
NASAs surface biology and geology designated observable: A perspective on surface imaging algorithms

Kerry Cawse-Nicholson a,*, Philip A. Townsend b, David Schimel a, Ali M. Assiri c, Pamela L. Blake d, Maria Fabrizia Buongiorno e, Petya Campbell f, g, Nimrod Carmon a, Kimberly A. Casey s,h, Rosa Elvira Correa-Pabón f, Kyla M. Dahlin f, Hamid Dashki k, Philip E. Dennison l, Heidi Dierssen m, Adam Erickson n,g, Joshua B. Fisher a, Robert Frouin o, Charles K. Gatebe p, Hamed Gholizadeh q, Michelle Gierach a, Nancy F. Glenn r,an, James A. Goodman s, Daniel M. Griffith t,p, Liane Guild p, Christopher R. Hakkenberg a, Eric J. Hochberg t, Thomas R.H. Holmes s, Chuanmin Hu v, Glynn Hulley s, Karl F. Huemmrich f, g, Raphael M. Kudela x, Raymond F. Kokaly y, Christine M. Lee a, Roberta Martin z, Charles E. Miller a, Wesley J. Moses aa, Frank E. Muller-Karger w, Joseph D. Ortiz ab, Daniel B. Otis w, Nima Paheyan ac,g, Thomas H. Painter ad, Ryan Pavlick a, Ben Poulter s, Yi Qi ac, Vincent J. Realmuto a, Dar Roberts af, Michael E. Schaepman ag, Fabian D. Schneider a, Florian M. Schwandner p, Shawn P. Serbin ab, Alexey N. Shiklomanov g, E. Natasha Stavros a, ad, David R. Thompson a, Juan L. Torres-Perez ai, Kevin R. Turpie f, g, Maria Tzortziou aj, Susan Ustin ak, Qian Yu al, Yusri Yusup am, Qingyuan Zhang n,g, the SBG Algorithms Working Group

a Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
b University of Wisconsin, Madison, WI, USA
c KACST, Space and Aeronautics Research Institute, Riyadh, Saudi Arabia
d The Boeing Company, Seal Beach, CA, USA
e Istituto Nazionale di Geofisica e Vulcanologia, Italy
f University of Maryland Baltimore County (UMBC), MD, USA
g NASA Goddard Space Flight Center, MD, USA
h U.S. Geological Survey, Reston, VA, USA
i Instituto Tecnológico Vale Mineração, Ouro Preto, Brasil
j Michigan State University, East Lansing, MI, USA
k University of Arizona, School of Natural Resources and the Environment, Tucson, AZ, USA
l University of Utah, Salt Lake City, UT, USA
m Marine Sciences Department, University of Connecticut, Groton, CT, USA
n Universities Space Research Association (USRA), MD, USA
o Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
p NASA Ames Research Center, Moffett Field, CA, USA
q Oklahoma State University, Stillwater, OK, USA
r University of New South Wales, Australia
s HySpeed Computing, Miami, FL, USA
t U.S. Geological Survey, Western Geographic Science Center, Moffett Field, CA, USA
u Northern Arizona University, AZ, USA
v Bermuda Institute of Ocean Sciences, St. George’s, Bermuda
w University of South Florida, College of Marine Science, Saint Petersburg, FL, USA
x University of California, Santa Cruz, CA, USA
y U.S. Geological Survey, Denver, CO, USA
z Arizona State University, SGSUP & ODSCS, AZ, USA
aa U.S. Naval Research Laboratory, Washington, D.C., USA
ab Kent State University, Dept. of Geology, Kent, OH, USA
ac Science Systems and Applications Inc., Lanham, MD, USA

* Corresponding author.

https://doi.org/10.1016/j.rse.2021.112349

Available online 20 February 2021

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
2

1. Introduction

The 2017–2027 Decadal Survey, Thriving on our Changing Planet, was released in January 2018 by the committee on the Decadal Survey for Earth Science and Applications from Space (ESAS) of the National Academy of Sciences, Engineering and Medicine (NASEM) Space Studies Board (NASEM, 2018). The report provides a vision and strategy for Earth observation that informs federal agencies responsible for the planning and execution of civilian space-based Earth-system programs in the coming decade, including the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), and the U.S. Geological Survey (USGS). High-priority areas and targeted observables include global-scale Earth science questions related to hydrology, ecosystems, weather, climate, and solid earth. Notably, the Decadal Survey identified Surface Biology and Geology (SBG) as a Designated Targeted Observable (DO) to acquire concurrent global spectroscopic (hyperspectral) visible to shortwave infrared (VSWIR; 380–2500 nm) and multispectral midwave and thermal infrared (MWIR: 3–5 μm; TIR: 8–12 μm; ~60 m pixel resolution) measurements with sub-monthly temporal revisits over terrestrial, freshwater, and coastal marine habitats. To address the various mission design needs, an SBG Algorithms Working Group of multidisciplinary researchers has been formed to review and evaluate the algorithms applicable to the SBG DO across a wide range of Earth science disciplines, including terrestrial and aquatic ecology, atmospheric science, geology, and hydrology. Here, we summarize current state-of-the-practice VSWIR and TIR algorithms that use airborne or orbital spectral imaging observations to address the SBG DO priorities identified by the Decadal Survey: (i) terrestrial vegetation physiology, functional traits, and health; (ii) inland and coastal aquatic ecosystems physiology, functional traits, and health; (iii) snow and ice accumulation, melting, and albedo; (iv) active surface composition (eruptions, landslides, evolving landscapes, hazard risks); (v) effects of changing land use on surface energy, water, momentum, and carbon fluxes; and (vi) managing agriculture, natural habitats, water use/quality, and urban development. We review existing algorithms in the following categories: snow/ice, aquatic environments, geology, and terrestrial vegetation, and summarize the community-state-of-practice in each category. This effort synthesizes the findings of more than 130 scientists.
as the simultaneous acquisition of hundreds of channels.

Multispectral instruments such as Landsat 8 Operational Land Imager, Sentinel-2 MultiSpectral Instrument, Terra and Aqua MODIS, Suomi National Polar-Orbiting Partnership VIIRS, and others are commonly used for applications such as landcover classification, wildfire detection, urban growth, volcanology, detection of harmful algal blooms and oil spills, estimation of chlorophyll concentration, primary production, water transparency, resuspended particles, among others (Chuvieco, 2020). However, additional information is to be gained by measuring contiguous swaths of the spectrum at high spectral resolution (usually 10 nm or less) (Schimel et al., 2020). We label this spectroscopy (Schaepman et al., 2009), which, alongside thermal multispectral observations, forms the key measurement of SBG. We anticipate that these data will be complementary to the existing suite of remote sensing

![Image of spectroscopic imagery for terrestrial applications. Top and third rows: true color composites acquired by airborne AVIRIS-Classic (VSWIR), AVIRIS-NG (VSWIR), PRISM (visible to near-infrared; VNIR, 350-1050 nm) and HyTES (TIR) instruments over different biomes. Second and fourth rows: A minimum-noise fraction (MNF; Green et al., 1988) transformation is applied to each spectroscopic image to illustrate the additional information that can be derived from the spectral content (MNF bands 2,3,4 as red, green, blue, respectively). Each image covers approximately 4 km². The desert image was acquired by HyTES over Cuprite, Nevada, USA on 3 May 2015 (https://hytes.jpl.nasa.gov/order); the boreal forest image was acquired by AVIRIS-NG in the Northwest Territories, Canada on 11 August 2018 (https://avirisng.jpl.nasa.gov/dataportal/); the mangrove scene was acquired by AVIRIS-NG in Louisiana, USA on 9 May 2015; the Great Barrier Reef, Australia was acquired by PRISM on 17 September 2016 (https://prism.jpl.nasa.gov/prism_data.html); the agricultural image was acquired by AVIRIS-Classic in Zurich, Switzerland on 9 July 2018; the grasslands image was acquired by AVIRIS-NG in Oklahoma, USA on 14 June 2017; the temperate forest was acquired by AVIRIS-NG in Wisconsin, USA on 4 September 2015; and the snow image was acquired by AVIRIS-Classic over Senator Beck Basin, Colorado on 15 June 2011. For AVIRIS-Classic, AVIRIS-NG and PRISM, color images are shown using the channels closest to 640 nm, 550 nm, and 470 nm for red, green, blue, respectively. For HyTES, a false-color composite is shown using 11.04 μm, 9.35 μm, and 8.56 μm as red, green, and blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 1. Examples of spectroscopic imagery for terrestrial applications. Top and third rows: true color composites acquired by airborne AVIRIS-Classic (VSWIR), AVIRIS-NG (VSWIR), PRISM (visible to near-infrared; VNIR, 350-1050 nm) and HyTES (TIR) instruments over different biomes. Second and fourth rows: A minimum-noise fraction (MNF; Green et al., 1988) transformation is applied to each spectroscopic image to illustrate the additional information that can be derived from the spectral content (MNF bands 2,3,4 as red, green, blue, respectively). Each image covers approximately 4 km². The desert image was acquired by HyTES over Cuprite, Nevada, USA on 3 May 2015 (https://hytes.jpl.nasa.gov/order); the boreal forest image was acquired by AVIRIS-NG in the Northwest Territories, Canada on 11 August 2018 (https://avirisng.jpl.nasa.gov/dataportal/); the mangrove scene was acquired by AVIRIS-NG in Louisiana, USA on 9 May 2015; the Great Barrier Reef, Australia was acquired by PRISM on 17 September 2016 (https://prism.jpl.nasa.gov/prism_data.html); the agricultural image was acquired by AVIRIS-Classic in Zurich, Switzerland on 9 July 2018; the grasslands image was acquired by AVIRIS-NG in Oklahoma, USA on 14 June 2017; the temperate forest was acquired by AVIRIS-NG in Wisconsin, USA on 4 September 2015; and the snow image was acquired by AVIRIS-Classic over Senator Beck Basin, Colorado on 15 June 2011. For AVIRIS-Classic, AVIRIS-NG and PRISM, color images are shown using the channels closest to 640 nm, 550 nm, and 470 nm for red, green, blue, respectively. For HyTES, a false-color composite is shown using 11.04 μm, 9.35 μm, and 8.56 μm as red, green, and blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
instruments planned and currently in orbit. In many applications, such as the identification and quantification of the biochemical components of plant canopies, the Decadal Survey states that spectroscopic imagery is the “only” sufficient technology (NASEM, 2018; Schimel et al., 2020).

Spectroscopic imagery contains far more information than can be seen by the human eye, as illustrated in Fig. 1, where a depiction of a small subset of the spectroscopic data reveals mineral types, vegetation species and health, water quality, and more. The VSWIR spectrum covers wavelengths that provide information about vegetation pigments, structure, water content, and non-pigment biochemistry; mineral composition; snow grain size and dust; water quality; and other applications (Fig. 2). SBG observations in this range will also be critical to derive complementary and high spatial resolution (compared to heritage ocean color sensors) Essential Ocean Variables (EOVs) and Essential Biodiversity Variables (EBVs) that are the basis for new aquatic science and applications (Muller-Karger et al., 2018; O’Connor et al., 2020). The TIR measures wavelengths that enable identification of minerals that do not have absorption or reflectance features in the VSWIR and provides information about vegetation water content (Fig. 3). In addition to emissivity changes, the midwave infrared (MWIR, 3–5 μm) and TIR radiance can also be used to compute land surface temperature. This is important for monitoring fires and lava flows, as well as drought and vegetation stress (Fig. 4).

