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Summary

e How terrestrial biosphere models (TBMs) represent leaf photosynthesis and its sensitivity to
temperature are two critical components of understanding and predicting the response of the
Arctic carbon cycle to global change.

e We measured the effect of temperature on the response of photosynthesis to irradiance in
six Arctic plant species and determined the quantum yield of CO, fixation (¢co,) and the con-
vexity factor (0). We also determined leaf absorptance (o) from measured reflectance to cal-
culate ¢co, on an absorbed light basis (¢, ,) and enabled comparison with nine TBMs.

* The mean ¢co, , was 0.045 mol CO, mol ™" absorbed quanta at 25°C and closely agreed
with the mean TBM parameterisation (0.044), but as temperature decreased measured ¢co, ,
diverged from TBMs. At 5°C measured ¢, , was markedly reduced (0.025) and 60% lower
than TBM estimates. The 6 also showed a significant reduction between 25°C and 5°C. At
5°C 6 was 38% lower than the common model parameterisation of 0.7.

* These data show that TBMs are not accounting for observed reductions in ¢o, , and 6 that
can occur at low temperature. Ignoring these reductions in ¢cg,, and 0 could lead to a
marked (45%) overestimation of CO, assimilation at subsaturating irradiance and low tem-

perature.

Introduction

Since the beginning of the last century atmospheric carbon diox-
ide concentration ([CO5,]) has risen by ¢. 100 pmol mol™! (33%),
which has resulted in an average increase in the global annual
near surface air temperature of ¢. 1°C. Over the same period, the
temperature in the Arctic has increased by more than twice the
global mean (USGCRP, 2017). Similarly, the annual amplitude
of the seasonal cycle of [CO,] at high latitudes has increased
approximately twice as much as the amplitude at lower latitudes
(Keeling ez al., 1996; Graven ez al., 2013). This is widely consid-
ered to be due to enhanced productivity of high-latitude ecosys-
tems, but the drivers and mechanism of the observed increase are
still debated (Forkel ez al, 2016; Thomas ez al, 2016; Piao et al.,
2018). Therefore, the high sensitivity of the Arctic to climate
change and the increasingly important, yet uncertain, role that
Arctic ecosystems are playing in the global carbon cycle empha-
sises the need to advance the understanding and model represen-
tation of ecosystem processes and fluxes in the Arctic.
Photosynthesis responds, and acclimates, to both rising [CO,]
and temperature (Ainsworth & Rogers, 2007; Yamori ezal.,
2014; Dusenge ez al., 2019), and the response of photosynthesis
to these two environmental drivers provides a partial explanation
of the enhanced productivity at high latitudes. Currently,
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however, many terrestrial biosphere models (TBMs) markedly
underestimate CO, assimilation in high latitude (Arctic and
boreal) biomes (Graven ez al., 2013; Forkel ez al., 2016; Thomas
etal., 2016; Rogers et al., 2017b; Piao et al., 2018). An improved
representation of photosynthesis in TBMs is key step toward
reducing the model uncertainty associated with the carbon cycle
at high latitudes, and increasing confidence in model projections
of the response of high-latitude ecosystems to global change.

In most TBMs, leaf-level photosynthesis is represented by the
model originally proposed by Farquhar, von Caemmerer and
Berry (Farquhar ezal., 1980), hereafter the ‘FvCB model’. In the
simplest form of this model the rate of CO, assimilation (4,
umol CO, m ™25 ") is determined by the minimum of the ribu-
lose-1,5-bisphosphate(RuBP)-saturated CO, assimilation rate
(A.) and the RuBP-limited CO, assimilation rate (4, Eqn 1).

A = min(A4, 4). Eqn 1
A. and 4 are determined as described by Eqns2 and 3,
where V.. is the maximum rate of carboxylation
(utmol CO, m™?s™ "), G and O are the intercellular CO, and
O, concentrations (itmol mol™'), I'* is the CO, compensation
point in the absence of nonphotorespiratory mitochondrial respi-
ration in the light (pumol mol™), K. and K, are the
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Michaelis—Menten coefficients of Rubisco activity for CO, and
O,, respectively (UM), and Ry (Lmol CO, m *s") is the day-
time respiration rate that is not attributable to the photorespira-
tory pathway (von Caemmerer, 2000).

(G - r*) I/c,max

A=A Jema  p Eqn 2
K(148)+ ¢
_ @G-y
A= g R Eqn 3

The rate of electron transport (/, pmol electrons m™%s™ ') is
dependent on the empirical relationship with incident irradiance
(£, pmol quanta m %5 '). This relationship can be described by
a nonrectangular hyperbola (shown solved for /in Eqn4). The
initial slope of the response is determined by the maximum
quantum yield of electron transport of absorbed light
(1.0 mol electrons mol ™" absorbed quanta). The asymptote is
determined by /.y the maximum rate of electron transport. The
empirical convexity, or curvature, factor (0) determines the shape
of the response curve and reflects the transition between g,
and /., where 1 represents an abrupt transition and 0 represents
a long transition where both ¢gr, and /., co-limit J across a
wide range of irradiance. The absorptance (o) is the fraction of
incident visible light (¢. 400-700nm) absorbed by the leaf.

- [a(')ETa +.[max - \/([adDET.a +]max)2 - 46[0"¢ET43 max
/= 20 '
Eqn 4

The ¢pr, can be further described by Eqn 5, where fis the
fraction of light absorbed by photosystem II (PSII) that is not
used for photochemistry (von Caemmerer, 2000).

