL, Cab, CC, leaf structure parameter (N), leaf
EWT, LAI, and leaf DM. Sensitivity refers to the relative importance of the
parameters on the canopy reflectance. Each parameter was perturbed (varied)
in turn keeping all other model parameters fixed at their reference values (base
case). Sensitivity was calculated using perturbed and base reflectance at four
bands for each parameter.

III. RESULTS

A. Parameter Combinations and SA

A preliminary LUT was generated with coarse increment
levels for DART and PROSPECT parameters. The resulting
table was searched for simulations that were comparable to the
Landsat reflectance. Of a total of 762 048 preliminary sim-
ulations, only 62 757 (candidate simulations) were found to
be within the space bounded by the image spectra (max/min
space). In candidate solutions, earlier ranges for all parameters
were unchanged.

The results of the SA are summarized in Fig. 3. Only two
visible bands are shown in the diagram as the result was similar
across other visible bands. The vertical height of each colored
bar represents a sensitivity value, which is a measure of the
relative importance of each parameter for causing variations in
reflectance across five bands. The critical parameters found in
our SA are as follows:

1) CC, Cab, and LAI in the visible band (560 and 660 nm);
2) CC, DM, N, and LAI in the near-infrared band (830 nm);
3) CC, EWT, and DM in the middle infrared band

(1650 nm); and
4) EWT and DM in the shortwave infrared band (2210 nm).
The corresponding magnitudes of the greatest sensitivities

were used to decide the maximum number of parameter cases
for final simulation. This resulted in four, ten, eight, seven, and
four cases for CC, EWT, DM, Cab, and N, respectively. A larger
number of cases (25with increment = 0.25) were assigned to
LAI than indicated by the SA in order to increase its retrieval
precision. A fixed value for SL (20%) was used because of
its minimal influence on reflectance across the bands. The
observed low sensitivity for SL was likely caused by the high
values for crown cover (80%) and LAI (4) used in the SA. Fig. 4
shows the effects of four different LADs on reflectance over five
broad bands. Plagiophile and extremophile LADs had similar
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Fig. 4. Effect of four different LADs on DART-simulated BRF over six Landsat
bands at LAI = 4, CC = 85%, leaf DM = (0.01 g/cm−2), leaf EWT =
0.01 cm, and Cab = 50µg/cm−2.

TABLE III
INPUT RANGES AND NUMBER OF CASES FOR FINAL SIMULATIONS

The parameters are LAI, leaf EWT, leaf DM, leaf structural parameter
(N), leaf CAB concentration, CC, and LAD. The three LADs used were
erectophile, planophile, and plagiophile distributions.

effects on the reflectance. Hence, three LADs (planophile,
plagiophile, and erectophile) were used in the final simulations.

Table III shows the free parameters, their ranges, incre-
ment, and the number of cases used for final simulations. If
we had considered all the parameter combinations, 672 000
(25 ∗ 10 ∗ 8 ∗ 7 ∗ 4 ∗ 4 ∗ 3) simulations for each AVIRIS and
Landsat band would have been required. After searching for
realistic parameter combinations as illustrated in Appendix
II, the total number of final simulations was reduced to
111 500.

B. Inversion

The final results from the LUT inversion are summarized in
Table IV. The first column of the table shows the number of
solutions considered. The other columns show the RMSE and
R2 between measured LAI and estimated LAI from the full
spectrum of 184 narrow AVIRIS bands, 6 Landsat broad bands,
and 6 narrow AVIRIS bands.

The results show that the LAI estimated from the full spec-
trum of AVIRIS bands (RMSE = 0.5) provided better accuracy
(indicated by the lowest RMSE) than the LAI estimated from
the Landsat (RMSE = 0.63) and six narrow AVIRIS bands

TABLE IV
RESULTS FROM THE LUT INVERSION

The first column shows the number of solutions selected for the least RMSE.
The second, fourth, and sixth show the RMSE, and third, fifth, and seventh
columns show the R2 for inverted LAI using all AVIRIS bands, Landsat bands,
and six narrow AVIRIS bands, respectively.