The information content of each acquired scene is a function of the spatial and spectral resolution as well as the signal-to-noise ratio (SNR). Within hyperspectral imagery, there is often a tradeoff between noise and resolution, as finer division of pixels or channels results in fewer available photons per pixel per channel, whereas broad channels may return more photons but miss key identifying features. The intrinsic dimension (ID) of an image is the number of unique detectable classes within an image or the observable degrees of freedom within a particular electromagnetic range. A survey of dimensionality across space, time, and land cover types is shown for airborne hyperspectral imaging in Thompson et al. (2017a), and the fusion of VSWIR and TIR ranges has been shown to yield significantly more degrees of freedom than a single modality alone (Cawse-Nicholson et al., 2019).

The Decadal Survey calls for specific products, including Earth surface temperature and emissivity; VSWIR reflectance; vegetation traits; evapotranspiration; substrate composition; volcanic gases and plumes;
high temperature features; water biogeochemistry; water biogeochemistry; aquatic and terrestrial classification; and snow albedo. Here, we focus on the state-of-the-practice algorithms used to derive the products identified by the Decadal Survey. All of the overarching science and societal questions/goals assigned to the SBG DO were considered when selecting products. Decadal Survey questions are divided into the focus areas of the hydrological cycle (H), weather (W), terrestrial and aquatic ecosystems and natural resource management (E), climate variability and change (C), and Earth surface and interior (S). These labels are used in tables henceforth, with the exact question codes provided in the Decadal Survey (NASEM, 2018).

This paper is organized as follows: in Section 2, we survey the state-of-practice algorithms for SBG core products; in Section 3, we address caveats and other algorithm/product considerations; Sections 4 and 5 follow with a discussion and conclusion, respectively.

2. The diversity of surface imaging algorithms

The SBG Algorithms Working Group surveyed more than 130 imaging spectroscopy researchers spanning the hydrology, ecosystems, weather, climate, and solid earth communities. This year-long interdisciplinary collaboration gathered information on algorithms and data products that address the SBG science questions. Section 2 summarizes 22 potential product suites and nearly 100 subproducts contained therein, per the survey results. In Section 2.1, we cover universal products, and in section 2.2, we detail products within each science and application domain. This work serves as a record of the state-of-the-practice as it represents a community of scientists interested in the SBG Designated Observable. We do not present the list of algorithms that will be implemented for SBG, but rather document the breadth of potential algorithms suitable for SBG, with a focus on those that require measurements such as are proposed for SBG.

2.1. Universal algorithms

Several universal preprocessing steps are required to produce many of the products listed in Section 2.2, including atmospheric correction in the VSWIR and TIR, spectral unmixing and sometimes land cover classification.

2.1.1. Atmospheric correction

Most products described in this manuscript start from a foundation of atmospheric correction, which estimates atmospheric properties related to aerosols, trace gases, and water vapor as a basis to remove atmospheric inference and convert data to surface reflectance or emissivity. The atmosphere varies at fine spatiotemporal scales, with the time scales of variation decreasing in duration at increasingly finer spatial resolutions. Thus, while climatological or model-based estimates may provide background constraints, it is important to estimate the atmospheric contribution to the spectral and thermal signals directly from the targets being measured. Historically, different communities have applied algorithms developed for their specific domains and instruments. In the terrestrial domain, VSWIR and TIR retrievals have been treated separately due to the underlying differences in radiative transfer and physics between the two wavelength regions.

2.1.1.1. Visible shortwave infrared (VSWIR). The SBG concept involves collection of imaging spectroscopy data with global coverage and provision of surface reflectance maps with per-spectral channel and per-pixel uncertainty estimates. Those uncertainties are of special significance for global observations, as different biomes, atmospheric conditions, observation geometries, and illumination geometries yield spatially and temporally varied retrieval accuracies (Thompson et al., 2019a, 2019c). The primary objective of VSWIR atmospheric correction is the accurate retrieval of surface reflectance, removing effects of light absorption and scattering by aerosols, water vapor, ozone, and other gases, particularly in visible wavelengths and with variation in elevation and solar illumination. In addition to surface reflectance, atmospheric correction algorithms also yield useful maps of atmospheric column vapor content.

In the VSWIR, recent algorithm surveys include Frouin et al. (2019) for ocean environments, and Thompson et al. (2019b) and lentilucci and Adler-Golden (2019) for terrestrial environments. In aquatic and near-coastal environments, only a small fraction of sensor-reaching radiance constitutes relevant information about water-column or benthic properties, requiring a more rigorous accounting of atmospheric signal than is necessary for terrestrial applications (Gordon and Wang, 1994; Gordon, 1997; Wang, 2007; Palacios et al., 2015). Generally, this necessitates high-performance instrumentation and calibration (Meister et al., 2011). Traditionally, aquatic algorithms are based on the assumptions that reflectance at longer wavelengths—usually red, near-infrared (NIR), and shortwave infrared (SWIR)—is either negligible (i.e., below sensor noise) or well correlated to enable iterations. Such assumptions are mainly applicable, with exceptions due to oil spills (Clark et al., 2019; Liu et al., 2019) or other types of floating matters on the water surface (Hu, 2009; Qi et al., 2016; Wang and Hu, 2016; Qi et al., 2020). While hyperspectral algorithms developed for atmospheric correction in ocean environments have shown promise for coastal and inland waters (Ibrahim et al., 2018), other alternative methods have also been developed, such as curve-fitting algorithms (POLYMER; Steinmetz et al., 2011) and neural network models (OCSMART; Fan et al., 2017). In developed coastal areas, in addition to aerosols, highly variable absorbing trace gases such as NO2 introduce additional uncertainties in estimates of surface reflectance at wavelengths traditionally used for retrievals of phytoplankton pigments and dissolved organic carbon dynamics (Ahmad et al., 2007; Tzortziou et al., 2014). Regional/empirical algorithms (e.g., line height methods) have proven practical for the retrieval of some water quality parameters (e.g., chlorophyll-a) directly from top-of-atmosphere (TOA) radiance/reflectance, taking advantage of strong reflectance features that are prominent even in the presence of atmospheric effects (Stumpf et al., 2016; Binding et al., 2018).

In general, atmospheric correction approaches fall into three categories: (1) empirical or scene-based approaches, which are not discussed here because they do not scale to global implementation, (2) sequential methods, which estimate atmospheric content from radiance data prior to inverting for surface reflectance, and (3) simultaneous approaches that fit atmospheric and surface properties simultaneously. Sequential methods are generally faster because they use fast algebraic solutions or pre-formulated lookup tables (LUTs) from cached sets of common optical atmospheric conditions. The atmospheric state is estimated using features in the radiance spectrum, with reflectance then inverted from radiances as an algebraic function of atmospheric transmission and path radiance from the LUT (Thompson et al., 2019a). Examples include ATREM (Gao et al., 2009), ATCOR (Richter and Schläpfer, 2017), and FLAASH (Perkins et al., 2012) for the land, and different, long-standing algorithms for the ocean (Gordon and Wang, 1994; Gordon, 1997; Montes et al., 2001; Wang, 2007). Complex landscapes confound sequential methods (Thompson et al., 2019a). While some simultaneous methods are slower due to iterative computations (i.e., optimization), they fit the entire spectrum by concurrently solving for the atmosphere and surface; that is, they do not make assumptions about the atmosphere as sequential methods do. This provides the accuracy and flexibility to measure subtle atmospheric parameters lacking in traditional approaches. Statistical versions may incorporate background information for improved accuracy, and enable rigorous uncertainty accounting (e.g., Optimal Estimation in Thompson et al., 2018, 2019a, 2019b, 2019c; and Chomko et al., 2003; Steinmetz et al., 2011; Bayesian Methods in Frouin et al., 2009, 2015, 2018). This class of algorithm has the flexibility to use diverse ancillary surface and atmospheric information where available, including multiple observations of the same location that can serve as a prior reflectance base map enabling
improved accuracy. However, these methods often constrain the retrieved surface reflectance to known sets of spectra and may not accurately retrieve new spectral information, particularly because global hyperspectral data are lacking, especially in aquatic environments (Dierssen et al., 2020). Finally, atmospheric correction algorithms designed for terrestrial and aquatic applications often have fundamental differences in defining the atmospheric path radiance: terrestrial algorithms typically do not include the surface reflected light, but aquatic algorithms include the light due to Fresnel reflection, a function of not only water’s refraction index and observing geometry, but also winds (for surface roughness calculations).

2.1.1.2. Thermal infrared (TIR). Maximum radiometric emission for the typical range of Earth surface temperatures occurs in two infrared spectral “window” regions that have minimal interference from atmospheric absorption and scattering—the 3–5 μm MWIR and the 8–12 μm TIR. The radiance measured in these windows includes emission, absorption and scattering by atmospheric constituents. As with VSWIR, the purpose of the atmospheric correction for TIR data is to remove the atmospheric effects and isolate those features of the observation that are intrinsic to the surface. Only after accurate atmospheric correction can reliable surface temperatures and spectral emissivity be retrieved.

For TIR, a sequential approach is generally used by first estimating atmospheric profiles, then inputting these into a radiative transfer model such as MODTRAN (Berk et al., 1999) or Radiative Transfer for TOVS (RTTOV; where TOVS is the TIROS Operational Vertical Sounder, and TIROS is the Television Infrared Observation Satellite) (Matricardi et al., 2001) to estimate the necessary atmospheric parameters, and then inverting to obtain surface radiance. Even with perfect knowledge of the atmospheric properties, the problem of separating surface temperature and emissivity from multispectral TIR measurements is a non-deterministic problem. This is because the total number of measurements available (N channels) is always less than the number of variables to be solved for (emissivity in N channels, and one surface temperature = N + 1). If the emissivity is assumed a priori from a land-cover classification or over water, then the problem becomes deterministic with only the surface temperature being the unknown variable, and various split-window formulations can be used (Price, 1984; Prata, 1994; Wan and Dozier, 1996; Coll and Caselles, 1997; Yu et al., 2008; Minnert et al., 2019). Non-deterministic approaches can be applied to multispectral sensors with three or more channels in the TIR (e.g., ASTER, ECO-STRESS, MODIS) so that spectral variations in the retrieved emissivity can be related to surface composition and cover, in addition to retrieving surface temperatures. In non-deterministic approaches, the temperature and spectral emissivity are solved using an additional constraint or extra degree of freedom that is independent of the data source. These types of solutions are able to account for dynamic land surface changes such as those due to wildfires or surface soil moisture since the emissivity retrieval is based on spectral variance in the observed radiiances. Example non-deterministic approaches include the MODIS day/night algorithm (Wan and Li, 1997), the temperature-independent spectral indices (TISI) algorithm (Becker and Li, 1990), Kalman filter (KF) (Mastelli et al., 2013), and the Temperature Emissivity Separation (TES) algorithm (Gillespie et al., 1998; Kealy and Hook, 1993). Of these, the TES algorithm is currently used operationally for a number of NASA TIR sensors in low-Earth orbit, including VIIRS (VNP21) in Version 1, MODIS land surface temperature (LST) (MOD21/MYD21) products in Collection 6 (Huyleb et al., 2012; Islam et al., 2017; Malikar and Huyle, 2016), and the ECOSTRESS Level-2 standard products (Huyle and Hook, 2018).