1 -f

ET.a = Ty Eqn 5

It has been repeatedly demonstrated that individual TBM
implementation of the FvCB model and its parameterisation has
a large influence on TBM outputs and yet there is considerable
uncertainty and model divergence over the structure and parame-
terisation of these critical equations (Bonan eral, 2011; Booth
etal., 2012; Lebauer etal., 2013; Rogers, 2014; Sargsyan ez al.,
2014; Rogers etal., 2017a; Ricciuto ezal., 2018). The commu-
nity is exploring a number of approaches that could enable
improved parameterisation of the FvCB model. These efforts
include measurement campaigns targeted at poorly represented
biomes (e.g. Varhammar ezal., 2015; Rogers etal., 2017b), the
development of a number of approaches to map key photosyn-
thetic parameters from remotely sensed data (Serbin ezal., 2015;
Croft eral., 2016; Alton, 2017), or approaches that link photo-
synthetic capacity to nutrient availability, or other abiotic drivers
(Walker eral, 2014; Ali etal., 2015; Norby etal., 2017; Smith
etal., 2019). With respect to high latitudes, some data on the key
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photosynthetic parameters V, . and /.. and their temperature
responses, are now available for Arctic and boreal species (van de
Weg etal, 2013; Heskel eral, 2014; Benomar eral, 2017;
Rogers eral., 2017b; Schedlbauer eral, 2018) addressing key
uncertainties in Eqns 2 and 4. Here we continue our effort to
advance model representation of photosynthesis in the high Arc-
tic by focusing on model parameterisation associated with Eqn 4,
that is the response of photosynthesis to irradiance. Specifically,
we focus on the parameters o, ¢ and 0, which are assumed to be
global constants in many TBMs. This addresses needs identified
by the modeling community for an improved understanding of
the limitations on photosynthesis at low temperature, and better
understanding of global variation in ¢ (Dietze, 2014).

The maximum theoretical quantum yield of CO, assimilation
(bco,) for Cs plants is 0.125, this means that 8 mol of quanta
are required to fix 1 mol of CO,. This estimate assumes full use
of incident light for photochemistry (that is =1 and /=0, see
Eqns4 and 5), whole chain electron transport (no cyclic pho-
tophosphorylation), and exclusive use of NADPH for photosyn-
thesis, and it ignores the potential requirement of amino acid
biosynthesis, nitrate reduction and lipid metabolism for ATP and
NADPH (von Caemmerer, 2000; Busch ezal, 2018). It is has
been previously shown that there is very little variation in the
maximum quantum yield of CO, assimilation of absorbed light
(dco,.. mol CO, mol ™" absorbed quanta) in Cj species grown
in nonstressful environments (Ehleringer & Bjorkman, 1977;
Osborne & Garrett, 1983; Long ez al., 1993) where ¢¢p, , mea-
sured in the absence of photorespiration varies little from the
mean of 0.092 (Long et al., 1993). However, reductions in ¢ and
0 can occur in response to environmental conditions that
decrease the potential for carbon assimilation, such as drought
and low- or high-temperature stress (Bolharnordenkampf ez al.,
1991; Groom & Baker, 1992; Ogren & Evans, 1992; Long ez al.,
1994).

Light energy constantly damages the photosynthetic apparatus
(Barber & Andersson, 1992; Takahashi & Murata, 2008). The
D1 protein in the PSII reaction center is the primary target for
photodamage and compromised D1 proteins are continually
degraded and replaced in a costly repair cycle (Aro ezal., 1993;
Murata & Nishiyama, 2018). As most plants encounter excess
light conditions on a daily basis, they attempt to minimise photo-
damage through the regulated thermal dissipation of absorbed
light, known as nonphotochemical quenching (NPQ) (Ort
2001). NPQ lowers the maximum quantum yield of PSII (¢psi);
this, in turn, results in a lower ¢COZ> but also a lower 0 (Leverenz
etal., 1990; Long et al., 1994; Zhu ez al., 2004). NPQ is benefi-
cial in conditions of saturating light as it protects PSII without
decreasing A. However, if NPQ remains engaged at low light the
reductions in ¢pcp, and O will limit A.

Low temperature exacerbates the effects of excess light, and
leads to deeper reductions in both ¢¢, and 0 but also prolongs
the effects of these reductions. Low temperature slows both the
D1 repair cycle associated with recovery from photodamage,
and the epoxidation of zeaxanthin associated with recovery from
photoprotection (Bilger & Bjorkman, 1991; Barber & Ander-
1992; Allakhverdiev & Murata, 2004; Takahashi &

sson,
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Murata, 2008). However, in chilling tolerant or cold hardened
plants, the reductions in ¢pcp, and 0 are greatly reduced (Long
etal., 1994; Zhu et al., 2004). Arctic plants grow at low temper-
atures but also experience excess irradiance regularly, suggesting
that they could be susceptible to reductions in ¢ and 0 caused
by photoprotection or photodamage. In addition, the 24 h irra-
diance during the Arctic growth season may slow recovery from
photoprotection or photodamage. Indeed, Arctic shrubs have
been shown to have high xanthophyll cycle activity relative to
other higher plants, suggesting acclimation or adaptation to
excess light (Magney eral., 2017). However, Arctic plants may
also be well adapted to mitigate such reductions as they have
evolved to grow at low temperature, and near-continuous light
during the peak season. Furthermore, acclimation of photosyn-
thesis to low growth temperatures should help to ensure high A
at low growth temperatures and therefore more effective utilisa-
tion of absorbed irradiance (Kumarathunge ezal, 2019). The
current parameterisation of ¢ and 0 in many TBMs assumes
that these parameters are constant for all PFTs and insensitive
to temperature, including Arctic vegetation (Dietze, 2014;
Rogers et al., 2017a). Furthermore, the theory and values used
to parameterise current TBMs are based on unstressed temper-
ate species. Here, we aimed to increase the understanding of
photosynthesis in the Arctic, and provide new data and insights
that could be used to advance the representation of high-
latitude photosynthesis in TBMs. Our objective was to evaluate
the current assumption in TBMs that Arctic species have high
and temperature-insensitive values of ¢ and 0 typical of
unstressed plants, and to consider how that assumption might
affect modeled leaf-level CO, assimilation.

Materials and Methods

Plant material

Measurements were made in 2016 on the coastal tundra at the
Barrow Environmental Observatory (BEO), near Barrow, AK
(71.3°N, 156.5°W; on 1 December 2016 Barrow was officially
renamed Utqiagvik). The landscape is characterised by ice-wedge
polygons and thaw ponds, and has a low diversity of vascular
plant species dominated by Carex aquatilis (Brown et al., 1980).
Mean annual air temperature is —12°C and mean annual precipi-
tation is 106 mm, with the majority of precipitation falling as
rain during the short summer. The soils are classified as Gelisols
and are underlain by permafrost, with active-layer thickness rang-
ing from 20 to 70 cm (Brown ez al., 1980; Bockheim ez al., 1999;
Shiklomanov ez al., 2010).

