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ABSTRACT

Results from the generation of a multidecadal gridded climatic dataset for 57 yr (1950–2006) of daily and

monthly precipitation (PTotal), maximum temperature (Tmax), and minimum temperature (Tmin) are pre-

sented for the important agricultural and forest products state of Wisconsin. A total of 176 climate stations

were used in the final gridded dataset that was constructed at 8-km (5.09) latitude–longitude resolution using

an automated inverse distance weighting interpolation. Accuracy statistics for the interpolated data were

based on a rigorous validation step using 104 first- and second-order climate observation stations withheld in

the production of the gridded dataset. The mean absolute errors (MAE) for daily minimum and maximum

temperatures averaged 1.518 and 1.318C, respectively. Daily precipitation errors were also reasonable,

ranging from 20.04 to 0.08 mm, on average, across all climate divisions in the state with an overall statewide

MAE of 1.37 mm day21. Correlation analysis suggested a high degree of explained variation for daily

temperature (R2 $ 0.97) and a moderate degree for daily precipitation (R2 5 0.66), whereby the realism

improved considerably for monthly precipitation accumulation totals (R2 5 0.87). Precipitation had the best

interpolation accuracy during the winter months, related to large-scale, synoptic weather systems, and

accuracy was at a minimum in the wetter summer months when more precipitation originates from local-to-

regional-scale convective forcing. Overall the grids showed coherent spatial patterns in temperature and

precipitation that were expected for this region, such as the latitudinal gradient in temperature and longi-

tudinal gradient in precipitation across the state. The grids will prove useful for a variety of regional-scale

research and ecosystem modeling studies.

1. Introduction

An increasingly prognostic understanding of the key

terrestrial–atmospheric feedback mechanisms has been

gained through the development and proliferation of

ecosystem process models, which utilize climatic inputs

to drive plant physiological processes (Churkina and

Running 1998; Kucharik et al. 2000; Thornton et al.

2002; Turner et al. 2006). With this increased process-

based understanding of biospheric responses to climate

change and variability, there is a rapidly rising demand

for quality, high-resolution gridded climatological da-

tasets that provide detailed information on the variability

of temperature and precipitation at regional scales.

These data enable the spatially explicit investigation of

complex near-surface–atmosphere interactions over a

larger, continuous region than the original climate sta-

tion data permit.

Spatial interpolation of climatic information further

facilitates basic research and numerous applications such

as validation of climate models (Widmann and Breth-

erton 2000), monitoring or detecting and assessing po-

tential impacts of regional climate change (Lobell et al.

2006; Zhang et al. 2000), risk assessment (Kaplan and

New 2006; New 2002), and the impact of human activ-

ities on regional environments and ecosystem services,

which is important for local policy decisions and natural

resource management (Cooter et al. 2000). For exam-

ple, the use of gridded climate data for the study of

managed systems has increased in recent years with the
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ever important and expanding need to assess the impacts

of historic and recent climate change on observed agri-

cultural crop yields (e.g., Kucharik and Serbin 2008).

Together with satellite observations, gridded meteoro-

logical variables can also provide important information

on the dynamics of land surface processes (e.g., Hong

et al. 2007; Zhang et al. 2004).

However, the availability of high-resolution meteo-

rological data has been problematic, mainly owing to the

difficulties of extrapolation of data from sparse obser-

vation networks to a regular grid over very broad regions

and often complex terrain. Spatial interpolation of daily

climate patterns also presents greater complexities than

annual, long-term, or even monthly means. Interpolating

daily data requires that the model captures multifaceted

patterns in climate related to weather fronts, land cover,

large bodies of water, and often elevation (Daly et al.

2002). Operational considerations, such as efficient daily

model parameterization and optimization, have prohib-

ited the development of daily gridded temperature and

precipitation datasets.

Therefore, many existing datasets (e.g., Kittel et al.

2004; McKenney et al. 2006; New et al. 2002; Thornton

et al. 1997) may not be suitable for a variety of regional-

scale applications, such as crop monitoring, risk and

climate change assessment due to the spatial scale, time

step (i.e., monthly, annuals, or normals), or the use of

stochastic methods for daily weather generation. Fur-

thermore, the temporal extent of high-resolution me-

teorological data may not be sufficient for long-term

analyses (e.g., Thornton et al. 1997).

This paper describes the methodology used to gen-

erate a high-resolution daily and monthly multivariable

(i.e., temperature and precipitation) gridded historical

climatic database for the period 1950–2006, covering the

important forestry and agricultural state of Wisconsin,

located in the upper Midwest region of the continental

United States. We then present a summary of observed

weather patterns in Wisconsin and a detailed accuracy

assessment of the climate grids using stations withheld

from the interpolation process. A summary of the po-

tential uses and limitations of the data is then presented.