2.1.2. Spectral Unmixing and surface cover

Precurser steps are necessary for some algorithms in all application areas, such as partitioning pixels into cover fractions (Roberts et al., 1998; Asner and Heidebrecht, 2002; Painter et al., 2003; Asner et al., 2009; Jones et al., 2018) or pre-classification of surface cover necessary for implementation of surface-type dependent algorithms (e.g., view-angle dependent corrections where surface vertical structure affects model parameterization; Jensen et al., 2018). Likewise, some downstream algorithms may require fractional cover to correct for non-vegetation proportions of pixels (Serbin et al., 2015). Here, we do not exhaustively review the range of classification approaches available for generation of categorical maps from SBG data, but we note that (1) basic cover type classifications will likely be necessary for some algorithms for every scene that is acquired to reduce issues with geometric misalignment or change that would result from using stock classification layers, and (2) a range of methods are available for classifying imagery based on reference (training) data (e.g., random forests, support vector machines), and that VSWIR and TIR data offer opportunities for improved detail and accuracy in surface cover classification compared to multispectral imagery (Pande and Tiwari, 2013; Loecon et al., 2015).

Fractional cover algorithms allow for mapping of subpixel surface composition by finding the best-fit combination and fraction of pure “endmembers” that represent a pixel spectrum. Spectral features caused by chemical and/or particle size differences between different surfaces are essential for distinguishing endmembers and modeling their fractional contributions to mixed pixels. The fine resolution and contiguous spectra provided by VSWIR instruments are able to resolve the spectral features needed to “unmix” pixel spectra using spectral mixing models. Example applications include fractional snow cover and grain size (Painter et al., 2003), fractional cover of substrate and photosynthetic and non-photosynthetic vegetation (Dennison et al., 2019), forest cover, deforestation, and disturbance (e.g., Asner et al., 2005), burn proportion and recovery (Tane et al., 2018), fractional cover of impervious surfaces and vegetation in urban environments (Roberts et al., 2015), fire fractional area (Dennison et al., 2006), fractional cover of coral, algae, and sand (Hochberg and Atkinson, 2003), and fractional coverage of floating materials like vegetation (Wang et al., 2019) and plastic debris (Biermann et al., 2020). In the aquatic community, spectroscopic methods have been demonstrated for numerous retrievals related to water surface and column composition (Roesler et al., 2003; Bracher et al., 2009) and were recommended for spaceborne spectrometers (Devred et al., 2013), but approaches have not been widely tested across diverse aquatic regimes (Muller-Karger et al., 2018). Various methods have been proposed to unmix phytoplankton groups from hyperspectral reflectance with the majority focused on decomposing reflectance and/or absorption features related to pigments (Palacios et al., 2015; Wang et al., 2016; Chase et al., 2017; Mowif et al., 2017), with others focused on statistical methods using eigenvalue-eigenvector decomposition (Ortiz et al., 2019) or neural networks (Hieronymi et al., 2017). Fractional cover of various floating algae on the water surface has been explored by Hu et al. (2009), Qi et al. (2016), and Wang and Hu (2016).

2.2. Focused products and algorithms

Once the reflectance and emissivity are estimated from radiance data, a large number of specific algorithms exist to answer the science questions laid out in the Decadal Survey. In this section, we cover the algorithms used in snow/ice, aquatic environment, geology, and terrestrial vegetation applications. For all of the algorithms reported, we also note dependencies, which are intermediate algorithms or products necessary for implementation of an algorithm. An example is BRDF (bidirectional reflectance distribution function) and topographic correction for sun-sensor-target geometry that is sometimes needed for vegetation studies (Ma et al., 2020; Vögtli et al., 2021). In fact, these intermediate algorithms may result in products for distribution themselves, but an exhaustive list of potential intermediate algorithms is beyond the scope of this paper; such information can be found in individual references associated with specific products.
2.2.1. Snow

Monitoring of snow is important because large populations rely on snowmelt for water availability. In addition, snow has associated implications for water resources, weather, climate, flooding, and drought. The melt rate of snow is affected by snow grain size, presence of algae and particulates, surface temperature, and albedo. In addition, it can be difficult to separate snow from clouds in optical imagery, presenting challenges to the determination of the fractional area occupied by snow. Historically, MODIS data have been used to provide global maps of snow cover (Rittger et al., 2013). However, MODIS is a discontinuous multi-band radiometer with isolated 50–100 nm wide spectral bands, whereas the SBG VSWIR instrument is envisioned to provide continuous spectral coverage from 400 to 2500 nm with ~10 nm spectral resolution. The combination of improved spectral resolution and continuous spectral coverage provides dramatically increased information content/spectral dimensionality (Thompson et al., 2018). Hyperspectral data leverage the entire spectrum to more accurately determine snow albedo, grain size, cloud cover over snow, and unmix pixels containing both vegetation and snow (Painter et al., 2013). A model developed by Painter et al. (2013) compares the observed snow reflectance (scaled by vegetation and snow (Painter et al., 2013). A model developed by Painter et al. (2013) compares the observed snow reflectance (scaled by a hemispherical-directional reflectance factor; HDRF) to a library spectrum. The absorption feature at 1.03 μm is used to derive snow grain size, and the difference between the observed snow spectrum and a library spectrum of the same grain size can be used to determine light absorbing impurities (Painter et al., 2013). Table 1 lists the snow subproducts with their dependencies and heritage, while Table 2 lists the algorithms typically used to derive these subproducts.

2.2.2. Aquatic environment

The aquatic environment comprises inland seas, lakes and rivers; nearshore coastal, estuarine and oceanic waters; and the margins of water bodies near shorelines or the edges of ice. Study areas include emergent wetland and submerged benthic habitats; floating biotic and abiotic materials; water column ecology, water quality and biochemistry properties; and coastline mass flux and dynamics (Turpie et al., 2015a). The nature of the aquatic environment inherently presents additional challenges to retrieving information from the recorded signal. Besides atmospheric effects mentioned in 2.1.1.1, the recorded signal is also affected by glint (Wang and Bailey, 2001; Hochberg et al., 2003; Hedley et al., 2005; Goodman et al., 2008; Kay et al., 2009; Hu, 2011), and bubbles and whitecaps (Frouin et al., 1996; Dierssen, 2019). The necessity to correct for these effects depends on the particular algorithm used to retrieve a data product (Hochberg et al., 2011). Moreover, the added optical complexity of the water column itself often requires the generation of subproducts such as inherent optical properties (Lee et al., 2009) and bathymetry (Lee et al., 1998; Lee et al., 1999; Goodman and Ustin, 2007; Dekker et al., 2011; Thompson et al., 2017b; Barnes et al., 2018; Garcia et al., 2020) as intermediate outputs for retrieval of water column and benthic properties. Spectral techniques can provide characterization of various types of floating algae and other floating matter (Qi et al., 2020), carbon:chlorophyll ratios for kelp (e.g., Bell et al., 2015) or changes in fluorescence yielding satellite-derived estimates of phytoplankton physiology (e.g., Behrenfeld et al., 2009). Imaging spectroscopy, combined with thermal imagery, was recommended for estimating ecological conditions in the water column (Devred et al., 2013). The combination of imaging spectroscopy and thermal imagery can also offer new insight to aquatic processes along the margins of the sea, including the effects of freshwater discharge to benthic ecosystem distribution and composition (Jo et al., 2019). Imaging spectroscopy is also expected to provide useful data for assessment of inland water quality (Dekker and Hestir, 2012), provided the instrument can sufficiently resolve water bodies from surrounding terrain (Hestir et al., 2015), and with reduced uncertainty of targeted spectral data supporting algorithms utilizing in-water and near-surface validation (Guild et al., 2020). Table 3 lists the aquatic subproduct suites with their dependencies and heritage, while Tables 4-10 list the algorithms typically used to derive these subproducts.

2.2.2.1. Water biogeochemistry. Water biogeochemistry (Table 4) and water quality (section 2.2.2.2, Table 5) comprise overlapping areas of application for which differences in visible to near infrared (VNIR) absorption, scattering, and reflectance of water column constituents enable their retrieval. Water biogeochemistry also overlaps with entries under the water column environment (section 2.2.2.5, Table 8). Overlapping spectral features can confound explicit discrimination among some constituents in both categories, necessitating grouping of retrievals of some products (e.g., sediments and organic particulate matter). Note that entries on Tables 4 and 5 are not necessarily mutually exclusive; an important need for the imaging spectroscopy community moving forward is for an agreed upon terminology and set of definitions and an understanding of the overlaps among retrieved parameters.

2.2.2.2. Water quality. In our survey, the term “water quality” refers to

Table 1
Snow products possible from SBG, including their dependencies, requirements for solar zenith angle (SZA; degrees), view zenith angle (VZA; degrees), and heritage.

<table>
<thead>
<tr>
<th>Products</th>
<th>Dependencies</th>
<th>External</th>
<th>Max SZA</th>
<th>Max VZA</th>
<th>VSWIR</th>
<th>MWIR</th>
<th>TIR</th>
<th>Mission/Instrument Heritage</th>
<th>Spatial Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snow fraction</td>
<td>Cloud Filter, Reflectance</td>
<td></td>
<td>75</td>
<td>45</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>ASO, AVIRIS-C, AVIRIS-NG</td>
<td>Terrestrial</td>
</tr>
<tr>
<td>Snow albedo</td>
<td>Cloud filter, HDFR reflectance, TOA radiance, surface temp, snow algae composition</td>
<td></td>
<td>75</td>
<td>45</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>ASO, AVIRIS-C, AVIRIS-NG</td>
<td>Terrestrial</td>
</tr>
<tr>
<td>Snow/ice surface temperature</td>
<td>Cloud filter, thermal radiance</td>
<td></td>
<td>75</td>
<td>45</td>
<td>X</td>
<td></td>
<td></td>
<td>ASO, AVIRIS-C, AVIRIS-NG</td>
<td>Terrestrial</td>
</tr>
<tr>
<td>Snow - light absorbing particles</td>
<td>Cloud filter, HDFR corr. Reflectance</td>
<td></td>
<td>75</td>
<td>45</td>
<td>X</td>
<td></td>
<td></td>
<td>ASO, AVIRIS-C, AVIRIS-NG</td>
<td>Terrestrial</td>
</tr>
<tr>
<td>Snow algae concentration</td>
<td>Cloud filter, HDFR corr. Reflectance</td>
<td></td>
<td>75</td>
<td>45</td>
<td>X</td>
<td></td>
<td></td>
<td>ASO, AVIRIS-C, AVIRIS-NG</td>
<td>Terrestrial</td>
</tr>
<tr>
<td>Snow grain size</td>
<td>Cloud filter, HDFR corr. Reflectance</td>
<td></td>
<td>75</td>
<td>45</td>
<td>X</td>
<td></td>
<td></td>
<td>ASO, AVIRIS-C, AVIRIS-NG</td>
<td>Terrestrial</td>
</tr>
</tbody>
</table>
2.2.2.3. Benthic environment. Benthic habitats include optically shallow ecosystems that reside on the seafloor, such as coral reefs and seagrass. In this domain, the water surface includes a combination of reflectance from both the benthic surface and the water column (e.g., Maritorena et al., 1994), so algorithms typically resolve this interconnectedness by either simultaneously or sequentially deriving the three constituents of the water column that are detectable using imaging spectroscopy and for which some level of value could be assessed (e.g., sediment concentrations due to erosion and runoff or chlorophyll concentrations as a result of eutrophication). Some of the water quality subproducts are reformulations of biogeochemistry (Table 4) or water surface environment (Table 7) subproducts, and can be utilized independent of value judgment as measures of biological composition of the water column habitat (e.g., different pigment concentrations representative of different taxa present).

