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Understanding post-fire forest recovery is pivotal to the study of forest dynamics and global carbon cycle. Field-
based studies indicated a convex response of forest recovery rate to burn severity at the individual tree level,
related with fire-induced tree mortality; however, these findings were constrained in spatial/temporal extents,
while not detectable by traditional optical remote sensing studies, largely attributing to the contaminated effect
from understory recovery. Here, we examined whether the combined use of multi-sensor remote sensing tech-
niques (i.e., 1 m simultaneous airborne imaging spectroscopy and LiDAR and 2 m satellite multi-spectral ima-
gery) to separate canopy recovery from understory recovery would enable to quantify post-fire forest recovery
rate spanning a large gradient in burn severity over large-scales. Our study was conducted in a mixed pine-oak
forest in Long Island, NY, three years after a top-killing fire. Our studies remotely detected an initial increase and
then decline of forest recovery rate to burn severity across the burned area, with a maximum canopy area-based
recovery rate of 10% per year at moderate forest burn severity class. More intriguingly, such remotely detected
convex relationships also held at species level, with pine trees being more resilient to high burn severity and
having a higher maximum recovery rate (12% per year) than oak trees (4% per year). These results are one of the
first quantitative evidences showing the effects of fire adaptive strategies on post-fire forest recovery, derived
from relatively large spatial-temporal scales. Our study thus provides the methodological advance to link multi-
sensor remote sensing techniques to monitor forest dynamics in a spatially explicit manner over large-scales,
with important implications for fire-related forest management and constraining/benchmarking fire effect
schemes in ecological process models.

1. Introduction

Global fire emissions are an annual carbon flux of around 2.1 PgC
per year, equivalent to 50%-200% of annual terrestrial carbon sink
(Piao et al., 2009; van der Werf et al., 2009; van der Werf et al., 2010).
Among these fire emissions, 35% are forest-related (van der Werf et al.,
2009; van der Werf et al., 2010). Post-fire forest recovery, a succes-
sional process towards the pre-fire structure and function, or to an al-
ternative state, can lead to a significant carbon sink, generating offsets
to the large fire-induced carbon losses (Amiro et al., 2003; Hicke et al.,
2003; Turner et al., 2016). Such post-fire forest recovery is tightly
connected to burn severity, a metric of fire effects on forest composition
and structure, showing strong spatial heterogeneity across the
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landscape (Bolton et al., 2015; Jin et al., 2012; Morgan et al., 2014;
Turner et al., 1997). Understanding how forests recover from dis-
turbances such as fire, especially the quantitative relationship between
forest recovery rate and burn severity, has long been a central focus for
forest ecology and global carbon cycle studies, and is becoming a
pressing issue for global change biologists, particularly with increasing
frequencies and intensities of fire disturbances under the projected drier
and warmer future climate (Bowman et al., 2009; Dale et al., 2001;
Harvey et al., 2014; Meng et al., 2015; Turner, 2010; Westerling et al.,
2006; Yang et al., 2015; Yang et al., 2017).

Separating post-fire forest canopy recovery from understory re-
covery is scientifically important, having broad implications for forest
management (Castro et al., 2011; Kotliar et al., 2002), understanding
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fire effects on the terrestrial water cycle (Lewis et al., 2006; Mayor
et al., 2007), and for simulating the global carbon cycle in Earth System
Models (Fisher et al., 2015; Fisher et al., 2017). Specifically, understory
(e.g., shrub, herbaceous, and woody) vegetation can recover quickly
after the fire even with high burn severity (Figs. S1 & S2), however this
vegetation is not the same, functionally and structurally, as the pre-fire
canopy, having large differences in lifeform, productivity and capacity
for carbon and water storage (Little and Moore, 1949; Swanson et al.,
2011). Thus here we refer post-fire forest recovery to the increase in
tree canopy areas during the post-fire period. As we focus on quanti-
fications of post-fire tree canopy area recovery in this study, we define
burn severity as the extent of tree canopy area loss by fire following
previous studies (Meng et al., 2017; Quintano et al., 2013).

Several previous field-based studies have been conducted to explore
the relationship between burn severity and short-term (< 5 years) post-
fire forest responses (Balch et al., 2011; Brando et al., 2012; Smith
et al., 2016; Sparks et al., 2016). Short-term post-fire recovery is critical
for the long-term forest regeneration and can provide important in-
sights about forest dynamics (Mantgem et al., 2006; Meng et al., 2015;
Swanson et al., 2011). Although these field-based studies are primarily
experiment-based, focusing on the threshold of burn severity in tree
mortality at individual tree or coarse stand-scale not directly post-fire
forest recovery, their results indicate trees or seedlings canopy areas
can recover most from intermediate burn severity before reaching the
threshold of burn severity in tree mortality (Brando et al., 2012; Sparks
et al., 2016). These results are consistent with forest recovery studies in
twenty-four years after the Greater Yellowstone fire with high resolu-
tion satellite imagery (see Fig. 8 in Zhao et al., 2016). Additionally,
these experiment-based fire studies provide comparable results to other
field-based studies examining various other disturbance drivers (e.g.,
herbivory, drought, and hurricane), also finding that forests recover
most under intermediate disturbance impacts during the short-term
period, with no or little forest recovery rate under very high dis-
turbance extent (Hoogesteger and Karlsson, 1992; Lloret et al., 2004;
Rich et al., 2007). These field-based studies thus collectively suggest
that there exist convex relationships between post-disturbance forest
recovery rate and disturbance severity during the short-term period
(Fig. 1a).

In spite of the community canopy level relationship between forest
recovery rate and burn severity, previous field-based studies suggest
that the post-fire forest response can also vary across species (Bond and
Keeley, 2005; Franklin et al., 2006; Jordan et al., 2003; e.g., Fig. 1a).
Such variations in post-fire responses most likely arise from species-
specific fire adaptive strategies (Keeley et al., 2011; Pausas and Keeley,
2014). For example, in a mixed pine-oak forest, the dominant pine has
thick fire-resilient bark with the ability to recover from crown regrowth
or epicormic resprouting; oak stems are more vulnerable to burn heat
but can have vigorous sprouts from the root collars (Jordan et al., 2003;
Little, 1998). Although these field-based studies shed important insights
as to the post-fire recovery process, these studies are laborious, time-
consuming, and often only cover small areas given the time and expense
of making the observations, and thus are constrained to very limit
spatial and temporal extents. Moreover, disturbances often happen in
remote regions (e.g., Meng et al., 2015; Serbin et al., 2013) and as such
can be difficult to reach for in-situ measurements.