2. Data and methodology

a. Study region

The physiography of Wisconsin is characterized by

generally minor topographic variations, with gently rolling

landscapes. Elevation varies from a minimum along the

shore of Lake Michigan to a peak of 595 m above sea level

in Price County. Apart from the driftless area, Wisconsin

is mostly covered by glacial drift (about 80%) and

northern portions are underlain by pre-Cambrian bedrock

(Curtis 1959; Dopp 1913). Climate is humid-continental

(Moran and Hopkins 2002) with cold winters (mean Jan-

uary temperature from 1950 to 2006 was 29.58C) and mild

to humid summers (mean July temperature from 1950 to

2006 was 21.18C), moderated by the Great Lakes. Total

annual precipitation averaged 808 mm (6165 mm) across

Wisconsin. A few medium to large population centers are

found within Wisconsin (e.g., cities of Milwaukee, Madi-

son, and Green Bay) while the remaining land comprises

smaller cities, towns, and tribal lands, with farmlands and

national and state forests composing ;45% and ;45.3%

of the land area, respectively.

b. Climate data

Time series of daily climate observations of maximum

temperature (Tmax), minimum temperature (Tmin), and

total precipitation (PTotal) from the cooperative observer

(COOP) station network for the years 1950–2006

were obtained directly from the National Climatic

Data Center Web site (http://www.ncdc.noaa.gov/oa/

ncdc.html/). The COOP stations used were distributed

relatively evenly across Wisconsin (Fig. 1a) with a slightly

lower station density toward the north. While the research

objective was to produce a dataset for Wisconsin, we also

chose stations from Illinois, Iowa, Michigan, and Minne-

sota that were within 70 km of the Wisconsin State

boundary to mitigate edge effects during interpolation

(Fig. 1a). Stations that did not have at least 53 yr of data

recorded (1950–2006) were removed to avoid synthetic

bias through the addition of stations during interpolation.

The retained Wisconsin stations amounted to approxi-

mately 56% (144/315) of the potential station data. Sev-

eral stations in the COOP network only provided pre-

cipitation and thus there were more daily precipitation

observations than temperature in each climate division

(CD) (Table 1). The final data record was composed of a

maximum of 133 Tmax and Tmin stations and 176 PTotal

COOP observation stations within Wisconsin and neigh-

boring states (Fig. 1a). Reported station elevations ranged

from approximately 179 to 541m. The average first-order

(i.e., first nearest neighbor) distance was 21.2 km (from 3.2

to 65.4 km) and 25.0 km (from 4.3 to 65.4 km) for pre-

cipitation and temperature stations, respectively.

c. Preprocessing and quality control

Several data quality and consistency checks were

performed on the primary station list (i.e., those with

$53 yr of generally contiguous data) prior to further

data processing steps. The primary station list was fil-

tered separately for temperature and precipitation

observations. Values of precipitation less than zero or

flagged as erroneous values were replaced with a miss-

ing data flag value (i.e., 29999). In addition, values of
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Tmin . Tmax and values of Tmax or Tmin less than 2508C

or greater than 558C (i.e., outside historical bounds)

were also replaced with the flag value. These steps were

intended to screen out implausible values due to ob-

server or data entry error, as well as misinterpretation of

written data fields.

Finally, we assessed the homogeneity of each primary

station prior to further processing steps. We evaluated

station history metadata to account for errors and dis-

continuities due to the relocation of stations throughout

the record (Easterling et al. 1996; Peterson et al. 1998).

If a station was found to change geographical position

and this change was not large (,10 km), we retained the

station in the dataset and corrected the coordinates to

reflect the most current position; the occurrence of

station relocations was less than 2% (3 out of 176). Thus

all stations in the dataset maintained one location

for the entire record. In addition, the moves we could

account for occurred in the early part of the record

(,1960) and thus should not greatly influence results

obtained from trend analysis, such as relocations from

urban to rural stations (Hansen et al. 2001).

d. Filling missing data

Estimates for missing data were generated with the

multiple imputation (MI) procedure in the statistical

FIG. 1. (a) The spatial distribution of climate stations used in this research, located throughout

Wisconsin by climate division and in the neighboring states of Illinois, Iowa, Michigan, and

Minnesota. (b) The number of maximum available stations per year (the actual number used in

the gridding and validation is expressed in the text).
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program SAS (version 9; see http://support.sas.com/

documentation/onlinedoc/91pdf/index.html). The MI

procedure is a Monte Carlo technique in which missing

values are replaced or ‘‘imputed’’ with several plausible

values generated by stochastic modeling of the observed

data variability (Levy and Lemeshow 1999; Rubin

1987; Schafer 1997). The imputed datasets are com-

plete, with observed nonmissing data remaining un-

changed, while the original missing observations are

replaced with new values. This procedure produces

data that can then be used with normal parametric

statistics (Levy and Lemeshow 1999). Multiple impu-

tation has been utilized in a range of disciplines such as

medical research (Barnard and Meng 1999), public and

occupational health (Emenius et al. 2003; Zhou et al.

2001), and more recently for environmental and global

change sciences (Hanson et al. 2007; Hui et al. 2004).

More detail on the multiple imputation technique for

estimation of missing data can be found in Rubin

(1987) and Schafer (1997), as well as in Hui et al.