Gas exchange and spectroscopy measurements were made over
an area of ¢. 1 km? centered at 71.28°N, 156.65°W. This area is
characterised by zones of significant permafrost degradation,
standing water, dry high-centered polygons as well as relatively
undisturbed low-centered polygonal ground that collectively pro-
vided a range of habitats for the different plant species of interest.
Our goal was to measure the dominant vascular plants in this
landscape but also cover a range of Arctic PFTs (Chapin ezal.,
1996). In addition, our choice of species was constrained by the
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practical limitations of making gas exchange measurements. We
studied six species covering four Arctic PFTs: grasses, Arctagrostis
latifolia (R.Br.) Griseb, Arctophila filva (Trin.) Andersson;
sedges, Carex aquatilis Wahlenb., Eriophorum angustifolium Hon-
ck.; forbs, Petasites frigidus (L.) Fr.; and deciduous shrubs, Sa/ix
pulchra Cham. For each species we made measurements in a
number of stands that were separated by geomorphological fea-
tures to increase the likelihood that they were not members of the
same clonal colony (Shaver ezal, 1979). Measurements were
made over a 2-wk period in July 2016, beginning when the first
mature leaves of these species were available for gas exchange, but
before the onset of leaf senescence. Fig. 1 shows the ambient irra-
diance and air temperatures recorded during the period of our
measurement campaign. All measurements were made on the
most recent fully expanded mature leaves.

Gas exchange and derived parameters

Gas exchange measurements were made 77 situ using five LI-
6400XT gas exchange systems (Li-Cor, Lincoln, NE, USA) that
were all recently calibrated (<2yr) and zeroed just before
our measurement campaign using a common nitrogen
standard (99.9998% nitrogen, CO, < 0.5 ppm, H,O <0.5 ppmy;
Alphagaz 2, Air Liquide American Specialty Gases LLC,
Anchorage, AK, USA). The differential between sample and ref-
erence infrared gas analyzers was maximised by usinga 2 x 3 cm”
leaf chamber equipped with a light-emitting diode (LED) red/
blue light source (6400-02B LED light source; Li-Cor), and low-
ering the flow rate (typically to 350 pmol s ') until the CO, dif-
ferential between the sample and reference chambers was at least
10 pmol CO, mol ™', Flow rate was zeroed daily. We targeted
two measurement temperatures of 5°C and 15°C. On a few occa-
sions we were also able to make measurements at 25°C. These
leaf temperatures were attained using the Peltier-based tempera-
ture control of the gas exchange system and by taking advantage
of fluctuations in ambient temperature that occurred over the
course of our field campaign (Fig. 1). The relative humidity of air
entering the chamber was not controlled. Except for measure-
ments made at 25°C, the leaf vapor pressure deficit was always
below 1.0 kPa. After placing a leaf inside the leaf chamber, we
checked for leaks by vigorously blowing through a tube directed
at the edge of the gasket. When leaks were identified (fluctuations
in [CO,] in the sample cell > 1 pmol mol™! over 155) the leaf
was repositioned or leaks sealed with a silicone compound
(Molykote 111, Dow Corning, MI, USA).

Following standard procedures (Long & Bernacchi, 2003; Ber-
nacchi ezal., 20006), each leaf was first allowed to achieve steady-
state CO, and water vapor exchange. During this equilibration
period we controlled block temperature (74,04, reference cham-
ber [CO,], and monitored the gradual increase in 4 and stomatal
conductance (g) until rates were constant and stable. At this
point we switched temperature control from 7Tpjc t0 7jeqr and
control of [CO,] from the reference to the sample chamber and
set a [CO,] of 390 umol mol ™. Preliminary response curves
indicated that full light saturation was not always attained below
1500 pmol quantam™*s~'. Furthermore, we observed that on
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Fig. 1 Irradiance and air temperature during the 2016 thaw season in
Barrow (AK, USA). Mean (closed circles, a) and the 95t percentile (open
circles, a) daily daytime irradiance (umol m=2s~"), total daylighth d~"
(solid line, a) and mean (solid line, b) and minimum and maximum (dotted
lines, b) daytime air temperature. Data were collected from a
meteorological station located in the center of our field site that operated
for most of the thaw season (Lewin et al., 2016). The gray shaded area
indicates the period when we conducted our measurements. Thaw season
is defined as commencing on the first day of the first three consecutive
days in the calendar year with an average temperature above freezing,
and ending on the first day of the subsequent occurrence of 3 d with
average temperatures below freezing.

cloud-free days the solar irradiance incident on the adaxial leaf
surface of plants with largely erectophile leaf angle distributions
could be >2000 pmol m™?s " due to the high solar zenith angle
in the Arctic.

Each light-response curve consisted of 14 levels of irradiance
(2000, 1500, 1250, 1000, 750, 500, 375, 200, 150, 100, 75, 50,
20 and O0pmolm s '). Following an adjustment to each
new irradiance, data were logged as soon as irradiance
(SD<1pumolm s over 20s), Tiar (SD<0.2°C over 205s),
and 4 (SD<0.2 pmol m *s™ " over 20s) were stable. When the
leaf did not fill the leaf chamber, the enclosed leaf area was esti-
mated as described previously (Rogers ezal, 2017b) and data
recalculated using measured leaf area. Note that while we did
measure A in the darkness as part of our light-response protocol,
this measurement was not preceded by a sufficient dark adapta-
tion period to provide a reliable estimate of Ry, was not used in
our analysis and is not reported.

This protocol enabled us to measure the response of 4 to irra-
diance while maintaining control of leaf temperature and the
CO, concentration surrounding the leaf despite the wide range
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in incident light and A that occurred over the course of the mea-
surement. Supporting Information Fig. S1 shows examples of
raw gas exchange data for two species, P. frigidus, a broad-leaved
forb where the leaf filled the sample chamber and A. latifolia, a
graminoid, where the leaf partially filled the sample chamber,
measured at 5°C, 15°C and 25°C.

A nonrectangular hyperbola (Eqn 6) was fit to the resulting
photosynthetic light-response curves using a two-step process
whereby we first fitted the initial slope of the response curve
(Posada ezal., 2009), where ¢Gco,; is the maximum quantum
yield of CO, assimilation of incident light (mol CO, mol ™! inci-
dent quanta) and Ay, is the light saturated gross photosynthetic
rate (umol m™~%s™').