Remote sensing can provide an efficient way for forest fire-related
studies over large spatial and temporal scales, and importantly in re-
mote areas (Lentile et al., 2006; White et al., 1996; Zhao et al., 2016).
Many studies have used remote sensing measurements to examine how
ecosystem-scale post-fire forests recover from different burn severity
across a range of biomes, including Boreal (e.g., Goetz et al., 2006; Jin
et al., 2012; Serbin et al., 2013), Mediterranean (e.g., Meng et al., 2015;
Storey et al., 2016), and Tropical (e.g., Wilson et al., 2015). These
previous remote sensing studies primarily relied on using broadband
spectral features within the red, near-infrared (NIR), and shortwave
near-infrared (SWIR) regions, typically employing spectral vegetation
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indices (SVIs), such as the Normalized Difference Vegetation Index
(NDVI) at medium to coarse spatial scales (i.e., 15m to 1 km), to track
post-fire vegetation recovery (e.g., Epting and Verbyla, 2005; Goetz
et al., 2006; Lee and Chow, 2015; Storey et al., 2016). However, SVIs
such as NDVI can saturate at a relatively low leaf area index (Myneni
et al.,, 1997) and the observed signal in medium to coarse resolution
satellite imagery can be influenced by the rapid understory recovery
leading to a misinterpretation of the recovery patterns (e.g., Figs. S1 &
S2; Meng et al., 2015; Serbin et al., 2013), and as such cannot suffi-
ciently separate post-fire canopy from understory recovery (Bolton
et al., 2015; Serbin et al., 2013; Meng et al., 2015). This results in an
incorrect or apparent recovery trend suggesting a positive increasing
recovery rate with burn severity (Fig. 1b) that is not matched in field
observations (Fig. 1a, Figs. S1 & S2). In particular, very high burn se-
verity fires create large canopy gaps and enhance light availability for
understory, facilitating rapid understory growth (Serbin et al., 2013;
Bartels et al., 2016). As such, traditional SVIs-based methods tended to
overestimate the short-term post-fire forest recovery rate, especially at
high burn severity (Meng et al., 2015; Fig. S2), and can lead to an
unrealistic relationship between burn severity and post-fire forest re-
covery rate (Fig. 1b). Additionally, such remote sensing-based studies
are often constrained in their spatial resolution (=30 m) to characterize
the patchy post-fire landscapes with strong spatial heterogeneity, as
post-fire forest structural characteristics and the fire-induced ecological
responses often vary at very high spatial resolution (VHR, i.e., < 5m)
(Alonzo et al., 2017; Meng et al., 2017). Thus these studies cannot meet
the increasing demand for conducting operational forest management
and studying species-specific post-fire forest responses (Kolden et al.,
2012; Meng et al., 2017).

The use of multi-sensor remote sensing observations together could
provide new and unique opportunities to help bridge these knowledge
gaps (Asner et al., 2017; Cook et al., 2013; Meng et al., 2017). For
example, sub-orbital (i.e., airborne) remote sensing platforms, lever-
aging imaging spectroscopy (IS, i.e., passive high-spectral-resolution of
“hyperspectral” reflectance) and Light Detection and Ranging (LiDAR,
i.e., active ranging measurements to derive canopy heights and struc-
ture), enables the simultaneous measurements of forest optical and
structural properties at VHR, by which we expect it can help to separate
post-fire forest recovery from understory recovery. For example, several
recent studies have demonstrated that the combined use of optical and
LiDAR remote sensing measurements allows for more accurate species
differentiation (Fassnacht et al., 2016). In addition, the increasing
availability of VHR satellite data is enabling forest burn severity map-
ping at much finer spatial scales than previously available, showing
improved performances over traditional 30 m Landsat-based methods
(Holden et al., 2010; Meng et al., 2017; Mitri and Gitas, 2008). As such,
we expect these multi-sensor remote-sensing techniques to facilitate
improved quantifications of the species-specific relationships between
forest recovery rate and burn severity (Fig. 1¢) from the individual tree
scale to the landscape as a whole.

The goal of our work was to explore the combined use of these
multi-sensor remote sensing techniques to facilitate species-specific
short-term forest recovery rate across a burn severity gradient in a
spatially explicit manner. We addressed two specific questions: 1) Will
the combined use of multi-sensor remote sensing techniques (to mini-
mize the contaminated effect from understory dynamics) be able to
extract the convex relationship between post-fire forest recovery rate
and burn severity (Fig. 1c) during the short-term post-fire period as
expected from field-based studies (Fig. 1a)? 2) Will our novel remote
sensing approach allow for the detection of species-specific post-fire
forest responses to different levels of burn severity (i.e., oak vs. pine in
our study)?



R. Meng et al.
* (a) Ecological theory/experiment

Species B

Species A

1 (b) Traditional remote sensing

Species C

Remote Sensing of Environment 210 (2018) 282-296

Forest recovery rate

" (c) New remote sensing

Species B

Species A

Y

Species C

low

high

Burn severity

Fig. 1. Three conceptual models showing the relationships of burn severity and forest recovery rate 3-5 year after the fire: (a) Ecological theory/experiment based model (i.e., field
experiment at individual tree or coarse stand-scale); (b) Traditional remote sensing based model (i.e., spectral vegetation indices at coarse-moderate spatial resolution (=30 m)); (c) Our
proposed new remote sensing based model (i.e., combined use of passive optical and active LIiDAR measurement at very high spatial resolution (< 5m)). Some other factors, such as soil,
topography, and post-fire climate, can also affect post-fire forest recovery rate (e.g., Meng et al., 2015; Zhao et al., 2016), but beyond the scope of this study and thus not shown here.

2. Materials
2.1. Study area

The Crescent Bow wildfire broke out in the Central Pine Barrens in
Long Island, NY on April 9, 2012 (Fig. 2). Official statistics indicate
that > 400 ha areas were burned. The Central Pine Barrens in Long
Island, New York was one of largest Pine Barrens areas in United States
in history (Jordan et al., 2003; Kurczewski and Boyle, 2000). Pine
Barrens are a fire-dependent ecosystem, dominant by pitch pine (Pinus
rigida) and mixed with other oak species (e.g., white oak (Quercus alba
L.) and scarlet oak (Quercus coccinea)) (Jordan et al., 2003; Kurczewski
and Boyle, 2000). As one of its key fire adaptive strategies, pitch pine
demonstrates epicormics resprouting, allowing relatively rapid post-fire
forest recovery (Pausas and Keeley, 2017), which is different from other
fire-adapted pine species relying regeneration from seedbanks (e.g.,
Lodgepole Pine or Jack Pine) (Sharpe et al., 2017; Zhao et al., 2016).
The study area is characterized by sandy soils, relatively flat terrain,
and a moderate-humid climate with evenly-distributed annual pre-
cipitation without large spatial variations: annual precipitation is ap-
proximately 1, 200 mm; annual daily mean temperature is —4.8 °C in
January and 21.9°C in July (Kurczewski and Boyle, 2000). Ad-
ditionally, there is no large spatial variation in topographical factors,
such as elevation, slope and aspect within the study area (Fig. S3).

3. Methods

To measure forest recovery rate across a burn severity gradient, our
workflow was composed of the following steps: data collections and
preprocessing, WorldView-2 (WV-2)-based burn severity mapping, G-
LiHT-based post-fire forest canopy species mapping, calculate post-fire
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forest recovery rate, and quantify the relationship between post-fire
forest recovery rate and burn severity (Fig. 3).

3.1. Data collections and preprocessing

NASA Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) data
acquired on June 15, 2015, covering the partial burned areas (about
150 ha) at 1 m resolution (Fig. 2). G-LiHT uses a VQ-480 aerial laser
scanning system (Reigl Laser Measurement Systems, Horn, Austria),
and overlapping sampling swaths were used to obtain a mean pulse
density of 15 to 20 laser pulses/m? (Cook et al., 2013), and the on-
board IS sensor (Headwall Photonics, Fitchburg, MA, USA), ranging
between the 407-1007 nm spectral region, provides 114 spectral bands
at a 5nm spectral resolution (full width half maximum) and a 12-bit
radiometric resolution (Cook et al., 2013). In addition, G-LiHT has on-
board profiling LiDAR, Global Positioning System and Inertial Naviga-
tion System (GPS-INS) and time server, data acquisition computer, and
downwelling irradiance spectrometer, what enabling accurate multi-
source data co-registration, radiometric normalization, and calculation
of at-sensor reflectance product (Cook et al., 2013). At an altitude of
about 200 m above ground with a 50° field of view, we conducted the
2015 G-LiHT-based aerial survey within 2-h window of local solar
noon. The calibrated and georeferenced optical and LiDAR measure-
ments at 1 m spatial resolution used in this study can be downloaded
from the G-LiHT website (http://gliht.gsfc.nasa.gov/). To reduce the
effects of variation in the illumination conditions during aerial data
collections, we have performed cross-track illumination correction on
the optical image in ENVI 5.3.