<table>
<thead>
<tr>
<th>Product Suites</th>
<th>Dependencies</th>
<th>External Data</th>
<th>Max</th>
<th>Max</th>
<th>VSWIR</th>
<th>MWIR</th>
<th>TIR</th>
<th>Mission/Instrument Heritage</th>
<th>Spatial Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water biogeochemistry</td>
<td>Water Spectral Reflectance</td>
<td>Stratification/species composition/nutrient/CDOM/salinity/depth</td>
<td>70</td>
<td>60</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>AVIRIS-C, AVIRIS-NG, SeaWiFS, MERIS, Hyperion, MODIS, PRISM, HICO, HSIO, L8/OLI, L8/OLI</td>
<td>Global open and coastal oceans, inland lakes, rivers</td>
</tr>
<tr>
<td>Water quality</td>
<td>Water Spectral Reflectance</td>
<td>Stratification/species composition/nutrient/CDOM/salinity/depth</td>
<td>70</td>
<td>60</td>
<td>X</td>
<td>X</td>
<td></td>
<td>AVIRIS-C, AVIRIS-NG, SeaWiFS, MERIS, MODIS, PRISM, HICO, L8/OLI</td>
<td>Global open and coastal oceans, inland lakes, rivers</td>
</tr>
<tr>
<td>Benthic environment</td>
<td>Water Spectral Reflectance, water column environment</td>
<td>Spectral libraries</td>
<td>70</td>
<td>60</td>
<td>X</td>
<td></td>
<td></td>
<td>HICO, L8, Sentinel-2, WorldView</td>
<td>Coastal ocean</td>
</tr>
<tr>
<td>Water column environment</td>
<td>TIR radiance, LST, Water Spectral Reflectance</td>
<td>Stratification, species composition, turbidity, nutrient, salinity, depth</td>
<td>70</td>
<td>60</td>
<td>X</td>
<td></td>
<td></td>
<td>AVIRIS-C, AVIRIS-NG, PRISM, HICO, MASTER, HyTES, ASTER</td>
<td>Inland lakes and ocean island lakes</td>
</tr>
<tr>
<td>Water-volcanic</td>
<td>TIR radiance, LST, Water Spectral Reflectance, emissivity</td>
<td>Terrestrial Spectral Reflectance</td>
<td>70</td>
<td>60</td>
<td>X</td>
<td></td>
<td></td>
<td>AVIRIS-C, Sentinel-2, WorldView</td>
<td></td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>Subproduct</th>
<th>Citations (including, but not limited to)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Organic Carbon (DOC)</td>
<td>Mannino et al. (2008); Fichot et al. (2015); Caño et al. (2018); Li et al. (2018)</td>
</tr>
<tr>
<td>Particulate Organic Carbon (POC)</td>
<td>Stramski et al. (2008); Mouw et al. (2016); Le et al. (2018)</td>
</tr>
<tr>
<td>Particulate Inorganic Carbon (PIC)</td>
<td>Sadeghi et al. (2012); Mitchell et al. (2017)</td>
</tr>
<tr>
<td>Suspended particulate matter (SPM)</td>
<td>Nechad et al. (2010); Han et al. (2016); Novoa et al. (2017); Daluwekkamal et al. (2020)</td>
</tr>
<tr>
<td>Dissolved Organic Matter (DOM)</td>
<td>Dong et al. (2013)</td>
</tr>
<tr>
<td>Chromophoric (or colored)</td>
<td>Dong et al. (2013)</td>
</tr>
<tr>
<td>Dissolved Organic Matter (CDOM):</td>
<td>Mannino et al. (2008); Zhu et al. (2011); Zhu and Yu (2013); Li et al. (2017); Caño et al. (2018); Hooker et al. (2020); Housekeeper et al. (2021)</td>
</tr>
<tr>
<td>Spectral CDOM absorption</td>
<td>Aurin et al. (2018); Caño et al. (2018)</td>
</tr>
<tr>
<td>CDOM spectral slope</td>
<td>Behrenfeld et al. (2005); Westberry and Behrenfeld (2014); Silsbe et al. (2016); Kahrup (2017)</td>
</tr>
<tr>
<td>Phytoplankton net primary production (NPP)</td>
<td>Lohrenz and Ca (2006); Friedrich and Oschlies (2009); Chen et al. (2019)</td>
</tr>
<tr>
<td>Partial pressure of carbon dioxide (pCO2)</td>
<td>Xi et al. (2015)</td>
</tr>
</tbody>
</table>

Table 5

<table>
<thead>
<tr>
<th>Subproduct</th>
<th>Citations (including, but not limited to)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water column constituents (simultaneous retrieval of algal and cyanobacterial pigments, suspended minerals, and pigment degradation products)</td>
<td>Lee et al. (2002); Maritorena et al. (2002); Ortiz et al. (2013); Ali et al. (2014); Lekki et al. (2017); Ortiz et al. (2017); Avouros and Ortiz (2019); Ortiz et al. (2019)</td>
</tr>
<tr>
<td>Chlorophyll-a concentration</td>
<td>Gilerson et al. (2010); Gurlin et al. (2011); Mathews (2011); Moses et al. (2012); Odermann et al. (2012a, 2012b); Pahlevan et al. (2020)</td>
</tr>
<tr>
<td>Phytodetoxinon accessory pigment concentration</td>
<td>Chase et al. (2017); Bracher et al. (2015); Devred et al. (2013); Qi et al. (2014); Wang et al. (2016)</td>
</tr>
<tr>
<td>Algal bloom indicators (general), and specifically:</td>
<td>Stumpf et al. (2013); Dierssen et al. (2015b); Kudela et al. (2015); Smith and Bernard (2020)</td>
</tr>
<tr>
<td>Noctiluca</td>
<td>Qi et al. (2019a, 2019b); Qi et al. (2020)</td>
</tr>
<tr>
<td>Trichodesmium</td>
<td>Hu et al. (2010); Dupouy et al. (2011); McKinnon (2015)</td>
</tr>
<tr>
<td>Karenia sp. Harmful Algal Blooms (red tides)</td>
<td>Hu et al. (2005); Wynne et al. (2005); Craig et al. (2006); Soto et al. (2016)</td>
</tr>
<tr>
<td>High biomass event detection (indicator of eutrophication)</td>
<td>Klemas (2012); Ryan et al. (2014)</td>
</tr>
<tr>
<td>Pseudo-nitzschia</td>
<td>Anderson et al. (2016)</td>
</tr>
<tr>
<td>Floating algae and other floating matters</td>
<td>See Table 8</td>
</tr>
<tr>
<td>Red tide - Coelodinium polyblastos</td>
<td>Ahn and Shinmugam (2006); Kim et al. (2016)</td>
</tr>
<tr>
<td>Algal bloom indicator (common methods):</td>
<td>Amin et al. (2009); Freitas and Dierssen (2019)</td>
</tr>
<tr>
<td>Red Band difference</td>
<td>Ryan et al. (2014); Smith and Bernard (2020)</td>
</tr>
<tr>
<td>Adaptive reflectance peak height</td>
<td>Bracher et al. (2009); Odermann et al. (2012a, 2012b); Palacios et al. (2015); Xi et al. (2015)</td>
</tr>
<tr>
<td>Spectral CDOM absorption</td>
<td>See Table 4</td>
</tr>
<tr>
<td>Dissolved Organic Carbon (DOC)</td>
<td>See Table 4</td>
</tr>
</tbody>
</table>
form surface scums (Qi et al., 2020). These include cyanobacterium
roalgae can float on the water surface, and some microalgae can also

measure of benthic reflectance to which standard classification methods

portional benthic composition (e.g., percent coral, sand, algae) or a
basic unknowns: water depth, water optical properties, and bottom

Subproducts for water column environments.

<table>
<thead>
<tr>
<th>Subproduct</th>
<th>Citations (including, but not limited to)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAI (floating algal index) or FV1 (floating vegetation index) to identify water surface anomalies</td>
<td>Gao and Li (2018)</td>
</tr>
<tr>
<td>Floating biota classification</td>
<td>Qi et al. (2020)</td>
</tr>
<tr>
<td>η (percent cover) of floating macroalgae</td>
<td>Wu et al. (2017); Wang et al. (2018)</td>
</tr>
<tr>
<td>σ (bloom biomass, g m-2) of floating macroalgae</td>
<td>Wu et al. (2017); Wang et al. (2018)</td>
</tr>
<tr>
<td>Flotsam, including micro- and macroplastics</td>
<td>Garaba and Dierssen (2018); Garaba et al. (2018); Biermann et al. (2020); Kikaki et al. (2020)</td>
</tr>
<tr>
<td>Floating pumice rafts</td>
<td>Jutzieler et al. (2014); Qi et al. (2020)</td>
</tr>
<tr>
<td>Oil type and thickness</td>
<td>Clark et al. (2010); Sun and Hu (2019); Li et al. (2019a, 2019b)</td>
</tr>
<tr>
<td>Water surface skin temperature</td>
<td>(see Section 2.1.1.2); Minnett et al. (2019)</td>
</tr>
</tbody>
</table>

Table 8
Products for water column environments.

<table>
<thead>
<tr>
<th>Subproduct</th>
<th>Citations (including, but not limited to)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inherent and Apparent Optical Properties (IOPs and AOPs such as absorption and scattering coefficients, diffuse attenuation coefficients)</td>
<td>Lee et al. (1999, 2002, 2009); Lai et al. (2018); Twardowski and Tonizzo (2018); Ganet et al. (2019); Pahlevan et al. (2021)</td>
</tr>
<tr>
<td>Bathymetry</td>
<td>Lee et al. (1999, 2010); Dekker et al. (2011); Thompson et al. (2017b); Barnes et al. (2018); Garcia et al. (2018, 2020); Li et al. (2019a, 2019b)</td>
</tr>
<tr>
<td>Salinity</td>
<td>Palacios et al. (2009); Urquhart et al. (2012); Chen and Hu et al. (2017)</td>
</tr>
<tr>
<td>Turbidity</td>
<td>Dogliotti et al. (2015); Knaeps et al. (2015)</td>
</tr>
</tbody>
</table>

Table 9
Volcanic and glacier lakes are represented by the following subproducts.

<table>
<thead>
<tr>
<th>Subproduct</th>
<th>Citations (including, but not limited to)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volcanic lake color composition</td>
<td>Oppenheimer (1997)</td>
</tr>
<tr>
<td>Volcanic and glacier lake temperature</td>
<td>Oppenheimer (1996); Oppenheimer (1997); Trunk and Bernard (2008); Ramsey and Harris (2013); Zhang et al. (2020a)</td>
</tr>
</tbody>
</table>

basic unknowns: water depth, water optical properties, and bottom reflectance. Algorithms typically generate either an indication of proportional benthic composition (e.g., percent coral, sand, algae) or a measure of benthic reflectance to which standard classification methods can be applied.