[¢COZ.iAsat.g - \/([(bCOz.i +Asatg)2 - 49[¢C02.iAsat.g
A= 26 ~

Eqn 6

After examination of our dataset we elected to omit data collected
below an irradiance of 20 pmol mol™' and above an irradiance
100 pumol mol ™" to minimise the potential overestimation of the
initial slope (Gco, ;) due to the influence of the Kok effect, and
to limit potential underestimation of ¢, ; by including points
from the transition zone (Singsaas etal, 2001; Farquhar &
Busch, 2017). In addition, after examination of individual curves
we further restricted maximum irradiance to 75 pmol mol™' in
several cases to ensure that the portion of the curve used to derive
{co,; was strictly light limited. For each curve, the derived
{co,; was then fixed in Eqn 6 and used to derive the remaining
parameters. As the initial slope of the response curve was fitted to
data above a potential Kok kink, the derived Ry could also be
considered to be equal to Rigp, but note the current debate over
this issue (Buckley eral, 2017; Farquhar & Busch, 2017;
Tcherkez et al., 2017). Our estimates of Ry were not corrected for
changes in G (Kirschbaum & Farquhar, 1987). The code used to
fit our measurements and derive parameters can be found
on GitHub (https://github.com/TESTgroup-BNL/Rogers_etal
NGEEArctic_LightResponse).

Absorptance

We measured leaf-level reflectance on each sample leaf using a
portable, full range (that is 0.35-2.5 um) spectroradiometer
together with a leaf clip assembly with an internal, calibrated
light source (HR-1024i; Spectra Vista Corporation, Pough-
keepie, NY, USA). Each measurement was referenced against a
standard (Spectralon™; LabSphere, Inc., North Sutton, NH,
USA) to calculate leaf reflectance from the ratio of target and
standard calibrated radiance measurements for each leaf. We
collected two to five measurements over the adaxial surface of
each leaf to calculate an average, depending on the leaf size
and morphology. Spectral discontinuities in the detector over-
lap areas were corrected using the SVC instrument software
before sample averaging and other quality control steps, as

described previously (Serbin eral, 2014) wusing the R-
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FieLDSPECTRA package (https://github.com/serbinsh/R-FieldSpec
tra). We then calculated leaf spectral absorptance using the
measured leaf reflectance as described previously (Shiklomanov
etal, 2016; Wu etal, 2018). The code used to invert the leaf
reflectance observations to derive leaf absorptance, input obser-
vations and example output can be found on GiTHuB (https://
github.com/TESTgroup-BNL/Rogers_etal_ NGEEArctic_Light
Response).

Models considered

For comparison with TBM formulations used to represent the
leaf-level response of photosynthesis to irradiance we considered
the models represented in the fourth and fifth phases of the Cou-
pled Climate-Carbon Cycle Model Intercomparison Project
(Friedlingstein ez al., 2006, 2014) and those identified in a review
of global-scale models (Smith & Dukes, 2013). As recently high-
lighted (Rogers ez al., 2017a), TBMs have considerable variation
in their underlying assumptions about leaf and canopy photosyn-
thesis, as do the models considered here (Table 1). In this study
we focused on TBM formulations associated with the leaf-level
response of photosynthesis to irradiance. To enable comparison
of our measurements of ¢cp,; with TBM model assumptions,
where o varied among TBMs, we calculated the quantum yield
of CO, fixation on an absorbed light basis (¢, ,) using Eqn 7
(von Caemmerer, 2000), where C is the average low light
(<100 pmol quanta m s ) intercellular [CO,] from our mea-
surements (5°C, 363 umol CO, mol % 15°C,
330 umol CO, mol ™ !; 25°C, 303 pmol CO, mol™'; the G at
10°C and 20°C was interpolated from these three points).

(G-T)

Gco,a = m(l = f)o Eqn 7

Eqns 8 (BETHY, CLM4.5, G’DAY, Orchidee), 9 (CanESM,
JULES) and 10 (ED2, IBIS, LM3) were used to scale I™* from
the model reference temperature (7. to the measured 7.
using model specific parameters, kinetic constants and tempera-
ture response functions (£, and Qyq, Table 1) as described previ-
ously (Collatz etal, 1991; Foley etal, 1996; Oleson etal.,
2013), where T, is the CO, : O, specificity ratio at 7., O; was
assumed to be 210 mmol mol ™' and R is the universal gas con-
stant (8.314 J mol ' K 1).

Ea( ’Heaf - Tref):l Eqn 8

I =T1, exp{ (Tret RTicar)

; O
rTlcaf = : Eqn 9

Tieaf — Tref
(™)
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O
Iy, = . Eqn 10

Tieat . .
5 E\ 1t mn T
T, €Xp

Statistical analysis

Due to our inability to collect data at all temperatures in all
species, and loss of some replication following initial data
quality assessment, the final replication was uneven (Table 2).
Spectral measurements were made on all leaves upon which
we attempted to make gas exchange measurements and
included some additional measurements that were not associ-
ated with gas exchange. A two-way analysis of variance
(ANOVA) was used to identify significant effects of species
and temperature associated with the data in Table2. Note
that due to poor replication of the serendipitous data collec-
tion at 25°C; the data from 25°C were not included in the
statistical analysis of species effects. However, we felt that it
was important to consider the data collected at 25°C because
of the scarcity of 25°C measurements in Arctic vegetation,
and because their inclusion allowed a direct comparison to
TBM assumptions at the common reference temperature
without the need for extrapolation. A one-way ANOVA was
used to identify significant differences in absorptance among
species. The effect of temperature on the pooled species data
(collected at 5°C, 15°C and 25°C) was assessed with a one-
way ANOVA. For a given temperature, two sample and one-
sample rtests were used to compare model assumptions to
observations.

Data availability

To allow for future reanalysis and synthesis of our data, and to
maximise further use of it by the modeling community, all our
data — including our raw gas exchange data — are available online
(Rogers et al., 2019; Serbin, 2019).