In addition to G-LiHT data in 2015, VHR WV-2 imagery acquired on
July 17, 2011 and September 13, 2012 before and after fire was also
available. Bi-temporal WV-2 imagery in 2011 and 2012 were first
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Fig. 2. The study area of a mixed pine-oak forest in Long Island, New York (the background imagery is the true color RGB composition (657 nm (red), 564 nm (green), and 484 nm (blue))
derived from NASA Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) measurements acquired on June 15, 2015). Insert graphs show the coverage of G-LiHT measurements and
perimeter of Crescent Bow Fire occurred in April 2012, as well as the location of study site in Long Island. The center points of 18 15 m fixed-area plots including 212 crowns were also
indicated on the map. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

ortho-rectified with a 10 m USGS digital elevation model (DEM), then
co-registered and inter-calibrated to the G-LiHT at-sensor reflectance in
2015, as described in Meng et al. (2017). Then, using the Gramm-
Schmidt Spectral Sharpening (GSPS) method, we pan-sharpened the
2 m multi-spectral WV-2 images with the paired 0.5m panchromatic
WV-2 images to generate 1 m WV-2 images. In addition, centimeter-
level ortho-rectified color aerial photos in May 2012 covering the
burned areas were acquired from the New York Statewide Digital
Ortho-imagery Program (http://gis.ny.gov/).

To map post-fire canopy species composition, during the spring of
2016, we collected forest inventory data from 18 15 m fixed-area plot at
the crown level within the footprint of 2015 G-LiHT aerial measure-
ment (Fig. 2). We measured individual tree crowns with > 2.5cm
diameter at breast height (DBH) of each fixed area plot, which resulted
in 212 crown-level measurement including tree DBH, species, crown
condition (vigor, defoliation, burned or dead), crown position (domi-
nant, co-dominant, suppressed, or understory), canopy height, and
crown base height (if applicable). Additionally, using a hand-held
decimeter-level differential global positioning system (DGPS, Trimble
Geo7x), we recorded the coordinates of fixed-area plot centers and all
crowns with a horizontal accuracy of 0.3 m on average. For more details
about field measurements, please refer to Section 2.3 in Meng et al.
(2017).

To aid in the interpretation of potential problems of optical-only
method (i.e., single spectral vegetation index) for post-fire recovery
studies, we also convolved the G-LiHT reflectance imagery to simulate
multi-spectral WV-2 imagery, according to the sensor response function
in ENVI 5.3. Inter-calibrations were conducted between simulated WV-
2 imagery in 2015 and bi-temporal WV-2 imagery in 2011 and 2012 to
produce consistent temporal reflectance response, using Iteratively
Reweighted Multivariate Alteration Detection (IR-MAD) method (Canty
and Nielsen, 2008). Next, Modified Soil Adjusted Vegetation Index
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(MSAVI, Table 1), having best performance in discriminating burned
and unburned areas among eight different vegetation indices including
NDVI at VHR (Table S1 & S2), was calculated for the WV-2 imagery in
2011 and 2012, as well as the simulated WV-2 imagery in 2015.

3.2. Map burn severity

We generated the burn severity map of Crescent Bow Fire, using the
bi-temporal WV-2 imagery in 2011 and 2012. We first defined three
levels of burn severity (i.e., low, moderate, and high; Fig. 4) according
to the extent of tree canopy areas loss by fire via visual inspections on
the post-fire 0.10 m aerial survey photos, which is consistent with tra-
ditional field interpretation of forest burn severity (Meng et al., 2017;
Morgan et al., 2014). Although fire can cause multiple strata (e.g., soils,
understory vegetation, and tree canopy) changes in forest (De Santis
and Chuvieco, 2009), the extent of tree canopy area loss is a dominant
factor in assessing burn severity in forests (Miller and Thode, 2007;
Quintano et al., 2013; Veraverbeke et al., 2012). Then, using a multi-
step classification method, we mapped the burn severity of Crescent
Bow Fire at 1 m spatial resolution (Meng et al., 2017). Specifically, we
first estimated the effectiveness of eight commonly used spectral indices
to discriminate burned and unburned areas at VHR in our study area,
and MSAVI shows the best performance (Tables S1 & S2; Meng et al.,
2017). We thus used MSAVI to mask the unburned areas. Then, we
implemented Multiple Endmember Spectral Mixture Analysis (MESMA;
Roberts et al., 1998) on the post-fire WV-2 imagery in 2012 to derive
fraction imagery including green vegetation (GV), non-photosynthetic
vegetation or ash (NPV), and soil or other non-vegetation (NV). Finally,
using MSAVI and MESMA-derived fraction imagery as predictors, we
mapped three levels of burn severity with RandomForests (RF) method
within the burned areas.

To quantify the relationship between burn severity and post-fire
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Fig. 3. Workflow in this study to quantify the relationship between burn severity and short-term forest recovery rate using multi-sensor remote sensing techniques.

Table 1
IS derived spectral indices used in this study.

Index

Equation (Red: R; Near-infrared: NIR)

Reference

Normalized difference vegetation index (NDVI)
Modified soil-adjusted vegetation index (MSAVI)

(Rgoo — Re70)/(Rgoo + Re70)

2RNIR + 1 = y(2RNIR + 1)> - 8(RNIR — RRED)

(Tucker, 1979)

(Qi et al., 1994)

Curvature index (CI)
Vogelmann red edge index 1 (VREI1)

Rg5/(Re75 X Reo0)
R740/R720

2
(Zarco-Tejada et al., 2001)

(Vogelmann et al., 1993)

Photochemical Reflectance Index (PRI)

Morres terrestrial chlorophyll index (MTCI)
Carotenoid Reflectance Index (CRI)

Renormalized Difference Vegetation Index (RDVI)

(Rs31 — Rs70)/(Rs31 + Rs70)
(R754 — R700)/(R754 + R700)
(1/Rs10) — (1/Rss0)

(Rsoo — Re70)/(Rsoo + Re70)”®

(Gamon et al., 1992)
(Dash and Curran, 2007)
(Gitelson et al., 2002)
(Roujean and Breon, 1995)

Red/Green Index (RGI)
Greenness index (GI)
Modified Chlorophyll Absorption Ratio Index (MCARI)

Re90/Rss0
Rss4/Re77
[(R700 — Re70) — 0.2(R700 — Rss0)1(R700/Re70)

(Zarco-Tejada et al., 2005)
(Zarco-Tejada et al., 2005)
(Daughtry et al., 2000)

recovery rate (see Section 3.5), we further aggregated the fine-scale
burn severity measurement in Meng et al. (2017) into a forest patch
level. First, we created a 15m grid in vector format with Qgis software
covering the overlap areas of the G-LiHT footprint and fire perimeter,
and this 15m grid was used as a basis for the following analysis of this
study. Then, based on zonal statistic method, we summarized the pixel
number for each burn severity category and calculated the fraction of
total 1 m high, medium, and low severity pixels in each 15m grid cell
(Fig. 4): forest burn severity measurement used in this study thus spe-
cially referred to the fraction of tree canopy loss by fire in fixed area
grid of 15 x 15m>