Fig. 5. Observed versus estimated LAI from full spectrum of AVIRIS bands
using median value from 150 solutions. R2 and RMSE refer to the square of the
correlation coefficient and RMSE between observed and estimated LAI.

(RMSE = 0.74). With respect to the number of solutions (q),
the median calculated from q = 150 provided the lowest RMSE
for the full spectrum of AVIRIS bands, whereas the median cal-
culated from q = 200 and q = 50 provided the lowest RMSE
for Landsat and six narrow AVIRIS bands, respectively. The
observed versus best-estimated LAI for individual inversion is
shown in Figs. 5–7, and the boxplot of solutions are shown in
Figs. 8–10. With only 17 plots used by Banskota et al. [49],
the RMSE improved from 0.50 to 0.46 for full AVIRIS bands,
from 0.63 to 0.61 for Landsat bands, and from 0.74 to 0.71 for
six narrow AVIRIS bands (results not shown here). The effect of
the LUT size on the LAI retrieval accuracy was tested with the
best performing dataset, i.e., full spectrum AVIRIS. The results
are summarized in Table V showing the original and altered
cases of individual variables, total number of simulations, and
the R2 and RMSE between the observed and estimated LAI
based on corresponding LUTs. The results show that the LUT
of size (66 900 rows) created by removing simulations for three
Cab cases (i.e., 20, 40, and 50 µg/cm2) showed improvement
in RMSE (i.e., from 0.50 to 0.46); for all other instances, RMSE
increased.
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Fig. 6. Observed versus estimated LAI from Landsat data using median value
from 250 solutions. R2 and RMSE refer to the square of the correlation
coefficient and RMSE between observed and estimated LAI.

Fig. 7. Observed versus estimated LAI from 6 narrow AVIRIS bands using
median value from 50 solutions. R2 and RMSE refer to the square of the
correlation coefficient and RMSE between observed and estimated LAI.

Fig. 8. Boxplots of LUT LAI values in 150 best matching spectra based on
inversion using 184 narrow AVIRIS bands. The observed LAI values associated
with boxplots are shown in X-axis.

IV. DISCUSSIONS

In this study, we used an LUT-based inversion of DART-
simulated reflectances using AVIRIS and Landsat data to
retrieve forest LAI. We determined the optimal parameter com-
binations and input increments for LUT creation, enabling

Fig. 9. Boxplots of LUT LAI values in 250 best matching spectra based on
inversion using 6 broad Landsat bands. The observed LAI values associated
with boxplots are shown in X-axis.

Fig. 10. Boxplots of LUT LAI values in 50 best matching spectra based on
inversion using 6 narrow AVIRIS bands. The observed LAI values associated
with boxplots are shown in X-axis.

TABLE V
R2 AND RMSE BETWEEN OBSERVED AND ESTIMATED LAI FOR

DIFFERENT LUT SIZE

The different LUT size was achieved by altering the number of cases for
individual variables.

DART to simulate reflectance spectra commensurate to those
measured by the Landsat and AVIRIS sensors. The inver-
sion resulted in reasonably accurate LAI estimates (RMSE =
0.50 with AVIRIS and 0.64 with Landsat). Typical DART
simulations to create LUT for inversion require significant
computational resources [27]. Furthermore, high-dimensional
image data, such as AVIRIS, increase computational time
given the large number of spectral channels. Demarez and
Gastellu-Etchegorry [59] tested an interpolation technique for
precomputed canopy reflectance values simulated through the
coupling of DART and PROSPECT. Kimes et al. [20] also
employed a similar interpolation procedure to produce direc-
tional reflectance values to estimate forest characteristics. Such
interpolation procedures significantly reduce the number of
simulations necessary, but still require a large number of simu-
lations to accurately interpolate reflectance when many model
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inputs have unknown values or ranges. Additional studies have
devised automated forward modeling parameterization tech-
niques to build LUTs for improved inversion [39], [47], [48].
However, such techniques require a model to be run in multi-
ple forward modes, which is not computationally feasible for
DART. The results of this study show that the outlined three-
step approach can be helpful for building an LUT of optimal
size for accurate LAI estimation, which can be scaled up for
larger problems covering broader regions.