2.2.2.4. Water surface environment and hazards. Various types of macroalgae can float on the water surface, and some microalgae can also form surface scums (Qi et al., 2020). These include cyanobacterium Microcystis, Trichodesmium, green Noctiluca scintillans, red Noctiluca scintillans, Sargassum fluitans, Sargassum natans, Sargassum hornieri, Ulva prolifera, dead seagrass, and other aquatic plants, which includes several subproducts also listed in Table 5. Surface algae can be detected by VNIR reflectance but can be confounded by surrounding absorbing water optical properties and reflecting water column constituents. Other floating materials such as oil slicks, pumice rafts and water hazards such as flotsam have also been observed from spectral imagery (Hu et al., 2009; Clark et al., 2010; Jutzieler et al., 2014; Lu et al., 2020; Qi et al., 2020). Of particular importance are marine microplastics, macroplastics, and other forms of marine debris, yet due to their small size (relative to an image pixel), remote sensing detection is still at its infancy (Garaba et al., 2018; Biermann et al., 2020; Kikaki et al., 2020).

2.2.2.5. Water column environment. Water column environment refers to physical parameters affecting retrievals from the water column, with turbidity constituting a reformulation of entries in Tables 4 and 5.

2.2.2.6. Water – Volcanic and Glacier Lakes. Volcanic lakes (water lakes) often form in craters even in arid environments and can mask measurement of volcanic gas and ash emissions. Retrievals of turbidity, lake surface temperature, surface composition, albedo, stratification, biotic changes including algal blooms, and other changes of surface compositional characteristics, facilitate inference of volcanic emissions that are otherwise hidden from direct observation.

Glacier lakes are particularly sensitive to climate change and are useful indicators since many are spatially distant from direct anthropogenic influences. The changes in glacier lake surface area and temperature have been linked to regional climate changes and can be used to better understand glacial melting (Zhang et al., 2020a). In addition, surface algae biomass and biodiversity can also be an indicator of environmental and biochemical change (Ghunowa et al., 2019).

2.2.2.7. Wetlands. Remote sensing has been used to map wetland covers and differentiate wetland types for several decades (e.g., Townsend and Walsh, 2001; Simard et al., 2006; Han et al., 2018). Of these, statistical classification approaches are widely used and, as well, spectral-based pixel unmixing has been shown effective in quantifying wetland cover types at sub-pixel scale (Han et al., 2018). Many imaging spectroscopy and thermal imaging techniques used for terrestrial vegetation can be applied to emergent wetlands (Turpie et al., 2015b); however, the presence of water can complicate some methods, including nonlinear spectral mixing with an aquatic substrate affecting red-edge position (Turpie, 2013), the mixing between open water and emergent vegetation spectra suggesting finer spatial resolution, and the combined effect of specular reflectance (glint) and the emergent canopy BRDF (Turpie et al., 2015b). Approaches based on the use of the first or second order derivative of surface reflectance can effectively remove the effect of mild glint in wetlands. In forested wetlands, synergisms with synthetic aperture radar (SAR) can also aid with identification and correction for sub-canopy inundation (Lang et al., 2008; Lamb et al., 2019).

2.2.3. Geology

Over the past four decades, VSWIR imaging spectroscopy has been successfully applied to geologic and mineral deposit studies in well-exposed, mid-latitude areas at local scale (Coulter et al., 2007; Goetz, 2009; van der Meer et al., 2012; Swayne et al., 2014; Caday, 2016). VSWIR spectroscopy is key to identifying iron-rich minerals (e.g., goethite, hematite, and jarosite) and hydrous minerals (e.g., micas and clays) and defining mineral distribution patterns that are often products of hydrothermal alteration and which may be indicative of geologic processes and potential for mineral resources (Clark, 1999; Clark et al., 2003). Mineral maps can also be used to assess surface pH and metal leachability of mine waste and the potential of these materials to...
Table 10
The geology products possible from SBG, including their dependencies, view zenith angle (VZA) requirements, and heritage (values are not shown where no studies were reported to quantitatively define said limits).

<table>
<thead>
<tr>
<th>Products</th>
<th>Dependencies</th>
<th>External Data</th>
<th>Max SZA</th>
<th>Max VZA</th>
<th>VSWIR</th>
<th>MWIR</th>
<th>TIR</th>
<th>Mission/Instrument</th>
<th>Heritage</th>
<th>Spatial Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineralogy (including mixtures)</td>
<td>Terrestrial Spectral Reflectance, Fractional cover, emissivity</td>
<td>Digital Elevation, Spectral libraries</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>VIIRS, ASTER, Hyperion, Landsat, HyTES AHS</td>
<td>Global</td>
<td></td>
</tr>
<tr>
<td>Naturally occurring asbestos</td>
<td>Terrestrial Spectral Reflectance, Fractional cover</td>
<td>Lithologic and vegetation cover maps</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AVIRIS-C</td>
<td>Global</td>
<td></td>
</tr>
<tr>
<td>Acid mine drainage</td>
<td>Terrestrial Spectral Reflectance</td>
<td>Digital Elevation, spectral libraries</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AVIRIS-C</td>
<td>Global</td>
<td></td>
</tr>
<tr>
<td>Soils (texture, organic carbon, water content, clay mineralogy, degradation)</td>
<td>Terrestrial Spectral Reflectance, Fractional cover, emissivity</td>
<td>Elevation, veg communities Spectral libraries</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>AVIRIS, ASTER, Hyperion, Landsat, HyTES AHS</td>
<td>Global</td>
<td></td>
</tr>
<tr>
<td>Soil erosion</td>
<td>Terrestrial Spectral Reflectance, Fractional cover, emissivity</td>
<td>Elevation, veg communities Spectral libraries</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>AVIRIS, ASTER, Hyperion, Landsat.</td>
<td>Global</td>
<td></td>
</tr>
<tr>
<td>High-temperature volcanic and wildfire phenomena (thermal anomaly detection, fire and lava temperature and area)</td>
<td>VSWIR and MWIR (~4 μm) for high temps, TIR radiation for ambient temps, Terrestrial Spectral Reflectance, emissivity</td>
<td>Historical reflectance/emissivity, spectral libraries</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>AVIRIS, MASTER, HyTES, ASTER, MODIS, VIIRS, Hyperion PRISMA</td>
<td>Global</td>
<td></td>
</tr>
<tr>
<td>Volcanic SO₂ and Ash Emissions (volcanic plumes and clouds, SO₂ and ash content, CO₂ plumes)</td>
<td>TIR radiance (7-12 mm) to measure SO₂ and ash absorption/emission, -SWIR to measure aerosol scattering</td>
<td>Surface elevation and emissivity, Plume thickness and altitude, Profiles of atmospheric temperature and water vapor</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MASTER, HyTES, ASTER, MODIS, VIIRS, AIRS, SEVIRI, IASI</td>
<td>Global</td>
<td></td>
</tr>
<tr>
<td>Post-Event Monitoring</td>
<td>Terrestrial Spectral Reflectance, emissivity, surface temperature</td>
<td>Historical baseline</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contribute to acid mine drainage (Swayze et al., 2000). While VSWIR data are not effective in identifying rock forming minerals such as quartz, feldspars, and pyroxenes, multispectral TIR data are effective for making discriminations between these minerals (Hubbard et al., 2018). Airborne VSWIR imaging spectrometer and TIR multispectral data have been collected in diverse geologic terranes across the globe and applications have been expanding (Tukiainen and Thomassen, 2010; Bedini, 2012; Kokaly et al., 2013, 2018; Rogge et al., 2014; Black et al., 2016; Laakso et al., 2016; Graham et al., 2018).

2.2.3.1. Mineral mapping. Spectral feature comparison methods, such as Tetracorder (Clark et al., 2003; Swayze et al., 2003) and MICA (Material Identification and Characterization Algorithm; Kokaly, 2011) identify the spectrally dominant mineral(s) in each pixel of a data cube by comparing spectral features in its reflectance spectrum to absorption features in a reference spectral library of minerals. continuum removal is the technique used to isolate diagnostic absorption features from background spectral variations (Clark and Roush, 1984; Clark, 1999) in both the pixel and reference spectra. Following continuum removal, the coefficient of determination (r²) of a linear regression of these continuum-removed values is used as the metric to judge the degree of match (or fit) between the two spectra. In addition to identifying mineral components, estimation of mineral fractional abundance using imaging spectroscopy can be made using the spectral feature comparison methods outlined above. These methods produce a relative measure of absorption feature depth that has been interpreted as a proxy for mineral abundance or aerial fraction in a pixel (Clark, 1999; Clark et al., 2003). The EnGeoMAP 2.0 methodology (Mielke et al., 2016) extends the Tetracorder approach and the Processing Routines in IDL for Spectroscopic Measurements (PRISM) approach with the calculation of spatiostatistical gradients and the automated extraction of mineral anomalies according to geologic expert knowledge (Mielke et al., 2016).

Linear mixture analysis has been applied to estimate intimate (e.g., fine scale mixtures including multiple scattering) mixtures of minerals and rocks in lunar samples (Johnson et al., 1985). Multiple scattering and particle size effects result in nonlinear mineral mixtures, but can be linearized by conversion to single scattering albedo using the Hapke (1981) as shown by Johnson et al. (1992) for a series of minerals mixed in the laboratory and particle size mixtures from desert alluvial fans (Shipman and Adams, 1987), where the grain size is known. In validation of spectral unmixing techniques for minerals identification and abundance estimation, Kerekes et al. (2003) demonstrate the effectiveness of unconstrained linear demixing methods in comparison to an end-to-end radiometric transfer model, FASSP.

Rock formations are assemblages of minerals, whose small features may be lost in combination. In cases where small features are suspected, it may be better to compare rock spectra before continuum removal, using standard target detection techniques such as a foreground/background analysis (Smith et al., 1994), spectral matched filter (Stocker, 1990), constrained energy minimization (Farrand and Harsanyi, 1997), or an adaptive cosine estimator (Truslow et al., 2013).