We chose a grid size of 15m, because this represented the size of
typical forest patches in our study area. By changing the grid size to
5m, 10m, 30 m, and 50 m, we conducted a sensitive analysis on the
effect of varied grid size on the detected relationship between burn
severity and post-fire forest recovery (Fig. S4, see Section 3.5).
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3.3. Map post-fire forest canopy species composition

Non-vegetation areas (e.g., road, shadow, waterbody, and built
areas) were first masked from the G-LiHT data in 2015 to retain well-lit
vegetation pixels with an NDVI =0.70 and at-sensor NIR reflectance
>10% for subsequent analysis (Marvin et al., 2016). Then, we con-
ducted principle component analysis (PCA) on G-LiHT optical IS mea-
surement and used the first three principle components (representing
99.9% of the variance in hyperspectral measurement) for post-fire
forest canopy species (i.e., Standing dead, Pine, Oak, Canopy gap, Top-
killed oak with resprout, and Non-vegetation) classification (Harsanyi
and Chang, 1994). Additional, we calculated 11 spectral indices and
extracted 37 structural metrics from G-LiHT data for classification
(Tables 1 and 2).

PCA components and spectral indices were calculated in ENVI 5.3
software. Structural metrics were calculated using G-LiHT individual
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Fig. 4. Illustration of the procedure used to aggregate the fine-scale burn severity measurement (1 m ground-level resolution) by Meng et al. (2017) using bi-temporal WV-2 imagery (the
background imagery is the false color RGB composition of WV-2 NIR-red-green band) to forest-patch level (i.e., tree canopy area loss measurement at 15 m ground-level resolution);
following this procedure, we calculated the fraction of tree canopy area loss by fire in fixed area grid of 15 X 15 m? and used it as a proxy of burn severity; the value range of burn severity
here is 0 to 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
LiDAR derived structural indices used in this study.

Index acronym Description

CHM Canopy height model, mean vegetation crown height

cov Canopy cover, number of first returns above the cover cutoff (i.e., 5m) divided by the number of all first returns and output as a percentage
DNS Canopy density, number of all points above the cover cutoff (i.e., 5m) divided by the number of all returns
QAV Mean quadratic height, mean of the quadratic height (E?:I h#/m), h; is the height of a return point and n is the number of all points
SKE The skewness of all return points

KUR The kurtosis of all return points

P10 10th percentile height value of return points between the ground and the maximum height

P20 20th percentile height value of return points between the ground and the maximum height

P30 30th percentile height value of return points between the ground and the maximum height

P40 40th percentile height value of return points between the ground and the maximum height

P50 50th percentile height value of return points between the ground and the maximum height

P60 60th percentile height value of return points between the ground and the maximum height

P70 70th percentile height value of return points between the ground and the maximum height

P80 80th percentile height value of return points between the ground and the maximum height

P90 90th percentile height value of return points between the ground and the maximum height

P99 99th percentile height value of return points between the ground and the maximum height

Int_min Minimum intensities of return points

Int_max Maximum intensities of return points

B10 Fraction of return points between the 10th percentile height and the maximum height (%)

B20 Fraction of return points between the 20th percentile height and the maximum height (%)

B30 Fraction of return points between the 30th percentile height and the maximum height (%)

B40 Fraction of return points between the 40th percentile height and the maximum height (%)

B50 Fraction of return points between the 50th percentile height and the maximum height (%)

B60 Fraction of return points between the 60th percentile height and the maximum height (%)

B70 Fraction of return points between the 70th percentile height and the maximum height (%)

B80 Fraction of return points between the 80th percentile height and the maximum height (%)

B90 Fraction of return points between the 90th percentage height and the maximum height (%)

0-1 m height class The fractions of all points within the [0,1 m) height interval to the total number of points

1-2m height class The fractions of all points within the [1,2m) height interval to the total number of return points
2-3m height class The fractions of all points within the [2,3 m) height interval to the total number of return points
3-6m height class The fractions of all points within the [3,6 m) height interval to the total number of return points
6-9 m height class The fractions of all points within the [6,9 m) height interval to the total number of return points
9-12m height class The fractions of all points within the [9,12 m) height interval to the total number of return points
12-15m height class The fractions of all points within the [12,15m) height interval to the total number of return points
15-20 m height class The fractions of all points within the [15,20 m) height interval to the total number of return points
20-30 m height class The fractions of all points within the [20,30 m) height interval to the total number of return points
30-40 m height class The fractions of all points within the [30,40 m) height interval to the total number of return points
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LiDAR return data (in the format of .las files) in Lastools software.
Specifically, G-LiHT LiDAR point clouds were first binned into 1-m
voxels, and then we calculated LiDAR structural indices and converted
them into individual raster. According to the structural characteristics
of our study area, a 5m canopy height threshold, which is 35% of the
average canopy height of the unburned area, was applied to calculate
canopy related LiDAR metrics. These spectral indices and LiDAR
structural metrics, as well as PCA components, have been used ex-
tensively for remote sensing of vegetation health and species in pre-
vious studies (e.g., Fassnacht et al., 2016; Shendryk et al., 2016). De-
tails about spectral indices and structural metrics used in this study can
be found in Tables 1 and 2, respectively.

We first overlaid the geo-referenced points of individual trees, de-
rived from field inventory data, directly on the RGB composition of G-
LiHT optical and LiDAR Canopy Height Model (CHM) imagery. Then,
with the help of historical (2010-2016) VHR imagery in Google Earth
Pro (http://www.google.com/earth) and our knowledge about the
study areas, we manually extracted training samples, avoiding shade
and edge areas, for mapping post-fire canopy species composition, di-
rectly on the G-LiHT imagery, as these forest canopy species demon-
strate contrasting color, texture, structure, and cluster patterns. In total,
this yielded 383 usable samples for training (60%) and validation
(40%) of the post-fire canopy species classification in 2015. RF decision
tree nonparametric classifications were used in this study, because RF
classifications make no assumption on the underlying data distribution
and are widely used for remote sensing studies (e.g., Breiman, 2001;
Meng et al., 2012; Meng and Dennison, 2015; Pal, 2005; Yu et al.,
2011). RF classifications were performed with “RandomForests”
package and important predictor variable selection with “varSelRF”
package in R environment.

Based on training samples, a backward method was performed to
select most important predictor variables for the post-fire canopy spe-
cies classification in 2015, according to RF variable importance esti-
mation for 500 random models. Specifically, using RF Out Of Bag
(OOB) error as a criterion, backward method starts all available optical
or LiDAR predictors for RF modeling (Tables 1 & 2), and then removes
the predictor with the least contribution to improve classification (i.e.,
no or slight increase in accuracy) until all left predictors contribute
significantly to the RF model. Provided by RF model, OOB error is an
internal unbiased estimate of the training error (Breiman, 2001). By
dropping unnecessary variables, variable selection can increase the
classification accuracy and reduce the computation time and the chance
of over-fitting (Fassnacht et al., 2016; Meng and Dennison, 2015). To
explore the added value of combined use of optical and LiDAR data in
classification, we repeated the process of important predictor variables
selection for optical, LIDAR, and optical + LiDAR variables, separately.
Then, we compared the training accuracies of the three trained RF
models.