The results indicate that the approach can be used to identify
the realistic range for an individual parameter as suggested by
Peddle et al. [48]. Moreover, the results show that not all pos-
sible combinations within the identified range provide output
similar to the image reflectance, and leaving out such infeasible
combinations with a simple search process results in signifi-
cantly less computation time. Such efficiency may be increased
by further incorporating information on observed trait variation
(e.g., [50]) when developing the LUT ranges and parameter
distributions [64]. In this study, it required 840 h to compute
reflectance for the final 115 000 simulations for AVIRIS bands
using a computer with 32 processors and 64 GB of physical
RAM. If we had considered all possible combinations (779 520
simulations), it would have taken nearly seven times longer.
It is also likely that considering all the possible combina-
tions would not have provided any significant improvements
in the estimation of LAI, given that many of the simulations
would have fallen outside of the range in image spectra (e.g.,
[64]). Present DART 5.5.1 version, which is multithreaded and
optimizes the computation of ray paths, is much faster for con-
ducting hyperspectral simulations than the DART version that
we used here.

Our previous work (Banskota et al. [49]) used a similar
approach for constraining the LUT grid size and resolution
based on image information. But in that study, we used plot
spectra to limit the parameter range and combinations. Such
strategy reduces the required number of simulations, but unre-
alistically makes an assumption that all image spectra of
vegetation types in question are bound by the plot spectral
range, which would therefore require a large number of sam-
ple plots to constrain the LUT for broad regions. In this study,
we used atmospherically corrected and cloud-masked near-
anniversary Landsat reflectance product and land cover data
to determine the range of image reflectance. This approach
required a larger number of simulations (115 000) relative to
that used by Banskota et al. [49] (28 000) for the same set of
AVIRIS and plot dataset, but ensured that the spatial variation
in the band reflectance was sufficiently captured. Fewer simu-
lations might have been required, had we used AVIRIS image
in lieu of Landsat to constrain the LUT; however, our approach
allowed us to compare the inversion results from both sensors.

Our results presented here show that the inversion using all
available AVIRIS bands provided better LAI estimates than
the inversion using Landsat broad bands. This shows that
the greater information content in a larger number of nar-
row spectral bands in a spectroscopic data is likely beneficial
for improved LAI retrieval from remote sensing data. On the
contrary, Weiss et al. [43] reported that only a limited num-
ber of wavebands are required for canopy biophysical variable

estimation. This is especially true for hyperspectral data with
noisy or poorly modeled wavebands by the RTM being inverted
[65]. Other studies have indicated that the selection of a subset
of spectral bands—or alternatively the weighting of different
spectral bands—can lead to a more stable and accurate inver-
sion [3], [38], [45]. In this study, we selected six narrow bands
with closest band center to the Landsat bands and carried out
the inversion based on the subset of bands. The results obtained
were, however, poorer than those obtained by Landsat broad
bands. This may have been related to atmospheric correction
artifacts where the AVIRIS image spectra were not adequately
described by the atmospheric algorithm (in this case, ACORN)
resulting in a biased comparison. The potential bias is evident
in Fig. 7 where most observations systematically fell above the
1:1 line in the observed versus estimated plot. On the other
hand, the median retrieval using the full spectrum of bands
might have accounted for the potential bias by enabling less
strict requirements on the modeled and observed reflectance
comparison.