2.2.3.2. Soil characterization. Soil erosion and degradation significantly impact food production and vegetation health (Ben-Dor et al., 2009). These, as well as soil texture, soil organic carbon, soil water content, nutrient content, and a range of other soil applications have strong
potential with imaging spectroscopy (Ben-Dor et al., 2009; Gupta, 2017). While the VSWIR is important for detecting organic components in soil as well as clay mineralogy, the TIR and MWIR range is also sensitive to soil organics (Hbirkou et al., 2012; Kopacková et al., 2017). Soil degradation such as wildfire-induced hydrophobicity (water repellent soils) has been mapped with imaging spectroscopy and spectral unmixing (Finley and Glenn, 2010). Numerous other studies have mapped bare soil properties (e.g., Lagacherie et al., 2008) relevant for agriculture and erosion monitoring. In some cases, strong narrow absorption features of minerals may be detected through significant vegetation cover, for example, Swayze et al. (2009) were able to detect serpentinite mineral absorptions despite 80% vegetation cover. However, separating the soil signal from imaging spectrometers can often be complicated by the presence of vegetation or litter cover (including crop residue), soil moisture, or soil surface roughness. Thus, to estimate soil organic carbon, residual spectral unmixing has been used to separate vegetation from soil (Bartholomeus et al., 2011), and a shadow correction factor has been employed to minimize effects of surface roughness (Denis et al., 2014). Likewise, soil texture mapping with imaging spectroscopy was improved using spectral indices for soil moisture corrections (Diek et al., 2019). Multi-temporal approaches (e.g., Diek et al., 2016) may also provide better area-wide soil mapping and are promising in the context of global imaging spectroscopy missions. The effectiveness of multi-temporal radiometric approaches using both VSWIR and TIR data in conjunction with DEM data was demonstrated by Dobos (1998) and Dobos et al. (2000). The Dobos work used AVHRR multispectral data over large regions, but the methods are readily extensible to imaging spectroscopy data. In addition to spectral unmixing approaches, empirical techniques such as partial least squares regression (PLSR, e.g., Bartholomeus et al., 2011) or geostatistical techniques for regional calibration (e.g., Hbirkou et al., 2012) are typically employed in soil characterization studies.

2.2.3.3. High-temperature phenomena. This suite includes algorithms targeting both wildfires and high-temperature volcanic phenomena, such as active/recent lava and pyroclastic flows. High temperature phenomena are characterized by high emitted radiation across the full range of wavelengths (VSWIR, MWIR, and TIR) covered by SBG. High temperature phenomena can be characterized by modeled temperatures, or through the modeled emissivity estimate known as Fire Radiative Power (FRP; Wooster et al., 2003) or Volcanic Radiative Power (VRP; Coppola et al., 2013). FRP is essential for understanding biomass burning, combustion efficiency, and emissions (Roberts et al., 2005; Vermote et al., 2009; Kaiser et al., 2012), while lava temperature and VRP are linked to lava effusion and cooling rates (Wright et al., 2010; Coppola et al., 2013). Temperature has been typically retrieved from coarser (kilometer-scale) spatial resolution data using two-source mixing models, which include a hot component representing fire or lava (assumed to be a blackbody emitting at a single temperature) and a background component (Dozier, 1981). Giglio and Kendall (2001) and Lombardo et al. (2012) examined the sensitivity of two-source temperature retrievals to a variety of assumptions for fire and lava, respectively.

An alternative approach for estimating fire or lava temperature is to rely on the magnitude and spectral shape of emitted radiance measured using imaging spectrometer data covering the VSWIR. Each measured pixel spectrum can be fit by a temperature dependent function or by a library of spectra modeled from a range of temperatures (Dennison et al., 2006; Wright et al., 2011). Scaling of this approach from AVIRIS data to SBG spatial resolution has been examined for fire (Matheson and Dennison, 2012), and spectral temperature modeling approaches are extensible to MWIR and TIR channels (Dennison and Matheson, 2011). FRP and VRP, in contrast, are approximations of emissance integrated over all wavelengths based on the relationship between emissance and radiance for a channel near 4 μm (Wooster et al., 2003). FRP is a standard product for MODIS, VIIRS, Sentinel-3, and even geostationary satellites (Wooster et al., 2012; Wooster et al., 2015; Giglio et al., 2016). SBG 4 μm and TIR channels would allow calculation of FRP/VRP with more spatial detail and facilitate scaling with more frequently available products from coarser resolution sensors. Due to SBG’s relatively fine spatial resolution, saturation is a significant concern for measuring fires or lava flows that may compose most of a pixel (Realmuto et al., 2015). Saturation thresholds for 4 μm and TIR channels will have to be carefully considered to enable creation of radiative power products.

2.2.3.4. Volcanic SO2 and ash emissions. The TIR spectra of sulfur dioxide (SO2) gas and volcanic ash (pulverized silicate rock) exhibit characteristic features that have long been used to map volcanic plumes and clouds (e.g., Prata, 1989a, 1989b; Realmuto et al., 1994, 1997; Wen and Rose, 1994; Prata and Bernardo, 2007; Prata and Prata, 2012; Realmuto and Berk, 2016; Prata and Lynch, 2019). In most situations, the plumes are detected in transmission, based on the attenuation of radiation passing through the plumes en route to the sensor. The origins of this radiation are the surface and atmosphere beneath the plume and, consequently, our estimations of gas and ash content require knowledge of the surface emissivity, topography, and profiles of atmospheric temperature and water vapor. These parameters initialize models of atmospheric emission and transmission radiative transfer models, which are then employed to estimate surface temperature and plume composition.

2.2.3.5. Atmospheric CH4 and CO2 emissions. SWIR channels proposed for SBG are particularly promising for detecting and retrieving concentrations for CH4 and CO2 and point source plumes. Individual CH4 (Thorpe et al., 2014; Frankenберг et al., 2016; Duren et al., 2019) and CO2 (Dennison et al., 2013; Thorpe et al., 2017) point source plumes have been mapped using airborne spectral imaging with moderate (5–10 nm) spectral resolution and high (1–16 m) spatial resolution. Thompson et al. (2016) mapped plumes from a natural gas well blowout using 10 nm spectral resolution and 30 m spatial resolution Hyperion data. Recent work has explored the potential for extending CH4 and CO2 point source imaging and concentration retrieval to the upcoming suite of space-based sensors: PRISMA, EnMAP, EMIT, SBG, and CHIME (Ayasse et al., 2019; Cusworth et al., 2019). Preliminary results from PRISMA observations of strong CO2 and CH4 emissions plumes are consistent with the performance estimated by Cusworth et al. (2019).

The OCO-2 atmospheric sounder measures fine spectral channels near 0.765 μm, 1.61 μm, and 2.06 μm. These data have been used to determine CO2 emitted by active volcanoes (Schwandner et al., 2017; Johnson et al., 2020; Queiêter et al., 2019), fires (Heymann et al., 2017), and industrial emissions (Nassar et al., 2017).

CO2 absorption features in the MWIR region have been less thoroughly investigated, but recent studies have been developed to understand the capability to use the absorption band at 4.8 μm to detect and measure the CO2 emissions from different point sources at high temperature as degassing from thermal active volcanoes (Romainiello et al., 2020).

2.2.4. Terrestrial vegetation

Imaging spectroscopy (although limited in spatial and temporal extents) has long been promoted for its potential to characterize vegetation with greater detail than multispectral broadband imagery, starting with studies that showed the sensitivity to foliage biochemicals such as lignin and nitrogen (Wessman et al., 1988) and capacity to classify detailed species composition (Martin et al., 1998; Roberts et al., 1998). The potential application of spectroscopic imagery for vegetation characterization grew out of a long and rich literature dating to the 1970s of using near-infrared spectroscopy (NIRS) to measure nutritional status of plant materials (Costrozzi et al., 2019) and comprehensive reviews of features in plant spectra related to foliar biochemistry by Curran (1989) and Elvidge (1990). Imaging spectroscopy throughout the VSWIR and TIR
has extensive utility for characterizing and monitoring natural (Asner et al., 2017a), agricultural (Berger et al., 2020b) and managed (e.g., grazing lands) ecosystems (Knox et al., 2011), as well as in experimental studies (Z. Wang et al., 2019).

Three main categories of algorithms for optical remote sensing of vegetation are (1) empirical methods that are based on the statistical relationship between full spectrum or a feature derived from spectrum (e.g., vegetation indices, derivatives), and include both parametric and nonparametric methods (often called “data-driven” methods) including machine learning, (2) physical methods based on the concept of radiative transfer models (RTMs), and (3) hybrid methods that combine RTMs, empirical methods, and external models of biological functions (e.g., Penman-Monteith) to take advantage of the fidelity in physical models and flexibility of statistical approaches. Verrelst et al. (2019) provide a comprehensive taxonomy of retrieval methods for vegetation properties from imaging spectroscopy data.

2.2.4.1. Preprocessing and intermediate transformations. Regardless of category, most vegetation retrieval algorithms require corrections for topography and BRDF, which varies with plant canopy architecture and light environment (Painter et al., 2013, 2016; Ustin, 2013; Gatebe and King, 2016; Wang et al., 2017). In particular, the retrieval of nadir BRDF-adjusted reflectance (or NBAR; Schaepman-Strub et al., 2006) is a necessary intermediate step for many vegetation algorithms. For example, models that utilize biophysical properties derived from imaging spectroscopy, such as vegetation albedo, need to minimize angular effects for accurate vegetation parameter estimation (Laurent et al., 2014; Weyermann et al., 2014, 2015). There is a vast literature on methods for BRDF (Wanner et al., 1995; Collins et al., 2016; Colgan et al., 2012; Schlapfer et al., 2015; Weyermann et al., 2015; Jensen et al., 2018) and topographic (Soenen et al., 2005) correction and their practical implementation (Singh et al., 2015). These corrections are necessary to allow for broad application of the algorithms across different plant types, topographic features, and acquisition dates; a full description of preprocessing steps may be found in Serbin and Townsend (2020).

Empirical methods for spectral quantification of vegetation attributes range from physiologically based indices of vegetation function (e.g., NDVI, NIRv, PRI, CCI; Gamon et al., 1992, 2016; Campbell et al., 2013) to statistical classifiers of plant distributions (Ustin and Gamon, 2010; Fassnacht et al., 2016; Meerdink et al., 2019) and predictive models of continuous properties (Asner and Martin, 2015; Serbin et al., 2015; Singh et al., 2015; R. Wang et al., 2019). Continuously measured spectra allow for descriptions of spectral shape which can be related to leaf or canopy characteristics. Of note, these approaches often involve the use of intermediate data transformations to either discriminate fine-detail spectral features (e.g., absorption features associated with a particular biochemical substance at a particular wavelength) or to describe spectral shape. Methods include first and second derivative reflectance (Blackburn, 1998; Campbell et al., 2013), pseudo-absorption (calculated as log1/(1/R)), vector normalization (Fei1hauer et al., 2010), and continuum removal (normalization of reflectance to local maxima across a spectral segment). For example, spectral feature analysis (SFA) uses continuum removal techniques to quantify characteristics of absorption features in the spectrum (Kokaly, 2011; Campbell et al., 2013; Huemmrich et al., 2017).

The characteristics of vegetation canopy reflectance observed in imaging spectroscopy data are also influenced by internal canopy structural properties, including leaf shape, angle and distribution, larger canopy structure (e.g., crown size, shape, clumping), and background reflectance (e.g., soil, litter layer). These effects can obscure or confound the signal of leaf properties of interest. For empirical methods in particular, the same set of intermediate transformations also can dampen the effect of brightness variations in the data associated with structural differences in the canopy or background reflectance that may be a source of noise (Hall et al., 1990; Elvidge and Chen, 1995; Fei1hauer et al., 2010; Singh et al., 2015). Likewise, the directional area scattering factor (DASF) correction of Knyazikhin et al. (2013) uses the concept of recollision probability to reduce canopy-structure effects in imaging spectroscopy data. However, in either case, development of models that capture the larger range of trait and structural complexity can also help to overcome these issues by accounting, empirically, for the various possible drivers of spectral variation (Schweiger, 2020) and allow the algorithm to separate influences on spectral albedo driven by structure from the changes related to the leaf functional trait of interest.