The trained RF model with the selected most important optical and
LiDAR predictor variables (showing best performance during RF
training process, see Section 4.1) was applied to classify six post-fire
canopy species in 2015 across the study area. A 3 by 3 majority filter
was applied to remove outliers or impulse-like noises on the RF clas-
sification map in ENVI 5.3, what is a common post-classification pro-
cedure for accuracy improvement (Quintano et al., 2013). Based on the
validation samples, the classification accuracies were finally assessed,
and the Overall Accuracy (OA), Producer's Accuracy (PA or omission
error) and User's Accuracy (UA or commission error) for each class
(excluding non-vegetation class) were also calculated with a confusion
matrix.

3.4. Calculate post-fire forest recovery rate
Following the burn severity and post-fire forest canopy species

mapping, post-fire forest recovery rates at community and species level
were calculated according to the Eq. (1) and Eq. (2), respectively.
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Zin:1 AA;

Community level recovery rate =

Yn X Z?:l Ajzon @D)
A,
Species level recovery rate = #
Yn X Aion (2)

where /\A; is the change in canopy area (%) for species i, Yn is the
number of years after the fire in certain size grid (i.e., 15m), n is the
number of tree species (i.e., pine and oak here), and A, 011 is the
fraction of pre-fire canopy area for species i in the same size grid. Post-
fire forest recovery rate calculated here thus referred to the percentage
of increase in tree canopy area per year in fixed area grid of
15 x 15m>

Here we assumed that the post-fire forest recovery occurred within
the areas of forest canopy loss caused by fire, thus change in canopy
area (/\Ai) within these areas during the post-fire period can be used
for calculating post-fire forest recovery rate. To estimate change in
canopy area (/\A)) after the fire, a map of forest canopy loss caused by
fire was first generated, based on the 2012 WV-2 MESMA results and
the burned area map (See Section 3.4 in Meng et al., 2017), to mask
forest canopy areas in 2012 after the fire. We didn't directly use the
burned area map generated in Meng et al. (2017) for estimating change
in canopy area (A\A;), because the detected burned area might still
include tree canopy areas. Based on the MESMA results in Meng et al.
(2017), we defined the 2012 WV-2 imagery pixels within burned area
map as forest canopy loss caused by fire that met either of two condi-
tions: 1) pixels were successfully unmixed by pure green vegetation and
non-photosynthetic vegetation, ash, and char endmembers excluding
oak or pine; 2) the unmixed contributions of oak or pine endmember
were < 50% during the MESMA (Meng et al., 2017). The accuracy of
the map of forest canopy loss caused by fire was assessed by visual
inspections of 0.10 m color aerial ortho-photos in 2012 and the his-
torical (2010-2016) VHR imagery in Google Earth Pro. To control for
observation bias, the visual inspections for validation were conducted
by an independent observer. Fifty validation points per class (i.e., forest
canopy vs. non-forest canopy) were randomly generated through stra-
tified sampling within the overlap area of fire perimeter and G-LiHT
coverage. An overall accuracy of 90% was estimated by a confusion
matrix, and User and Producer's Accuracy (UA and PA) were relatively
high (> 80%) for both canopy and non-canopy classes (Table S3).

Then, after applying the map of forest canopy loss caused by fire to
the 2015 post-fire canopy species composition map, change in canopy
area (A\A)) at both community level and species level were calculated
separately by counting forest canopy pixels within each cell in 15m
grid, and corresponding recovery rates for the study post-fire period
(i.e., 2.75 years, September 2012 to June 2015) were finally calculated
according to Eq. (1) and (2). Additionally, we calculated the resprout
rate of top-killed oak with resprout according to Eq. (2), but considered
it as understory recovery in this study, because it represents a different
succession state, compared to survived tree canopies (Reich et al.,
1990).

The fraction of pre-fire species-specific canopy area (A;2011) was
incorporated in Egs. (1) and (2) to avoid the effects of different pre-fire
canopy areas on quantifications of relationships between post-fire forest
recovery rate and burn severity. Similarly, the fraction of pre-fire ca-
nopy area was calculated by counting species-specific canopy pixels
within each cell in 15m grid (total 125 pixels). The pre-fire canopy
species composition (i.e., pine and oak) were classified, based on the
2011 WV-2 imagery using a RF approach (Liaw and Wiener, 2002).
According to the confusion matrix-based validation, the pre-fire canopy
species classification had an overall accuracy of 73% (Table S4). For
details about the pre-fire forest species classification and validation
procedure, please refer to Section 1 in Supporting Information.

To study the added value of combing optical and LiDAR measure-
ments for estimating post-fire forest recovery rate, we also calculated
post-fire forest recovery rate by optical-only method at the canopy
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community level. Specifically, the optical-only post-fire recovery rate
(i.e., change in MSAVI per year) was estimated by averaging changing
MSAVI values of change in canopy area (/A\A;) within each cell in 15m
grid from 2012 to 2015.

Because the fraction of pre-fire canopy area (A; 2011 in Eq. (1)) can
be lower to zero, infinite values were possible during the calculation of
post-fire recovery rate. Thus, to remove the effects of infinite values, we
assigned a threshold of 0.2 to A; 5017 for further data analysis. This
threshold was determined by a sensitivity analysis on the effects of
A, 2011 on the detected burn severity-post-fire forest recovery rate re-
lationship. Specifically, we repeatedly changed the value A; 5011 in Eq.
(1) from 0.1 to 0.4 with an equal interval of 0.1 for quantifying re-
lationships between forest recovery rate and burn severity. Then, we
found the relationships became consistent in terms of shape and mag-
nitude, when A; 5011 larger than 0.2 in 15m grid (Figs. S5, S6, and S7).
As a result, post-fire recovery rates at both canopy community and
species level in this study were finally calculated with A; 5917 of = 0.2
in 15m grid.

3.5. Quantify the relationship between burn severity and post-fire forest
recovery rate

Using burn severity as a single predictor variable, we built separate
Ordinary Least Square (OLS) models to predict post-fire forest recovery
rates, as well as oak resprout rate, at both community and species level.
Specifically, to reduce noise, we first considered each 15-m grid cell as a
single data point and binned all of 15-m grid cells into different bands
(i.e., twenty bands in total, such as 0-0.05, 0.10-0.15, ... 0.95-1.00)
with an equal interval of 0.05, according to their associated burn se-
verity measurement (i.e., fraction of canopy loss by fire from 0 to 1).
Then, we calculated the mean and standard error of post-fire forest
recovery rate of each binned band. Finally, we build OLS models to
predict the mean values of recovery rate of each binned band, as a
function of mean value of burn severity of each binned band. To
compare performances of combined use of optical and LiDAR mea-
surement with that of optical-only one, we further applied the same
OLS modeling process to predict post-fire recovery rates measured by
optical-only variable (i.e., MSAVI) from 2012 to 2015 at the canopy
community level. We performed all statistical analyses in R environ-
ment.

To explore the uncertainty caused by grid size for data analysis, we
conducted a sensitivity analysis on the effects of grid size on quantifi-
cations of relationships between post-fire recovery rate and burn se-
verity. Specifically, we generated multiple grids with varying size of
5m, 10m, 30 m, and 50 m covering the same area as 15m grid, and
then re-calculated the relationship between burn severity and post-fire
recovery rate with different grid size using the same methodology
presented here. We found out that the variation in grid size didn't
change the general pattern of the detected burn severity-post-fire re-
covery rate relationship (Fig. S4).