Results

Measured response of photosynthesis to irradiance

Table 2 shows the mean values for parameters derived from
individual photosynthetic light-response curves measured in
six Arctic species at 5°C and 15°C. Fig.2 shows synthetic
light-response curves plotted using the mean parameters pre-
sented in Table2. There was significant variation among
species in {co,; (F5,100=3.3, P<0.01), but not 0 (F500=
17, P=0.13), Au, (Fi0=10, P=045) or Ry
(F5100=1.1, P=0.38) and a significant effect of leaf tempera-
ture on all parameters (Pco, ;s Fi100=83, P<0.001; Ay
Fi100=158, P<0.001; Ry, Fj100=30, P<0.001) except 0
where the effect was only marginally significant (Fj 190 =3.4,
P=0.07). There was a significant species X temperature
interaction for &co,; (F5100=2.7, P<0.05) and A,
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Table 1 Terrestrial biosphere model (TBM) parameterisation associated with the response of photosynthesis to irradiance.
dco,.i2s $co, a25
- E,T* (mol CO, mol™ (mol CO; mol™

TBM o f Tret (°C) (umol mol™") Tref (kJ mol™") E.t Qo1 incident quanta) absorbed quanta)
BETHY 0.88 0.44 25 42.75 na 37.83 na na 0.047 0.041
CanESM 0.85 0.36 25 na 2600 na na 0.57 0.055 0.047
CLM4.5 0.85 0.15 25 42.75 na 37.83 na na 0.071 0.060
ED2 0.73 0.36 15 na 4500 na —5000 na 0.050 0.036
G'DAY 0.85 0.48 25 42.75 na 37.83 na na 0.044 0.037
IBIS 0.86 0.36 15 na 4500 na —5000 na 0.050 0.043
JULES 0.85 0.36 25 na 2600 na na 0.57 0.055 0.047
LM3 0.85 0.52 15 na 4500 na —5000 na 0.037 0.032
Orchidee 0.84 0.26 25 42.75 na 37.83 na na 0.062 0.052

The leaf absorptance (a), the fraction of light not used for photosynthesis (f), the model reference temperature (T.ef), the CO, compensation point in the
absence of mitochondrial respiration in the light at T,¢ (I'¢), the CO, : O, specificity ratio at Ties (tre), temperature response parameters used to scale 7°*
and t (E, I'™*, E, 1, and Qq0 7). The quantum yield of CO, assimilation of incident irradiance (¢¢o, ;) at 25°C was calculated using Eqns 8-10 using measured
intercellular CO, concentration, intercellular O, concentration =210 mmol mol~" and R=8.314 Jmol~" K~". The quantum yield of CO; assimilation of
absorbed irradiance (¢co, ,) at 25°C was calculated using Eqn 7, na, not applicable. TBM model abbreviations and key model references are: BETHY, Bio-
sphere Energy Transfer Hydrology scheme (Ziehn et al., 2011); CTEM, Canadian Terrestrial Ecosystem Model (Melton & Arora, 2016) CLM4.5, the Com-
munity Land Model v.4.5 (Oleson et al., 2013); ED2, Ecosystem Demography model v.2 (Medvigy et al., 2009); G'DAY, Generic Decomposition and Yield
model (M. Jiang et al., unpublished; Medlyn et al., 2000); IBIS, Integrated Biosphere Simulator (Foley etal., 1996); JULES, Joint UK Land Environment Sim-
ulator (Harper et al., 2016); LM3, Geophysics Fluid Dynamics Laboratory Land Model v.3; Orchidee, Organizing Carbon and Hydrology in Dynamic

Ecosystems model (Yin & Struik, 2009).

Table 2 Parameters fitted from the leaf-level response of photosynthesis to incident irradiance.

Tieaf (°C) Species (n) dco, i (mol CO, mol~" quanta) Asatg (umolm—2s™") 0 (dimensionless) R4 (umolm—2s~")
5.0+0.11 A. latifolia (11) 0.028 +0.002 11.0+£0.8 0.42 +£0.08 1.12+0.2
4.8+0.09 A. fulva (9) 0.029 +0.002 11.9+1.1 0.51+0.06 1.61+0.3
49+0.03 C. aquatilis (6) 0.025 +0.004 99+1.0 0.27 £0.07 1.72+0.3
5.0+0.10 E. angustifolium (8) 0.028 +0.004 13.3+0.6 0.344+0.09 1.73+0.4
5.0+0.05 P. frigidus (5) 0.028 +0.003 125+1.3 0.37 +£0.06 1.77 +£0.3
4.9+0.02 S. pulchra (11) 0.031 +0.002 10.2+0.9 0.59 +0.06 0.98+0.2
14.9 £0.02 A. latifolia (10) 0.034 +0.002 18.2+0.7 0.434+0.08 2.314+0.3
14.9 +£0.01 A. fulva (14) 0.046 +0.002 193+1.2 0.51+0.06 2.00+0.2
14.9 £0.01 C. aquatilis (6) 0.039 +0.002 22.7+1.0 0.38+0.03 2.67+04
14.9 +£0.02 E. angustifolium (11) 0.037 +0.002 189+1.1 0.52 +0.07 2.12+0.2
14.9 £0.03 P. frigidus (10) 0.051 +0.003 16.2+1.1 0.604+0.04 2.824+0.2
14.9 +£0.02 S. pulchra (11) 0.042 +0.002 20.5+1.0 0.56 +0.07 2.45+0.2
24.94+0.03 A. latifolia (4) 0.043 +0.003 185+1.0 0.67 +0.04 2.454+0.3
nd A. fulva nd nd nd nd
24.8+0.13 C. aquatilis (3) 0.056 +0.013 14.1+3.1 0.56 +0.05 1.61+0.6
24.8 E. angustifolium (1) 0.042 14.2 0.72 2.22
24.94+0.01 P. frigidus (5) 0.055 4+ 0.002 16.5+0.8 0.714+0.03 3.324+0.42
n.d. S. pulchra nd nd nd nd

Measurements were made in situ at three target leaf temperatures for six species growing on the Barrow Environmental Observatory, Barrow, AK. The
quantum yield of CO, fixation based on incident irradiance (¢co, ;). light saturated gross CO, assimilation rate (As.t ), the curvature factor (8), and the
daytime respiration rate (Rq). Parameters were derived by fitting Eqn 6 to individual light-response curves. Data are means + SEM. For a given measure-

ment temperature n is shown in parentheses following the species name, nd, no data. Note that estimates of Ry result from the regression of A to irradiance

above 20 uimolm™2 s~ an irradiance higher than the Kok kink.