2.2.4.2. Plant functional traits. Plant functional traits, such as pigment and nutrient concentrations, metabolic capacity, and leaf/canopy morphology, may be retrieved from spectral observations at various scales (Serbin and Townsend, 2020). Imaging spectroscopy has been proposed for detecting many traits, and Table 12 provides a subset of traits that have been suggested for SBG, grouped by their functional roles. At the leaf scale, a narrow set of biochemical and morphological traits (especially pigments and water content) can be estimated by inversion of semi-mechanistic, physically based leaf radiative transfer models (RTMs; Di Vittorio, 2009; Shiklomanov et al., 2016; Péret et al., 2017). These approaches are computationally intensive and, at present, not readily implementable for spectroscopic imagery collected at the volumes generated for global-scale mapping such as SBG. Many traits of interest are not in current formulations of RTMs due to, among other considerations, lack of distinctive spectral features, inclusion could dramatically increase model complexity, or simply because the dimensionality of the data is poorly understood before the model run. Finally, RTMs can be limiting due to the ancillary information needed but not available to the models (such as estimates of leaf area index or soil background reflectance). However, the use of RTM emulators (Verrelst et al., 2017) or hybrid machine-learning methods (Berger et al., 2020a) may eventually reduce the computational limitation.

Regression against vegetation indices is commonly used, especially for pigments and other traits with unique spectral absorption features (Gitelson and Solovchenko, 2018), but least squares regression is not normally recommended for traits that are expressed throughout the spectrum due to the potential for spurious correlations (Grossman et al., 1996). More typically, partial least squares regression (PLSR, Wold et al., 2001), a chemometric method that utilizes the original spectral measurements (or transformed spectra), is designed for robust implementation where the number of predictors (spectral channels) relative to observations is high. PLSR methods derive model coefficients, or channel weights, based on a partial least squares regression between spectroscopic measurements and laboratory measurements of various chemical and constitutional traits of the same sample (Serbin et al., 2014). The derived trait estimates can then be linked to imaging spectroscopy datasets for prediction and mapping (Singh et al., 2015). Additional methods gaining traction include Gaussian process regression (Verrelst et al., 2013; Z. Wang et al., 2019), which in comparison to PLSR has the benefit of directly estimating uncertainties, at the cost of higher computational needs and lower direct interpretability.

A very large number of traits are commonly estimated through statistical techniques such as PLSR, most notably leaf mass per area (LMA) and nitrogen concentration (indicators of plant tradeoffs between investment in photosynthesis/growth vs. leaf structure), chlorophyll and other pigments, water and lignin (a structural compound) (Coops et al., 2003; Townsend et al., 2003; Martin et al., 2018; Asner and Martin, 2015; Singh et al., 2015; Wang et al., 2019, 2020). A wider range of plant compounds have also been mapped from imaging spectroscopy, including phenolics (Kokaly et al., 2009) and other plant defensive compounds (Madritch et al., 2014), macronutrients (e.g., Ca, Mg, K), nonstructural carbohydrates (Asner and Martin, 2015) and structural carbohydrates associated with plant growth and defense (Asner et al., 2015; Singh et al., 2015), including in forests (Asner et al., 2015).
grasslands (Z. Wang et al., 2019) and across multiple physiognomic vegetation types (Wang et al., 2020). In addition, recent work has also illustrated the utility of combining passive optical imaging spectroscopy and active lidar for mapping total canopy estimates of nitrogen and LMA (e.g., Chlus et al., 2020; Kamoske et al., 2020).

Imaging spectroscopy has also been used to map physiological traits that are not specific chemical or morphological characteristics of vegetation, but rather can be inferred from the spectra due to correlation with the traits hypothesized to control them. These include light use efficiency (Huemmrich et al., 2019), photosynthetic carboxylation capacity and its temperature sensitivity (Vcmax and Ev; Serbin et al., 2015), and ecosystem production (Campbell et al., 2013; Huemmrich et al., 2017; Dubov et al., 2018). Imaging spectroscopy has been shown to be sensitive to δ13C and δ15N, measures of isotopic fractionation that are indicators of water and nitrogen availability, respectively (Singh et al., 2015; Wang et al., 2020).

The range of traits and conditions of measurement that have been estimated using leaf level spectral data is much greater than what has been estimated from imaging data (e.g., Serbin et al., 2012, 2019; Couture et al., 2016; Wu et al., 2019), suggesting the need for additional data and research at the image scale to assess the full range of vegetation traits that can be reliably retrieved from SBG-like imagery. Note that traits can be estimated both at the top-of-canopy leaf level or the canopy level and can be measured on an area or mass basis. Different retrievals may have different assumptions about knowledge of canopy biomass or leaf area for accurate retrieval.

While not strictly a trait, we have listed the fraction of Absorbed Photosynthetically Active Radiation (APAR) alongside since this describes the photosynthetic processes by describing the light absorption over an integrated plant canopy, which is directly related to primary productivity (Q. Zhang et al., 2012).

2.2.4.3. Plant species. With sufficient spatial resolution, certain plant species or genera can be mapped directly from the spectral features of grasses (Pottier et al., 2014), herbs, and tree canopies (Baldeck et al., 2015; Fassnacht et al., 2016; Kattenborn et al., 2019). Species mapping has been extended to characterizing communities of mixes of species in a variety of ecosystems including grasslands (Feilhauer et al., 2011; Rossi et al., 2020), bogs/fens (Schmidtlein et al., 2007), temperate (Foster and Townsend, 2004; Gu et al., 2015) and tropical forests (Asner et al., 2017a). Because of the rich spectral information in imaging spectroscopy datasets, endmember analysis is widely used to map both species and community structures (Roberts et al., 1998). Other methods use statistical methods such as conditional random forests (Pottier et al., 2014), and biased support vector machines (Baldeck et al., 2015) to map vegetation species. Approaches combining remote sensing and species distribution models are continuously emerging (Randin et al., 2020). While much of the fine spatial resolution airborne vegetation remote sensing has focused on species mapping, at larger spatial extents mapping plant functional types (PFTs; groups of species that are physiologically similar) becomes more feasible, for example, discrimination of C3 and C4 dominated grasslands (Huemmrich et al., 2018) or lianas within tropical forests (Foster et al., 2008; Marvin et al., 2016). Uncertainty in PFT distributions is also a critical source of uncertainty in Earth system models (ESMs) (Wullschleger et al., 2014; Poulier et al., 2015). As Earth system model representations of plant functional groups become more complex (Fisher et al., 2017), more nuanced mapping of PFTs will be essential (Wullschleger et al., 2014). With global coverage of imaging spectroscopy data, SBG will provide input for significant improvements in these models.

2.2.4.4. Diversity. Indicators of spectral diversity derived from airborne and ground-based imaging spectrometers have proven useful in modeling multi-scale taxonomic, phylogenetic, and functional diversity of vegetation (Rocchini et al., 2016; Wang and Gamon, 2019; Cavender-Bares et al., 2020; Thonicke et al., 2020). Measures of diversity derived from imagery provide indirect metrics of diversity, and as such most approaches involve linkage of image-derived metrics to ground-based measures of diversity from field surveys via statistical methods. This points to the necessity of ground metrics to interpret image-derived diversity. There are two basic approaches to diversity mapping using spectroscopic data: (1) diversity metrics based on derived products, such as foliar traits (see 2.4.2.2) (e.g., Schneider et al., 2017; Zheng et al., 2021) or (2) methods based on spectral dissimilarity (e.g., Fèret and de Boissieu, 2020). The mapping of taxonomic diversity, which includes species richness and abundance-based diversity measures such as the Shannon index (H′), has been conducted across tropical forested landscapes (Fèret and Asner, 2014), North American prairie landscapes (Wang et al., 2016), and regional environmental gradients (Somers et al., 2015). Given the large number of vascular plant species on Earth, there is increasing interest in characterizing functional diversity (e.g., evenness, divergence, richness) as a metric relevant to the prediction of ecosystem processes and taxonomic diversity (Schneider et al., 2017; Durán et al., 2019; Zheng et al., 2021), and as a basis for conservation planning (Asner et al., 2017a). Recent studies have also extended taxonomic diversity mapping to assess genetic and phylogenetic diversity in a variety of experimental settings, including aspen forests (Madritch et al., 2014), temperate forests (Czyz et al., 2020), temperate grasslands (Schweiger et al., 2018), tropical oak forests (Cavender-Bares et al., 2016), and at large scales across several biomes (Meireles et al., 2020).

While the inherent high dimensionality of imaging spectroscopy data enables characterization of multiple metrics of diversity, both species and diversity mapping are sensitive to the size of the organism of interest, and hence the pixel size of imaging. There is an extensive literature examining the sensitivity of spectral diversity to spatial scales and species composition (Wang et al., 2018), sensor characteristics and multi-scale diversity mapping (Hakkenberg et al., 2018), and to validate spectral diversity hypotheses (Dahlin, 2016; Gholizadeh et al., 2019).

2.2.4.5. Evapotranspiration. Evapotranspiration (ET) is a key bioclimatic variable, linking water, energy, and carbon cycles (Fisher et al., 2017). ET is controlled by water (soil moisture, atmospheric moisture), energy (net radiation, temperature), and plants (stomatal conductance, leaf area index, plant habit). As such, ET can be retrieved from space through the combination of observables related to water, energy, and plant canopies. Algorithms to retrieve ET synthesize thermal data to capture energy dynamics and infer water, and spectral data to characterize crown characteristics. Tradeoffs among various models balance spatial and temporal scale of interests, which is particularly important because ET exhibits high diurnal variability. Existing remote sensing models of ET include: Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) (Fisher et al., 2008); Global Land Evaporation Amsterdam Model (GLEAM) (Miralles et al., 2011); Disaggregated Atmosphere Land-Exchange model (DisALEXI) (Anderson et al., 2007); Penman-Monteith Mu (PM-Mu) (Mu et al., 2011); Mapping ET with high Resolution and Internalized Calibration (METRIC) (Allen et al., 2007); Surface Energy Balance System (SEBS) (Su, 2002); and Surface Energy Balance Algorithm over Land (SEBAL) (Bastiaanssen et al., 1998).

For high accuracy, remote sensing algorithms for ET require ancillary datasets to characterize interrelated drivers associated with weather, climate, and especially light availability. Remote sensing algorithms to map ET at large scales are especially sensitive to estimates of net radiation, which is typically derived from radiative, atmospheric and surface data (Fisher et al., 2008, 2009; Jiménez et al., 2011; Polhams et al., 2013; Badgley et al., 2015). Meteorological data are needed to define microclimates at medium scales (<5 km) and are essential at high temporal resolution to capture rapid changes in weather (Anderson et al., 1997; Allen et al., 2007; Fisher et al., 2008; Allen et al., 2011). At the field scale (e.g., <100 m), land surface temperature captures fine
spatial dynamics over heterogeneous land cover, which is important in the partitioning of energy. At all scales, vegetation dynamics are required and are especially important during rapid vegetation change, such as during green-up, crop harvest and senescence (Anderson et al., 1997; Allen et al., 2007; Fisher et al., 2008; Allen et al., 2011; Polhamus et al., 2013).