4. Results
4.1. Post-fire forest species classification in 2015

The in situ photographs taken in June 2015 show several post-fire
forest canopy species we mapped in this study (Fig. 5, the live oak
canopy and non-vegetation class not included, see Fig. S8 for oak
spectral and structural properties). About three years following the fire,
forest canopies were still open because of high burn severity. Trees
killed immediately by burn (charred) or delayed mortality (remained
bald crowns) during the post-fire period were both common; live trees
already started to foliate new leaves; pitch pine seedlings were very rare
within our field plots (i.e., < 0.1%); top-killed oak had dense resprout
from root crowns; live oak canopies were rare at moderate-high severity
areas (See Section 4.2 below).
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We found that G-LiHT measurements were able to capture the
spectral and structural properties of these post-fire canopies (Fig. 5b).
In the red-edge to NIR wavelengths, live oak canopies displayed the
highest reflectance values (NIR mean of 0.27 *+ 0.015), followed by
the top-killed oak with resprout (NIR mean of 0.24 + 0.011); in con-
trast, pine canopies had the lowest overall reflectance values (NIR mean
of 0.19 = 0.011), including when compared with canopy gap areas
likely due to the dominance of herbaceous and broadleaf shrub vege-
tation in the canopy gaps, with higher NIR reflectance values (NIR
mean of 0.21 * 0.006). Standing dead canopies demonstrated much
higher reflectance in the visible wavelengths (VIS mean of
0.04 = 0.002), because of non-photosynthetic materials, but still
showed relatively high reflectance values in the NIR wavelengths (NIR
mean of 0.18 * 0.009), due to the exposed understory beneath the
dead canopies. In terms of vertical structure, pine canopies demon-
strated large differences in vertical distributions of return laser points,
compared with the standing dead trees and canopy gap (Fig. 5c). In
addition, unique structural characteristics of top-killed oak with re-
sprout were captured by the G-LiHT LiDAR measurements. Most of the
vertical distributions of return laser points for canopy gap were below
1 m height, significantly different from other classes.

According to the result of importance variable selections, 5 of 37
LiDAR-derived predictor variables and 5 of 12 IS-derived predictor
variables were used for the final post-fire canopy species classification
(See Section 4.2) for the 2015 imagery (Fig. S9). With our LiDAR-de-
rived predictor variables, the most important variables for mapping
post-fire canopy species included CHM, B70, 0-1 m height class, B10,
QAV, and B60; as to IS-derived predictor variables, PRI, PCA2, VREI1,
CI, and CRI were selected.

The RF training results show that the combined use of optical and
LiDAR measurements tend to have better overall performances in ca-
nopy species classification than using either of them alone (Fig. S10,
increase to 80% from 70% or 73%). In general, optical predictor vari-
ables have higher training accuracy than LiDAR predictor variables, but
have lower accuracy in discriminating the canopy gap and standing
dead classes. Specifically, pine has the largest increase in training ac-
curacy (57% to 78%), when using combined optical and LiDAR pre-
dictor variables; the training accuracy of standing dead is still relatively
low, even when leveraging the two data streams together (63%).

We used validation samples to calculate OA, PA, and UA of the post-
fire canopy species map (See Section 4.2) by the combined use of op-
tical and LiDAR measurement (Table 3). The OA of the post-fire canopy
species map were 88%. Oak, pine, and canopy gap had relatively high
values in UA (> 80%) and PA (> 80%), because of their apparent
spectral and structural characteristics (Fig. 5). Standing dead class had
overall lowest values in UA (62%) and PA (67%), caused mainly by the
confusion with top-killed oak with resprout; top-killed oak with re-
sprout had acceptable accuracy in UA (72%) and PA (70%). In sum-
mary, the improved accuracy for species differentiation by the com-
bined use of optical and LiDAR measurement (Fig. S10) was consistent
with recent studies (Alonzo et al., 2014; Garcia et al., 2011; Martin-
Alcon et al., 2015; Naidoo et al., 2012).

4.2. Spatial patterns of post-fire forest canopy species and community-level
recovery rate in 2015

About three years after the fire, the post-fire forest canopy species
map in 2015 as well as community-level recovery rate map still de-
monstrates strong spatial covariations with the burn severity map in
2012 (Fig. 6). For example, at high burn severity areas (e.g., R2-C3, R3-
C5; Fig. 6a), canopies were dominated by canopy gap, standing dead
trees, and top-killed oak with resprout (Fig. 6b), thus corresponding
recovery rates were low (Fig. 6¢); at moderate burn severity areas (e.g.,
R2-C2, R3-C4; Fig. 6a), the distributions of oak and pine canopies
became more frequent (Fig. 6b) and recovery rates were also higher
(Fig. 6¢); although unburned-lower burn severity areas (e.g., R1-C5,
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Fig. 5. Post-fire forest canopy characteristic across a burn severity gradient: (a) An in situ photography taken in June 2015; (b) Spectra derived from NASA Goddard's LiDAR,
Hyperspectral and Thermal (G-LiHT) measurements acquired on June 15, 2015; (c) Vertical structures derived from G-LiHT LiDAR measurements (canopy height class: 1: [1-2 m); 2: [2-
3m); 3: [3-6m); 4: [6-9m); 5: [9-12m); 6:[12-15m);7: [15-20 m);8: [20-30 m);9: [30-40 m)].Shade areas shows 95% confidence interval (See Fig. S8 for spectra and structural
properties of oak canopies). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

R3-C1; Fig. 6a) were covered by dense oak and pine canopies, forest
recovery rates were still low, because of little canopy loss by fire.
Moreover, compared with oak canopies, the distribution of pine

canopies was much more frequent across the high-moderate severity
areas, indicating the varied post-fire tree responses with different fire
adaptive strategies (see Section 4.4).

Table 3
Confusion matrix of postfire canopy classification.

Reference data User's accuracy (%)

Canopy gap Oak Pine Top-killed oak with resprout Standing dead
Classification result Canopy gap 24 0 0 0 0 100
Oak 0 49 0 1 0 98
Pine 0 3 47 3 1 87
Top-killed oak with resprout 0 2 3 21 3 72
Standing dead 0 0 0 5 8 62
Producer's accuracy (%) 100 91 94 70 67
Overall accuracy (%) 88
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Fig. 6. Assessing forest recovery rate-burn severity re-

lationships in a mixed pine-oak forest: (a) Burn severity
measurement at 15m resolution using bi-temporal
WorldView-2 (WV-2) imagery, acquired on July 17, 2011
and September 13, 2012; The value range of burn severity
here is 0 to 1, referring to the fraction of tree canopy area
loss caused by fire in each 15 m grid cell; (b) Post-fire forest
canopy species map in 2015 at 1 m resolution by NASA
Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT)
measurement, acquired on June 15, 2015; (¢) Community
level forest recovery rate (i.e., canopy area-based percent
increase per year, see Section 3.4 for details) map at 15m
resolution from September 13, 2012 to June 15, 2015. (For
interpretation of the references to color in this figure le-
gend, the reader is referred to the web version of this ar-
ticle.)
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4.3. Community-level post-fire forest recovery as a function of burn severity

Through the combination of G-LiHT optical and LiDAR measure-
ment with WV-2 imagery, we detected a convex relationship between
post-fire forest recovery rate and burn severity, with a maximum re-
covery rate of 10% per year, indicating the existence of a threshold in
forest response to fire (adjusted R*> = 0.96, p-value < 0.001, Table S5;
Fig. 7a). The forest recovery rate first shows an increase with burn
severity, followed by a decline after a peak burn severity (0.575 in this
study, Fig. 7a), likely due to increased fire-induced tree mortality. As
with previous traditional remote sensing approaches (Fig. 1b and Fig.
S2), the post-fire MSAVI recovery rate demonstrated a steadily
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increasing trend with burn severity (adjusted R* = 0.67, p-value <
0.001, Table S5; Fig. 7b), signifying a trend of post-fire apparent re-
covery across a burn severity gradient. This is because the differences
between post-fire forest and understory recovery can be hardly dis-
tinguished by single spectral vegetation index, like MSAVI.