(Fs5,100=3.8, P<0.005) but not 0 (F5100=1.5, P=0.19) or
Ry (Fs100=1.5, P=0.19). Leaf absorptance varied signifi-
cantly between species (F5 195 =203, P<0.001) ranging from
0.80 £0.006 (SEM) in C.aquatilis to 0.96+0.002 in
P. frigidus (Fig.3). The six species mean o was 0.88 £0.03
(SEM, n=0 species).
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Comparison of measurements with terrestrial biosphere
model parameterisation

The TBM ¢co,, at 25°C ranges from 0.032 mol CO, mol ™
absorbed quanta (LM3) to 0.060 mol CO, mol™! absorbed
quanta (CLM4.5, Table 1 and Fig. 4). This variation in {¢o, ,
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largely reflects the variation in the model assumption of the frac-
tion of light not used for photosynthesis (f; Table 1) with the
exception of ED2, which has a notably lower absorptance in
comparison with the other models (Table 1). Fig. 4 shows the
effect of temperature on TBM ¢, , modeled for our measure-
ment conditions. The TBM ¢, , decreases from 5°C to 25°C
due to the effects of temperature on I* (Eqn7) which reflects
both the decreasing solubility of CO, and affinity of Rubisco for
CO,; relative to O, as temperature increases. The boxes in Fig. 4
show the combined dataset of ¢, , for all species measured at
each temperature, including the limited number of measure-
ments we were able to make at 25°C. We found a significant
effect of temperature on ¢co,, (Fo122=44, P<0.001).
The mean ¢cp,, measured at 5°C (0.025 4 0.001 SEM
mol CO, mol ™" absorbed quanta, #=50 measurements) and
15°C  (0.037 4 0.001 SEM mol CO, mol ™' absorbed quanta,
n= 62 measurements) were 45% and 18% lower than the mean
dco,. measured at 25°C (0.045 =+ 0.003 SEM mol CO, mol ™'

@  lw

15 i ——-]

10 -~
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Photosynthesis (umol m= 5'1)
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Fig.2 Synthetic light-response curves at c. 5°C (solid lines) and 15°C
(broken lines) for Arctagrostis latifolia (a), Arctophila fulva (b), Carex
aquatilis (c), Eriophorum angustifolium (d), Petasites frigidus (e) and Salix
pulchra (f). Light-response curves were generated using Eqn 6 and the
derived parameters presented in Table 2. The response of photosynthesis
to irradiance measured at 25°C is not shown for individual species due to
insufficient replication.
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absorbed quanta, #=13 measurements). The comparison of
TBM and measured ¢cp,, showed that the mean model esti-
mate of {co,, at 25°C (0.044 £ 0.003 SEM mol CO, mol ™
absorbed quanta) was not significantly different from observa-
tions (%9) = 0.26, P=10.8). However, below 25°C model assump-
tions and measured (¢, , diverge. At 15°C the measured mean
Pco,a Was 35% lower (49)=4.8, P<0.001) than the TBM
mean (0.057 + 0.004 SEM mols CO, mol™" absorbed quanta)
and at 5°C the measured mean ¢cp,, was 60% lower (#9) =
8.7, P<0.001) than the TBM mean (0.063 4 0.004
SEM mols CO, mol ™! absorbed quanta, =9 models).

When combining data from all species, and including the lim-
ited data collected at 25°C, we observed a significant decrease in
0 with decreasing temperature (512, =>5.8, 2<0.005, Fig. 5).
The TBMs that adopt the formulation for electron transport
described by Eqn4 (Farquhar & Wong, 1984) assume that
0=0.7 (solid line Fig. 5). Our data show that, at 25°C, this is a
reasonable assumption (mean 6 at 25°C=0.65 =+ 0.03 SEM,
n=13 measurements, one sample #;)=1.5, P>0.05), but at
15°C mean 6 was 29% lower than the model assumption
(0.50 £ 0.03 SEM, 7= 062 measurements, one sample #;)=7.8,
P<0.001) and at 5°C was 38% lower (0.44 &= 0.03 SEM, =50
measurements, one sample 7;,=8.1, P<0.001).

Implications for modeled leaf-level CO, assimilation

To visualise the effect of the observed reductions in ¢, ; and 0
at low temperature we modeled leaf-level photosynthesis using
the equations of FvCB, where / was estimated using Eqn4.,
together with our measured o (Fig. 3) and the parameterisation
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0.95 | % ]
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g 090Ff ] o .
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Fig. 3 Tukey box plots showing the leaf absorptance of the six Arctic
species studied in this investigation. Box plots show the interquartile range
(box), median (solid line) and mean (broken line). The whiskers show the
lowest and highest datum still within 1.5x interquartile range of the lower
and upper quartiles. Outliers are shown as black circles (Arctagrostis
latifolia n =37, Arctophila fulva n =38, Carex aquatilis n=52,
Eriophorum angustifolium n=41, Petasites frigidus n =28, Salix pulchra
n=32).
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Fig. 4 Tukey box plots showing the quantum yield of CO, fixation on an
absorbed light basis ($o, ,) for all measurements made at 5°C (n =50),
15°C (n=63) and 25°C (n =13). Boxes show the interquartile range and
median (solid line). The whiskers show lowest and highest datum still
within 1.5x interquartile range of the lower and upper quartiles. Outliers
are shown as black circles. The lines behind the box plots show the ¢co, o
for terrestrial biosphere models (TBMs) calculated using Eqns 7-10, the
model specific parameterisation in Table 1 and measured C;.