According to Weiss et al. [43], the best parameter retrieval
is achieved when the number of solutions (q) ranges between
10 and 50. Darvishzadeh et al. [66] did not find any signif-
icant difference in the results obtained from q = 10 and 100
cases, whereas Darvishzadeh et al. [67] found the best solu-
tion when q = 250 cases. In this study, we observed the best
LAI estimate with q = 150. Such differences in the appropriate
number of solutions are potentially caused by the size and den-
sity of the LUT grid and the noise in the modeled and observed
reflectance [43], [67]. Nevertheless, RMSE decreases when
q > 10 and converges and becomes stable when q approaches
150 as observed in this study as well as by Darvishzadeh et al.
[67]. Hence, multiple solutions with q > 100 seems necessary
to achieve near optimum, if not the best, solution. For six
narrow bands, the RMSE did not improve with an increase
in the number of solutions beyond q = 50. The comparison
between AVIRIS image spectra and the simulations in the
multiple solutions revealed that greater mismatch occurred in
the visible bands, where the AVIRIS reflectance was lower
than simulations potentially due to overcompensation of atmo-
spheric effects. The effect of atmospheric correction artifact
was much pronounced when inverted using six narrow bands
due to equal weight given to visible and infrared bands (three
each) compared to full spectrum (many infrared than visible
bands). When q = 50, as seen in Fig. 7, the effect of the low-
visible reflectance resulted in overestimation mainly at lower
LAI values. With q ≥ 100, the overestimation occurred even at
higher LAI values (figures for higher number of solutions not
shown here).The plot LAI was estimated using digital hemi-
spherical photography processed with DHP [5], following the
protocol of Zhang et al. [54] for increasing the contrast between
foliage and sky. We acknowledge that LAI measurement uncer-
tainty is an important consideration in remote sensing research
as any optical (e.g., DHP), active (e.g., Lidar), or direct mea-
surement (e.g., litter traps and destructive harvesting) can only
provide estimates of true stand-level LAI [43], [51]. The uncer-
tainty in ground measured LAI is a result of the assumptions
that are required for the various techniques (e.g., assumptions
related to crown geometry, foliar distribution, LAD, seasonal
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leaf replacement or exchange, leaf optical properties, etc.) and
the accuracies of measurement protocols (e.g., gap fraction,
individual leaf area/mass, spatial sampling, etc.) as well as other
factors that are more difficult to quantify over large areas (e.g.,
shoot and canopy clumping). However, given all the issues with
indirect quantification of LAI, it has been well established that
the properties related to clumping (at the shoot and canopy
scales) are those that dominate the uncertainties [51]. Some
studies have shown reasonable agreement between DHP and
traditional allometric and destructive estimates (e.g., [51], [63])
when properly accounting for foliage clumping. We recog-
nize that the estimation of the degree of foliage clumping with
DHP-TRAC software in this study might not provide sufficient
quantification of clumping at our sites and potentially con-
tributed to the overall retrieval uncertainty; however, Leblanc
et al. [5] and Chen et al. [1] generally showed close agreement
between the methods.

SA could help identify both the inconsequential parameters
and the number of cases for each input parameter in the final
simulation. If a parameter has low sensitivity to canopy spectral
reflectance changes, it should be excluded from the inversion
and kept at a realistic fixed value [45]. If the parameter has high
sensitivity, it should be densely represented in the LUT. Hence,
an ideal implementation of an LUT would comprise an adap-
tive grid where the numbers of cases of model parameters are
guided by their respective sensitivity to the changes in spectral
reflectance. In this study, we utilized a simple SA where the
variations for individual parameters were considered indepen-
dently. The inversion results using smaller size LUT indicated
that further reduction in parameter cases than guided by the
SA is possible. The retrieval accuracy slightly improved for
reduced-size LUT created by fewer Cab cases. LAI and leaf
chlorophyll values generally tend to correlate; however, such
interaction between parameter was not analyzed in the SA.
There are other methods, such as the extended Fourier ampli-
tude sensitivity test (EFAST), which provides information on
the effect of interactions among variables in model output [68].
Such methods, however, require a significantly greater number
of simulations than required by the simple method used in this
study.

V. CONCLUSION

We devised an efficient way of building LUT for the inver-
sion of the DART model using hyperspectral remote sensing
data. We used an approach for selecting realistic parame-
ter combinations based on the information derived from the
Landsat image. The approach used a coarse-resolution LUT
built for broad Landsat bands to determine the optimal param-
eterization space that is likely to simulate canopy reflectance
similar to that recorded by remote sensing measurements. A
sensitivity study determined the optimal input increments. The
improved LAI estimates obtained by the inversion of the DART
model based on AVIRIS data than Landsat data suggested that
the approach might be helpful for an efficient building of LUT
for hyperspectral bands. The study, however, employed few
simplifications in DART parameterization (e.g., constant frac-
tion of diffuse radiation, absence of ground vegetation, constant

Fig. 11. Impact of the branches on nadir reflectance of a tree cover (80%) with
LAI from 1 to 6 when Sun zenith angle is 27◦. (a) Four-tree scene where trees
are simulated with schematic branches, for the case “LAI = 0.” (b) Four-tree
scene where trees are simulated with foliage, and with and without schematic
branches. (c) Relative difference of the reflectance of a “4-tree” scene with and
without schematic branches.