4.4. Species-specific post-fire forest recovery as a function of burn severity

The convex relationship between post-fire forest recovery rate and
burn severity also held at the species level (Fig. 8a & b). However, we
also observed important differences in the maximum recovery rate with
corresponding burn severity between the oak and pine canopies.
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Adj.R-squared = 0.67
p <0.001

Fig. 7. The canopy community level forest recovery rate-
burn severity relationships (see Section 3 for calculation
method): (a) Combined use of optical and LiDAR; (b) Op-
tical-only (i.e., MSAVI; see Table 1 for details). Dot points
are the mean, vertical bars are standard error, black lines
are the binomial (linear) fitting curves based on mean va-
lues of each burn severity band used for result compilation,
adjusted R-squared values are also shown here (see Table
S5 for detailed modeling results).
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Fig. 8. The species-specific forest recovery rate-burn severity relationships by the combined use of optical and LiDAR measurement (see Section 3 for calculation method): (a) Pine; (b)
Oak; (c) Oak resprout after top killed (i.e., oak understory recovery). Dot points are the mean, vertical bars are standard error, black lines are the binomial (linear) fitting curves based on
mean values of each burn severity band used for result compilation, adjusted R-squared values are also shown here (see Table S5 for modeling results).

Specifically, we found a maximum recovery rate for pine canopies of
about 12% per year, which was nearly three times larger than that of
oak canopies at about 4% per year. In addition, the burn severity of
trend changing for pine is 0.625, which is much larger than oak (i.e.
0.425), indicating stronger fire resistance of pine stands. We also de-
tected a positive linear relationship between the post-fire oak resprout
rate and burn severity, with a maximum resprout rate of nearly 10% per
year (Fig. 8c), suggesting the unique fire adaptive strategy of oak trees.

5. Discussion

Understanding the quantitative relationship between post-fire forest
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recovery and burn severity over broad spatial scales is an essential first
step for the accurate model representation of fire effects on forest dy-
namics and global carbon cycling under a changing climate (Fisher
et al., 2015; Gu et al., 2016; Hantson et al., 2016; Huang et al., 2013;
Turner, 2010; Yang et al., 2017). In this study we leveraged multi-scale
and multi-sensor remote sensing observations and techniques (e.g., co-
aligned airborne IS and LiDAR measurements, VHR satellite multi-
spectral imagery) to explore post-fire forest recovery rate in a spatially
explicit manner spanning a large gradient in burn severity about three
years after a fire. Through our work we observed a comparable convex
relationship between forest recovery rate and burn severity across our
study area (Fig. 7a), which is consistent with field scale research (e.g.,
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Balch et al., 2011; Smith et al., 2016), as well as post-fire forest re-
covery studies across larger spatial-temporal scales (Zhao et al., 2016).
Additionally, our work highlighted that the detected patterns also held
at the species level, but their shapes (including maximum recovery rate
and corresponding burn severity) varied across species (Fig. 8). These
detected patterns suggest the species-specific fire adaptive strategies, as
well as burn severity, can affect post-fire forest recovery process and
should be incorporated into fire effect schemes in ecological process
models (Fisher et al., 2015; Hantson et al., 2016). Moreover, the novel
methodology presented here could provide valuable input and bench-
mark datasets for informing and evaluating process models across space
and time.

The detected convex relationship is consistent with previous field-
based expectations, but does not agree with our analysis leveraging
optical-only single spectral vegetation index (i.e., MSAVI, Fig. 7).
Fig. 7b shows that our optical-only analysis leads to a linear, positive
relationship between forest recovery rate and burn severity. We note it
is important to differentiate here between an evaluation based on time-
since-fire and burn severity, where the later shows the impact of burn
severity on short-term recovery (Figs. 1, 7, and 8), while time-since-fire
would show a different pattern more related to overall canopy green-
ness (Bastos et al., 2011; Chen et al., 2011; Fernandez-Manso et al.,
2016; Meng et al., 2015). This is driven by the fact that single spectral
vegetation index cannot separate vegetation recovery of upper strata
from that of lower strata, which often results in an unrealistic rapid
forest recovery under high burn severity (Fig. 1a, Fig. S2; e.g., Balch
et al., 2011; Brando et al., 2012; Meng et al., 2015; Serbin et al., 2013;
Smith et al., 2016). However, the combined use of optical and LiDAR
measurement for quantifying post-fire forest recovery rate can over-
come this limitation (Figs. 7a and 8). Specifically, IS in this study can
record variations in canopy spectral signatures with high spatial and
spectral resolution (Cook et al., 2013), enabling canopy species iden-
tification at VHR (e.g., Clark et al., 2005); on the other hand, LiDAR
remote sensing provides precise measurements of the vertical canopy
structure and is capable of differentiating upper from lower canopy
strata (e.g., Tang and Dubayah, 2017; Fig. 5). The additional structural
characteristics of post-fire canopies from LiDAR measurements can also
enable more accurate species identification (Fig. S10; Fassnacht et al.,
2016), and thus improve the characterization of species-level post-fire
response (e.g., top-killed oak with resprout), at least in our relatively
simple ecological system, but would also likely translate to other similar
systems such as fire-prone boreal forests. Similar to the optical-only
method (Fig. 7b), our additional analysis also indicated the limitations
of a LiDAR-only method to quantify the relationship between post-fire
forest recovery and burn severity (Fig. S11), likely because the LiDAR-
only measurements cannot efficiently differentiate healthy, green ca-
nopies from oak resprouting or snags. However, further studies with
multi-temporal consistent LIDAR measurements are still needed to draw
a decisive conclusion here.

Our remotely sensed characterization of the species-specific post-
fire responses to variation in the degree of burn severity indicated that
pine stands in our system tended to have higher post-fire forest recovery
rates than the oaks, while oak stands tended to have much faster un-
derstory recovery, owing to the ecological adaptation to re-sprout from
the root collar, after a top-killing fire during the short-term post-fire
period (Fig. 8). This finding quantitatively supports previous field-
based studies in similar mixed pine-oak ecosystems indicating that both
oak and pine are fire-adapted but with differential fire adaptive stra-
tegies, including vigorous resprout from the root collar vs. thick fire-
resilient bark with pine trees (e.g., Little, 1998; Whittaker and
Woodwell, 1969). The epicormic branching of dominant pitch pine
makes fast forest canopy recovery during the short-term period pos-
sible, which might not be visible for decades in other pine dominated
fire-prone ecosystems relying regeneration from seedbanks (e.g., Lod-
gepole Pine or Jack Pine) (Bolton et al., 2015; Nelson et al., 2016;
Sharpe et al., 2017; Zhao et al., 2016). Also likely because dense and
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fast shrub recovery inhibited the shade-intolerant seedlings or our
short-term post-fire study period (Motzkin et al., 1999), seedling re-
covery was rare in our study area and we thus haven't fully separated
understory shrub or non-woody recovery from understory seedling re-
covery. However, given the underlying relationship between forest
status and spectral and structural properties (Caughlin et al., 2016;
Sparks et al., 2016), and the growing evidence that canopy-level
spectral and structural properties can be quantified from VHR IS and
LiDAR data (Caughlin et al., 2016; Garcia et al., 2011; Torabzadeh
et al., 2014) (Fig. 5, including this study), we believe our proposed
methods have strong potential to accurately quantify forest recovery
rate or understory seedling recovery rate, across a burn severity gra-
dient in other ecosystems not just during the short-term post-fire
period. Thus, our study demonstrates that the value of leveraging multi-
sensor remote sensing techniques to quantify species-specific post-fire
responses over large spatial-temporal scales (Fig. 1c), which is tightly
connected with the underlying fire adaptive strategies (Keeley et al.,
2011; Pausas and Keeley, 2014; Pausas et al., 2016). However, we also
note that in addition to species and burn severity factors under study,
some other factors, such as soil, topography, and post-fire climate, can
also affect post-fire forest recovery rate (e.g., Meng et al., 2015; Zhao
et al., 2016), which can likely result in varying long-term (= 5 years)
recovery rates between seedling and resprouting species at areas with
large variations in soil, topography and post-fire climate.