and activation energies associated with V_ ., and /., measured
for these same species at our field site (Rogers ezal., 2017b).
Fig. 6 shows A modeled assuming that ¢¢p,; and 6 do not
decrease at low temperature, the current assumption in TBMs
(broken lines, Fig. 6), and when we account for observed reduc-
tions in ¢cp, ; and O at low temperature as observed in this study
(solid lines, Fig. 6). Fig. 6(c) shows that at 25°C model assump-
tions closely match observations but that as temperature is
reduced to 15°C (Fig. 6b) and further to 5°C (Fig. 6a) the TBM
assumptions result in a marked overestimation of A at subsaturat-
ing irradiance. At an irradiance of 400 ptimol m *s ! TBMs with
a fixed ¢ and 0 over estimate leaf level A by 1% at 25°C, 25% at
15°C and by 45% at 5°C (Fig. 6).
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Fig.5 Tukey box plots showing the measured convexity of the response of
photosynthesis to irradiance for all measurements made at 5°C, 15°C and
25°C. Boxes show the interquartile range and median (solid line). The
whiskers show lowest and highest datum still within a 1.5x interquartile
range of the lower and upper quartiles. Outliers are shown as black circles
(5°Cn=52,15°Cn=67,25°C n=14). The solid horizontal line indicates
the model assumption of 0.7 (Farquhar & Wong, 1984).
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Fig. 7 shows the normalised frequency of solar irradiance and
mean daily air temperature during the thaw season at four eddy
covariance sites located on the north slope of Alaska. The mean
daily air temperatures for these four tundra sites were all below
10°C and irradiance was typically low (<500 pmol m s Y.
Although these sites are typified by cold temperatures and low
irradiance they also regularly experience periods of high light (for
example Barrow; Fig. 1). Using Eqns 14 it is possible to model
the utilisation of incident quanta by the Calvin cycle and the
photorespiratory pathway (Long etal, 1994). Fig. 8 shows the
amount of light absorbed and utilised at 5°C, 15°C, and 25°C
for a typical Arctic plant (we used the average o, ¢pr; and 0
determined in this study). Fig. 8 clearly demonstrates that
these Arctic plants, like all plants, experience excess irradiance on
a daily basis. At a typical
500 pmol quantam s~ ", plants growing at 5°C can utilise 15%
of incident irradiance for photosynthesis whereas plants growing
at 15 and 25°C can utilise 26% and 44% of incident light respec-
tively. At high irradiance (1500 pmol quantam *s™") the
amount of light utilised increased only slightly but the percent of
the incident irradiance that is now in excess of requirements for
photosynthesis is 92%, 86% and 75% for plants growing at 5°C,
15°C and 25°C, respectively.

moderate irradiance of

Discussion

We have increased understanding of the response of photosynthe-
sis to irradiance at low temperatures in Arctic species and demon-
strated that, despite adaptation to a low growth temperature,
reductions in ¢ and 0 are readily observed at the low tempera-
tures commonly experienced by Arctic vegetation. Our analysis
shows that TBM parameterisation of ¢ and 0 provides an accu-
rate simulation of CO, assimilation at 25°C, the commonly used
reference temperature for temperature-mediated processes in
models (Rogers ezal., 2017a). However, because current TBM
representation of ¢ and 0 is insensitive to decreasing tempera-
ture, overestimation of these parameters at low temperature in
TBMs has the potential for a marked overestimation of CO,
assimilation at subsaturating irradiance across the high Arctic.

The significant species effect and interaction between species
and temperature (5°C and 25°C) for ¢, ; suggests a differential
response to low temperatures among these species (Table 2).
When considering this observation, in conjunction with the lim-
ited data collected at 25°C, it suggests that the temperature sensi-
tivities of o, ; to low temperature are different among species.
For example the Gco,; in P. frigidus drops 4% between 25°C
(0.053) and 15°C (0.051) but then 44% between 15°C and 5°C
(0.028), whereas in C. aquatilis oo, ; drops 22% between 25°C
(0.050) and 15°C (0.039) and then 38% between 15°C and 5°C
(0.024). This implies that ¢cq, ; in C. aquatilis shows a greater
sensitivity to reductions in temperature than P. frigidus. Leaf
absorptance varied significantly among species (0.80-0.96;
Fig. 3) but on average was close to model assumptions (0.73—
0.88, Table 1), suggesting that TBMs using a value close to 0.88
(the six species mean) are accurately parameterizing leaf absorp-
tance in the Arctic PFT.
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Fig. 6 The response of photosynthesis to irradiance at 5°C (a), 15°C (b) and 25°C (c). Photosynthesis was modeled using the Eqns 1-7. The model was
parameterised based on previous work on these Arctic species (Rogers et al., 2017b). The solid lines show photosynthesis modeled using the mean
absorptance (a, 0.88), quantum yield of CO, assimilation of incident irradiance (¢co, ;, 5°C, 0.028; 15°C, 0.042; 25°C, 0.051) and convexity (0, 5°C, 0.44;
15°C, 0.5; 25°C, 0.65) observed in this study. The broken lines show photosynthesis modeled using the mean terrestrial biosphere model (TBM)
assumption for o (0.84), the fraction of light absorbed by photosystem Il that is not used for photochemistry (f, 0.37) and 6 (0.7), where f and 6 do not

decrease at low temperature.
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Fig. 7 Normalised frequency distribution (arbitrary scale) of half hourly irradiance (a) and the mean daily air temperature during the thaw season (b). Data
were retrieved from four Arctic tundra Ameriflux sites; Barrow, latitude 71.3225, longitude —156.6259, elevation 1 m, Atqasuk, latitude 70.4696,
longitude —157.4089, elevation 15 m, the Imnavait creek watershed, latitude 68.6058, longitude —149.3110; elevation 920 m, and Ivotuk, latitude
68.4865, longitude —155.7503, elevation 568 m (Bret-Harte et al., 2016; Oechel & Zona, 2016a,b,c). Thaw season is defined as commencing on the first
day of the first three consecutive days in the calendar year with average temperature above freezing, and ending on the first day of the subsequent
occurrence of 3 d with average temperatures below freezing. For a given site, data were taken from the most recent year available with complete or near
complete data coverage during the thaw season period. Irradiance frequency is calculated using a bin size of 100 pmol m~2s~" for all data in which

irradiance > 50 pmol m 25"