SL, etc.) and tested the LUT inversion using plots spectra
with high LAI values (≥3). We recommend that the future
studies take into account of the spectral variation in sky irradi-
ance and background reflectance. With the new multithreaded
DART, simulations can be conducted with more realistic con-
ditions such as actual atmosphere spectral illumination, trees
with branches, variable SL with less computational cost than
that required by the DART version used in this study. Further
study needs to be done in regions with greater dynamic range
of LAI and prominent ground vegetation to confirm the broader
applicability of the approach.

APPENDIX I
DART SIMULATION WITH AND WITHOUT BRANCHES

We assessed the difference in the DART-simulated
reflectance using trees described with and without schematic
branches. Fig. 11(a) shows a four-tree scene where trees are
simulated with schematic branches, for the case “LAI = 0,”
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TABLE VI
(APPENDIX II) ONE OF THE RESULTS FROM SEARCH FOR REALISTIC COMBINATIONS

OF PARAMETERS

The parameters are CC, Leaf DM, Leaf EWT, LAI, LAD, and Leaf CAB Concentration. The four
LADs were erectophile (2), planophile (3), extremophile (4), and plagiophile (5) distributions.

and Fig. 11(b) shows the four-tree scene with foliage, with
and without schematic branches. The relative difference in
reflectance between scenes where the crowns are simulated
with and without branches is plotted in Fig. 11(c). The figure
shows that the relative difference in reflectance (in y-axis) is
generally smaller than 1% with LAI around 4. As expected,
this relative difference inversely varies with LAI: it increases
with smaller LAI and decreases with larger LAI.

APPENDIX II
ITERATIVE SEARCHING FOR BEST PARAMETER

COMBINATIONS

Model inputs that led to simulations (candidate solutions)
in the reduced LUT were examined to infer information
about optimal ranges and parameter combinations. As shown
in Fig. 2, the useful parameter combinations that produce
reflectance values within the range of image spectra were
searched with the following iterative steps. First, start search-
ing candidate simulations for a single value of CC (e.g.,
CC = 100%) and create a reduced-size table with only those
simulations (LUT1). Then, take a single DM (e.g., DM =
0. 01 g/cm2) present in LUT1 and create another reduced-size
table (LUT2). From LUT2, create LUT3 for one of the values
of EWT. Query a range of values for the remaining parame-
ters (Cab, LAI, LAD, and N) in LUT3 and make a list of them.
Repeat the process for all remaining values of EWT in LUT3,

followed by the rest of the values of DM in LUT2 and finally
all values of CC in LUT1.

The results of the above search process were listed as opti-
mal input ranges for four parameters for each combination of
CC, DM, and EWT present in candidate solutions. In prin-
ciple, the process could be repeated for all combinations of
parameters, but it would have returned an overly large set of
results that would be difficult to interpret. We considered CC,
DM, and EWT in the search process as their unique values had
significantly different frequencies in candidate solutions. All
parameter values for N and SL, in contrast, were represented
in about equal proportion in candidate solutions. The results
would have been similar for all combinations of their values,
and would not have revealed much information about optimal
parameter combinations.

One of the results of the search for optimal parameter combi-
nations is shown in Table VI. The table shows all parameter
combinations in candidate simulations with 100% CC and
three DM values that produced reflectance within the max/min
space. None of the simulations for two parameter combinations
(EWT = 0.001 cm and DM = 0.001 g/cm−2; and ETW >
0.013 and DM = 0.021 g/cm2) was selected. This showed that
any combinations of DM greater than or equal to 0.021 g/cm2

with 100% CC and 0.016 cm EWT were less likely to result in
reflectance similar to that of image and could be discarded at the
final LUT building process. Similarly, only LAI values between
2 and 5 combined with 0.01 cm EWT, 0.021 g/cm2 DM, and
100% CC resulted in candidate solutions. This suggested that
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we could leave out LAI values greater than or equal to 6 for the
particular parameters combination.
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