We also acknowledge the uncertainties that remain in this study.
First, due to data availability we quantified the post-fire forest recovery
rate by integrating the pre and post-fire WV-2 imagery with our addi-
tional post-fire G-LiHT measurement in 2015 (Fig. 3). This could in-
troduce errors due to inconsistency in remote sensing spectral bands or
accuracies of derived remote sensing products (Table 3, Table S3, and
Table S4), which could increase the uncertainty of our detected post-
fire forest recovery pattern. However, this limitation is also a strength
of our approach showing that despite the differences in sensors, we
were able to leverage our novel method to build a strong model of forest
recovery, consistent with field expectations. Our analysis showed that
WV-2 bands and G-LiHT IS have almost identical performances for
measuring post-fire forest recovery across a burn severity gradient (Fig.
$12), suggesting that G-LiHT IS data in 2015 can achieve comparable
results as if that of WV-2 used in 2015. Additionally, G-LiHT data in
2015 also includes LiDAR observations that allow us to characterize
forest structure, which we didn't expect to change significantly about
three years after the fire, particularly in terms of differentiating tree
canopies from understory vegetation. Second, we acknowledge that
some uncertainties may also have arisen when simulating WV-2 ima-
gery from the G-LiHT IS in 2015 (Section 3.1). However, simulating
coarser spectral resolution spectra from finer spectral resolution sensor
have been widely applied and successfully used for remote sensing
studies (Hochberg and Atkinson, 2003; Liu et al., 2017). Therefore, our
detected post-fire forest recovery pattern across a burn severity gradient
using multi-sensor remote sensing measurements should be reliable.

On the other hand, leveraging multi-sensor remote sensing mea-
surements for environmental studies will become more and more im-
portant, as the fast development and increasing availability of multi-
sensor remote sensing measurements (Stavros et al., 2016; Torresan
et al., 2017). As a result, despite the potential for additional uncertainty
it is also important to utilize all available data to inform our under-
standing of ecological patterns and we have shown here how a multi-
platform, multi-sensor approach can be used to study post-fire recovery.
Thus, we recommend further study on the use of multiple sources of
information to explore fire effects on vegetation canopies in similar and
other ecosystems (e.g., chaparral, grassland, and other forests).

Our study also has three important implications. First, our finding of
forest recovery rate as a function of burn severity would help to para-
meterize and validate the fire effect schemes in ecological process
models, where it would enable improved representation and projection
of fire-vegetation interactions to global change (Hantson et al., 2016;
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Lasslop et al., 2014; Seidl et al., 2011; Turner, 2010; Yang et al., 2017).
For example, ecological process models with gap-based vegetation-fire
scheme, including species-specific recovery trait parameter, have been
proposed to simulate post-fire forest recovery (Fisher et al., 2015; Yang
et al., 2017). However, large-scale benchmark datasets to parameterize
and validate the models of this kind are largely lacking. The success to
link remote sensing techniques to quantify species-specific post-fire
forest recovery as shown in our study provides a very promising avenue
to constrain and benchmark the ecological models of this kind.

Second, our study highlights a promising new avenue for forest
management by providing a quantitative description of forest recovery
rate in a spatially explicit manner. As with other previous studies of
fire-induced forest changes using repeat airborne LiDAR measurement
from LiDAR (Alonzo et al., 2017; McCarley et al., 2017; Zhao et al.,
2018), our work provides new insights regarding the fate of disturbed
trees during the post-fire recovery period. For example, we were able to
quantify the understory recovery of oak trees (oak resprout; Figs. 5 and
8c), which can exert large impacts in shaping forest structure and
function dynamics during post-fire succession (Jordan et al., 2003;
Kurczewski and Boyle, 2000). As a result, monitoring large-scale forest
dynamics in a spatially explicit manner could provide critical in-
formation to aid in the management of forests in a timely and precise
manner (e.g., prescribed burning, post-fire rehabilitation) for multiple
uses (e.g., preserve and restore the endangered fire-dependent ecosys-
tems, timber harvest, and recreation; Jordan et al., 2003).

Third, our novel approach to examining post-fire recovery in a
spatially explicit manner may also enable the remote detection of other
disturbance-induced forest dynamics (e.g., drought, windstorm, and
insect herbivory), which are also important given increasing fre-
quencies and intensities of various other forest disturbance activities
with continued global change (Barbero et al., 2015; Schwalm et al.,
2017; Westerling et al., 2006). This is primarily because that the similar
convex forest recovery response also exists in various other disturbance
events, such as drought (Levesque et al., 2013; Schwalm et al., 2017;
Zweifel et al., 2009) and windstorm disturbance (Papaik and Canham,
2006; Rich et al., 2007). Differentiating forest canopy recovery from
understory recovery is equally important in these post-disturbance
studies, and different species also would exert differential convex re-
sponses. The improved representation of forest recovery —disturbance
extent relationship in ecological process models can largely reduce
uncertainties in simulating disturbance effects on global carbon cycle
and their feedbacks to the climate system (Kurz et al., 2008; Rogers
et al., 2015; Turner, 2010). Therefore, we expect that our proposed
method can also be extended to other disturbance events.

6. Conclusion

In our study we successfully mapped the spatial pattern of short-
term post-fire forest recovery rate and quantified its relationship with
burn severity in a mixed pine-oak forest over large-scales, by leveraging
multi-sensor remote sensing techniques (e.g., 1 m simultaneous air-
borne IS and LiDAR and 2m satellite multi-spectral imagery).
Additionally, we presented a new method for quantifying species-spe-
cific post-fire forest recovery rate (oak vs. pine) to different levels of
burn severity with remote sensing techniques, as one of the first
quantitative evidences showing the effects of fire adaptive strategies on
post-fire forest recovery, derived from large spatial-temporal scales.
Such monitoring of forest recovery over large-scales in a spatially ex-
plicit manner not only can provide novel insights about fire effects on
forests (Alonzo et al., 2017; McCarley et al., 2017), but also unique
opportunities for further study of forest ecological, structural, and
functional responses to fire (e.g., specific leaf or stem traits that relate
to plant resistance to and recovery capacity from fire), which are of
high interest in the carbon and water cycle and forest management
communities (Bolton et al., 2017; Johnstone et al., 2011; Lewis et al.,
2006; Mayor et al.,, 2007; Turner et al., 1998; Turner et al., 1997;
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Turner et al., 2016). Our novel method could also be extended to
quantify other disturbance-induced forest dynamics, to benchmark
ecological process models, and to provide critical information on forest
dynamics for forest management. As such we recommend extending
and testing our approach to other ecosystems in order to further eval-
uate the efficacy of our proposed method for quantifying forest re-
covery rate as a function of disturbance extent.
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