The ¢¢p, is known to be highly conserved in unstressed plants
(Ehleringer & Bjorkman, 1977; Osborne & Garrett, 1983; Long
etal, 1993). Our estimate of ¢cp,, (0.045) at 25°C is lower
than these upper estimates in the literature. For example, the high
$co,. measured by Long eral (1993) when converted to our
photorespiratory measurement conditions using Eqn 7 is 0.075.
However, this may reflect the growth and measurement condi-
tions of the plants. Many studies reporting high ¢¢(, are from
healthy, unstressed plants that were often dark adapted before
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measurement or grown or measured at low irradiance (Long
eral., 1993; Singsaas et al., 2001; Kromdijk ez al., 2016). Singsaas
etal. (2001) surveyed measurements of ¢c(, from the literature
and reported that field-measured ¢p, values were consistently
lower (0.049 +£0.01 SD) than these high estimates from
unstressed plants. This finding suggests that the realised ¢, in
the field may be subject to reductions from maximum ¢¢p, due
to photodamage and photoprotection mechanisms that are likely
to occur under field conditions. Our estimate for ¢, , (0.045)
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Fig. 8 Modeled absorption (black line) and utilisation (colored lines) of
incident irradiance by photosynthesis at 5°C (blue), 15°C (green), and
25°C (red). Utilised light was calculated assuming whole chain electron
transport and a ratio of 2 quanta per electron (von Caemmerer, 2000)
calculated using Eqns 1-4 as described previously (Long et al., 1994).
Temperature-specific parameterisation of convexity (0), and the quantum
yield of CO, assimilation of incident irradiance (¢, ;), and absorptance
(o) were taken from Table 2.

is comparable with the mean value of the TBMs evaluated here
(0.044) suggesting that models are, on average, using estimates of
¢ that reflect the realised ¢p, observed under field conditions,
but note the wide range of TBM parameterisation (Fig. 4).

Our observations of a reduction in ¢, , and 0 with decreas-
ing temperature in Arctic plants are consistent with observations
from plants measured in temperate systems in which reductions
in ¢co, ., and O were also observed when plants experienced low
temperatures (Bongi & Long, 1987; Groom ez al., 1991; Groom
& Baker, 1992; Ogren & Evans, 1992; Long eral., 1994). At
high latitudes ¢pgyr was shown to increase with winter warming
of evergreen sub-Arctic shrubs in northern Sweden (Bokhorst
etal., 2010); this result is consistent with our observations of
reduced ¢cp, at low temperature. These, and other studies
(Marchand ez al., 2006; Albert et al., 2012) that measured ¢pgy
in Arctic and sub-Arctic species, have also shown a range of ¢pgyr
(0.55-0.75) that is consistent with stressed vegetation, which is
in contrast with the higher (0.83) and remarkably consistent
dpsir of unstressed leaves (Baker, 2008). In Arctic shrubs, includ-
ing S. pulchra, high xanthophyll pigment pools and high de-
epoxidation of those pools support the potential for high xantho-
phyll cycle activity, and the deployment of photoprotective
mechanisms in Arctic species that are consistent with acclimation
or adaptation to stress (Magney ez al., 2017).

The irradiance and temperature conditions required to induce
photoprotection, or cause photodamage in plants is complex, as
are the conditions determining the dynamics and magnitude of
the recovery process. Both induction and recovery are dependent
upon a myriad of additional factors, for example leaf angle, leaf
orientation, leaf canopy position, the proportion of direct and
diffuse irradiance, the recent irradiance and temperature to which
the plants have acclimated, season and leaf age (Bongi & Long,
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1987; Long eral., 1994; Garbulsky eral, 2011; Williams ez al.,
2014; Wong & Gamon, 2015a,b; Slattery etal, 2018). The
dynamics of recovery are highly variable, ranging from rapid
(min to h) recovery from photoprotection or prolonged (days)
depression of photosynthetic performance following severe pho-
todamage (Bolharnordenkampf etal, 1991; Farage & Long,
1991; Groom & Baker, 1992; Ogren & Evans, 1992; Long ez al.,
1994; Zhu et al., 2004; Takahashi & Murata, 2008; Kromdijk
etal., 2016; Slattery et al., 2018). An important next step for field
research will be to determine the dynamics of induction and
recovery of photoprotection and photodamage in Arctic biomes.
Remote sensing offers one approach that could be used to
advance understanding of the dynamics of photoprotection
through quantification of xanthophyll cycle pool sizes and de-
epoxidation state (Gamon, 2015).

All the TBMs considered here assume constant values for ¢
and O that are also identical for all PFTs. If the reductions in ¢
and 0 observed at low temperature in this study are a pan-Arctic
phenomenon, the typically subsaturating irradiance (Fig. 7a), in
combination with regular episodes of saturating irradiance
(Fig. 1), and the low mean daily air temperatures (Fig. 7b), sug-
gest that current TBMs will have the potential to overestimate A.
Previous theoretical analysis has shown that slow reversibility of
NPQ at low temperature could reduce carbon gain by >30% in
crop canopies (Zhu ezal., 2004) and suggests that ignoring the
effects of photochemical protection and photodamage in Arctic
PFTs could lead to a potentially large overestimation of carbon
uptake at high latitudes. It is important to note that our model-
ing exercise is limited to a leaf-level assessment, with a single for-
mulation of the many possible variants of the FvCB model of
photosynthesis currently implemented in TBMs. Furthermore,
the current parameterisation of TBMs, notably the widespread use
of low values for V... (Rogers etal, 2017b), would mask the
overestimation of A at low temperature and low irradiance result-
ing from not including low temperature sensitivity of ¢ and 6. In
this case, TBMs might get the right answer for the wrong reasons.

Given that leaf-level physiology is critical for robust projection
of the response of the terrestrial biosphere to a changing climate,
particularly rising [CO,], it is essential that leaf physiology is rep-
resented accurately. We encourage the modeling community to
further explore the impact of low temperature reductions on ¢
and 0 in models with realistic parameterisation of Arctic vegeta-
tion derived from available data (Rogers ezal, 2017b), trait-
environment correlation (Ali ezal., 2015) or optimisation theory
(Smith eral. 2019), and an updated understanding of thermal
acclimation (Kumarathunge ez al., 2019).

Our work clearly demonstrates that low temperature photo-
protection or photodamage in Arctic vegetation is readily
observed. These findings contradict the assumptions made by
current models (Dietze, 2014). However, a further understanding
of the conditions under which reductions in ¢ and 6 can occur is
required to fully understand the implications of a reduced ¢ and
0 for the Arctic carbon cycle, and to enable confident implemen-
tation of this phenomenon in TBMs. As high latitude ecosystems
warm rapidly over the next 50 yr (USGCRP, 2017), leaf-level

photosynthesis will increase due to the strong temperature
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dependency of photosynthesis. Our data suggest that the amelio-
ration of the temperature-dependent reduction in ¢ and 0 result-
ing from warmer growth temperatures may also contribute to
anticipated increases in carbon gain in the Arctic as the climate
warms.
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