ECOSTRESS serves as a precursor to the SBG TIR instrument, acquiring imagery in five channels in the range 8–12 μm from the International Space Station from 2018 to 2021. In combination with ancillary VNIR and meteorological data, it produces standard ET products, and studies have shown that high quality land surface temperature (<1 K) is required for an ET accuracy <10% (Cawse-Nicholson et al., 2020; Fisher et al., 2020).

2.2.4.6. Photo- and non-photosynthetic vegetation characterization (fractional cover). Photosynthetic (green) vegetation can be discriminated from non-photosynthetic vegetation (i.e., senesced foliage as well as wood) primarily through detection of pronounced ligno-cellulose absorption features in the SWIR that are absent from soils (Roberts et al., 1998; Nagler et al., 2000; Daughtry et al., 2006; Guerschman et al., 2009; Dennison et al., 2019). Spectral fitting, mixture models, and spectral vegetation indices (for a review see Dennison et al., 2019) have been developed that facilitate accurate discrimination between crop residues and bare soil surfaces, better capturing differing agricultural practices, and carbon balance in agricultural landscapes (Daughtry et al., 2006). The ratio of non-photosynthetic vegetation to soil is also an important indicator of pasture quality in grazed landscapes in the tropics (Numata et al., 2008).

2.2.4.7. Temporal unmixing. Different vegetation types display distinct temporal patterns as a function of photoperiod, season length, landscape, and spatiotemporal characterization (Sousa and Davis, 2020). The dense time series of multispectral instruments such as MODIS, Landsat, and Sentinel have enabled the characterization and subpixel unmixing of vegetation types using temporal signatures (Lobell and Asner, 2004; Ozdogan, 2010; Sousa and Davis, 2020; Garonna et al., 2016). With the advances of SBG, a regular time series of spectroscopic information will enable similar analysis in both the spectral and temporal domain, as well as combining simultaneous effects of the Earth system (e.g., snow and vegetation; Xie et al., 2018), previously treated separately. Chiusi et al. (2019) have demonstrated relationships between environmental variables and spatiotemporal patterns in foliar traits derived from airborne spectroscopic data.

3. Caveats and considerations

A global suite of imaging spectroscopy and thermal imagery is needed to fully understand the composition, functioning, and health of ecosystems, including snow, volcanoes, aquatic environments, and terrestrial vegetation. In combination with active instruments, such as lidar and synthetic aperture radar, as well as passive radar and a range of multispectral data with high temporal or spatial resolution and long measurement legacies, the SBG mission will be an essential component of a multi-sensor system to fully characterize composition and structure of the Earth’s surface as well as the processes driving changes at the Earth’s surface. Future work is needed to optimally combine structural data from anticipated concurrent active sensors—such as NISAR, ROSE-L, BIOMASS, and the Surface Deformation and Change (SDC) Designated Observable—with SBG products such as vegetation chemistry, composition, and functional traits. The combination of products capturing coincident structure, function, and composition will enable an improved understanding of global ecosystems but will require algorithms that use both active and passive observations.

In addition, other spectrometers and thermal radiometers may overlap with the SBG mission lifetime, including the European Space Agency’s (ESA) Copernicus Hyperspectral Imaging Mission (CHIME; Nieke and Rast, 2019) and Land Surface Temperature Monitoring (LSTM; Koetz et al., 2019), and the joint French and Indian Space Agencies’ Thermal InfraRed Imaging Satellite for High-resolution Natural resource Assessment (TRISHNA; Lagouarde et al., 2019), as well as multispectral instruments such as Landsat and Sentinel-2. The global Harmonized Landsat Sentinel-2 (HLS) dataset (Claverie et al., 2018) provides a significant improvement in revisit time—2–3 days for HLS compared to 16 days for Landsat—which will be significant for hazard monitoring and agricultural applications, and illustrates the benefit of harmonized datasets. Similarly, harmonization of CHIME and SBG-VSWIR could reduce the revisit period from 16 to 21 days to ~8 days while harmonization of LSTM, TRISHNA, and SBG-TIR could result in daily or sub-daily global revisits. The HLS workflow has to account for differences in solar and view geometry, as well as small differences in spectral bands, and the harmonization has to be done at radiance level. Coordination between missions during development will enable the implementation of complementary atmospheric, BRDF, solar zenith angle, and other corrections, and thus rapid harmonization of higher-level products such as a subset of products drawn from Tables 1-12. A proposed 16-day revisit for the SBG VSWIR could realistically return only one cloud-free observation per month, or significantly fewer in cloudy regions (Schimel et al., 2020), and harmonization with other instruments will enable increased revisit and improved science return.

Scientists requiring hyperspectral spectroscopic data have typically relied on airborne data, and as a result we have large gaps in spatial coverage and limited capability to monitor changes over time (Schimel et al., 2020). A global mission such as SBG will produce large data volumes, and higher-level products encompassed by some of the algorithms presented here will be needed to disseminate relevant information to users. To that end, existing research code will need to be transferred to a robust processing workflow that will require algorithms that are many orders of magnitude faster than the current state of the art. This will likely require emulators or other forms of machine learning, and the accuracy and uncertainty of these compared to the physical or other foundational models need to be well quantified. While the community requires low-latency data processing, the data processing pipelines will also need to plan for simultaneous reprocessing to account for algorithm improvements and updates.

Despite the large overall data volumes, a 30 m pixel in the VSWIR and 60 m pixel in the TIR is several times larger than some of the features of importance to this mission. For example, individual tree crowns are generally much smaller than 30 m in breadth, and, as such, algorithms designed for high-resolution airborne data may no longer be applicable (Schimel et al., 2020). The algorithms that are to be developed and applied to SBG data will certainly start from the legacies of existing algorithms but will likely need to be adapted to accommodate differences that arise from spaceborne acquisitions that are global in scope. A globally applicable algorithm must be free from geographic or latitudinal bias and provide rigorous uncertainty quantification. This will require global calibration and validation. Certain region-specific algorithms may be more accurate than a globally optimized product, but a global product will enable information to be transferred to community members without the technical ability to implement specialized algorithms. SBG should provide a flexible processing system that (1) allows users to interact with the workflow at any stage, (2) allows researchers to test alternative approaches, and (3) accommodates users from all levels of technical expertise.

Users in various communities need to become accustomed to SBG-scale data products and develop the tools to manipulate and analyze them efficiently. Early distribution of SBG-like products will accelerate community readiness to enable early exploitation of SBG data for science and applications as well as to provide critical feedback to the Algorithms Working Group on limitations of the products. Existing instruments such as DESIS, HISUI, EnMAP, EMIT, PACE, GLIMMR, and ECOSTRESS should be used as pathfinders and to establish the time series that will
allow SBG to address issues of decadal scale change. Despite these constraints, SBG will offer an unprecedented dataset for the understanding of the Earth’s surface, biology, and geology.

4. Discussion

We have compiled a list of algorithms developed by researchers specializing in VSWIR hyperspectral and multispectral thermal IR imagery that address the SBG core product needs. These algorithms vary in their maturity, including the geographic scope, the range of viewing conditions and sensor characteristics under which they work well. Following a survey of the maturity of the algorithms and their responsiveness to science questions listed as “most” and “very important” in the Decadal Survey, the SBG Algorithm team will recommend a subset of algorithms to operationalize. This will be subject to technical review and validation in addition to the proposed product generation and uncertainty quantification.

5. Conclusions

We have summarized the state-of-the-practice algorithms for a range of products that will answer the very important and most important science questions assigned to SBG in the Decadal Survey (NASEM, 2018):

- “How is the water cycle changing? Are changes in evapotranspiration and precipitation accelerating, with greater rates of evapotranspiration and thereby precipitation, and how are these changes expressed in the space-time distribution of rainfall, snowfall, evapotranspiration, and the frequency and magnitude of extremes such as droughts and floods?”;
- “How do anthropogenic changes in climate, land use, water use, and water storage, interact and modify the water and energy cycles locally, regionally and globally and what are the short- and long-term consequences?”;
- “How does the water cycle interact with other Earth system processes to change the predictability and impacts of hazardous events and hazard chains (e.g., floods, wildfires, landslides, coastal loss, subsidence, droughts, human health, and ecosystem health), and how do we improve preparedness and mitigation of water-related extreme events?”;
- “How do spatial variations in surface characteristics (influencing ocean and atmospheric dynamics, thermal inertia, and water) modify transfer between domains (air, ocean, land, cryosphere) and thereby influence weather and air quality?”;
- “What are the structure, function, and biodiversity of Earth’s ecosystems, and how and why are they changing in time and space?”;
- “What are the fluxes (of carbon, water, nutrients, and energy) between ecosystems and the atmosphere, the ocean, and the solid Earth, and how and why are they changing?”;

In addition, almost all of the proposed algorithms depend on atmospheric corrections, and many require additional processing (such as HRDF or BRDF corrections) that have implicit assumptions and involve model fitting. SBG will require an adequate characterization of correction uncertainties to characterize derived and higher-level product uncertainties (via error propagation), a practice that is currently not common, but which will be vital for downstream users of the data.

Prior to the anticipated launch of SBG, there will be an intensive effort by the SBG Algorithm Team to further mature and operationalize several of the algorithms outlined in this review and their supporting workflows. A full description of the operational concept for SBG products is premature and beyond the scope of this paper, but a full end-to-end data system is envisioned, with accompanying calibration and validation in addition to the proposed product generation and uncertainty quantification.
This effort has involved the synthesis of the findings of more than 130 scientists. While the list is comprehensive, it is not complete. However, it provides a framework for additional algorithm development and maturation activities in the lead up to the SBG and other planned global missions such as ESA’s CHIME and LSTM and the French-Indian multispectral and multi-band thermal mission, TRISHNA.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Support to the lead authors (Cawse-Nicholson and Townsend) was provided by NASA Headquarters and the Jet Propulsion Laboratory, California Institute of Technology. This study was also supported by the Space-based Imaging Spectroscopy and Thermal (SISTER) pathfinder, part of the Surface Biology and Geology (SBG) project, a NASA Earth Science Directed Observable. Adam Erickson’s contribution was supported by an appointment to the NASA Postdoctoral Program at NASA Goddard Space Flight Center, administered by Universities Space Research Association under contract with NASA. Robert Frouin was supported by NASA’s Ocean Biology and Biogeochemistry Program under various grants. The contribution of Michael E. Schaepman is supported by the University of Zurich Research Priority Programme on Global Change and Biodiversity (URPP GCB). Shawn Serbin was supported by the Next-Generation Ecosystem Experiments in the Arctic (NGEE-Arctic) and tropics (NGEE-Tropics) that are supported by the Office of Biological and Environmental Research in the Department of Energy, Office of Science, and through the U.S. DOE contract No. DE-SC0012704 to Brookhaven National Laboratory. The authors thank the many more than 130 researchers, who participated in telecons and webinars to contribute to the contents of this paper. Two anonymous reviewers provided invaluable insight and recommendations, and we are grateful for their time and suggestions. Part of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. © 2021 California Institute of Technology. Government sponsorship is acknowledged.

References

Goetz, A.F.H., 2009. Three decades of hyperspectral remote sensing of the Earth: A

K. Cawse-Nicholson et al., 2021. Characterizing the spectral range within global

Chowdhary, J., et al., 2019. Atmospheric correction of satellite ocean-color imagery