(2004) for environmental monitoring and modeling

purposes. There were approximately ,1% and ,1.5%

missing or flagged daily observations for temperature

and precipitation, respectively. The MI procedure was

only used for brief periods of missing data (,1 month)

and imputed values were held within historical bounds.

A final set of consistency checks was run on the filled

datasets to ensure that the estimates did not violate

obvious constraints associated with recording maxi-

mum and minimum temperatures, such as those de-

scribed in the previous section.

e. Gridding interpolation

The interpolation of daily climate data, from the irreg-

ularly spaced station locations to the nodes of a regularly

spaced 8-km grid, was accomplished using the inverse

distance weighting (IDW) spatial interpolation algo-

rithm. While other methods were initially explored (e.g.,

kriging, thin plate splines), the high station density and

low topographic complexity of Wisconsin yielded com-

parably high-quality results using the less complex IDW

interpolator. Further, the complexity of accurately mod-

eling the daily covariance between observation stations

and the reduction in variance in the interpolated data field

over flatter topography (Shen et al. 2001) restricted the

utility of both kriging and splines, respectively, in this

study.

The IDW algorithm determines unknown cell values

using a linear-weighted combination of sample points

within a specific neighborhood (Bolstad 2002; Nalder and

Wein 1998); in this analysis we used the 12 nearest sta-

tions, which is common (e.g., Jarvis and Stuart 2001).

Inverse distance weighting interpolation explicitly im-

plements the assumption of spatial autocorrelation, or

objects that are closer together are more similar in

character than those that are farther apart. Furthermore,

IDW is an exact interpolator, whereby the interpolated

surface passes through all points whose values are known

(i.e., IDW honors the observed data points) and as such,

the maximum and minimum values in each interpolated

surface can only occur at the observed locations. Given

this criterion, exact interpolation techniques tend to

dampen extreme values at unsampled locations, as is the

case with IDW, but preserve the natural variability (i.e.,

roughness) in the data, which is important for preserving

the spatial patterns at a regional scale.

The final IDW grids were produced at 59 (8 km)

latitude–longitude resolution using an automated pro-

cedure programmed using the object-oriented language

ArcObjects in the Environmental Sciences Research

TABLE 1. Summary of daily minimum air temperature (Tmin), maximum air temperature (Tmax), and precipitation (PTotal) between

1950 and 2006 by CD for the Wisconsin COOP stations used in this study, where N is number of daily observations; mean is the average of

the daily values; range is minimum–maximum span of the data; PTotal yr21 is average annual precipitation; PTotal day21 is average total

precipitation on days with precipitation; and max PTotal is maximum precipitation on days with precipitation.

Grouping

Tmin (8C) Tmax (8C) PTotal (mm)

N Mean Range N Mean Range N PTotal yr21 PTotal day21 Max PTotal

Wisconsin 2 109 611 1.05 248.3 to 33.3 2 109 398 12.61 233.3 to 42.8 2 554 520 807.82 7.32 275.3

By CD

1 364 220 20.72 248.3 to 27.2 364 614 11.63 232.3 to 40.6 402 462 796.69 7.29 206.0

2 328 928 20.87 245.0 to 27.8 328 959 11.11 233.3 to 39.4 471 570 813.09 6.72 210.1

3 84 287 0.35 240.0 to 26.1 84 287 12.27 228.3 to 39.4 104 282 792.84 7.23 162.6

4 243 197 1.42 244.4 to 28.3 243 137 13.10 229.4 to 42.2 323 922 803.93 7.74 187.2

5 221 946 1.03 243.3 to 27.8 221 704 13.15 229.4 to 41.7 244 897 803.84 7.43 239.5

6 229 070 2.35 240.6 to 28.9 228 916 12.25 229.4 to 42.2 267 641 761.88 6.93 275.3

7 225 139 2.18 243.3 to 33.3 225 109 13.78 228.9 to 42.8 245 469 834.55 7.94 210.8

8 186 283 2.43 241.7 to 28.3 186 192 14.04 227.2 to 40.0 226 429 842.58 7.82 256.5

9 226 544 2.99 240.0 to 28.9 226 483 13.52 227.8 to 42.8 267 851 821.60 7.39 250.7
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Institute (ESRI) geographical information system soft-

ware ArcGIS (version 9.2) following Eq. (1):

Zj 5
�(Zi/d

n
ij)

�(1/dn
ij)

, (1)

where Zj is the estimated value for an unknown point at

location j, dij is the distance from known point i to un-

known point j, Zi is the observed value for known point i,

and n is the power parameter, controlling the significance

of surrounding points. With higher n values, more em-

phasis is placed on nearby stations while a smaller n

creates a smoother surface (less detail), with more em-

phasis (i.e., higher weighting) placed on more distant

stations. A power of two (i.e., the weighting function

varies with the inverse square of the distance) is com-

monly used with IDW (Bolstad 2002; Jarvis and Stuart

2001; Nalder and Wein 1998). Once IDW was chosen, we

analyzed a subset of data to determine the optimum n to

be use with the automated gridding of temperature and

precipitation; we used data for all four of Wisconsin’s

meteorological seasons. The criterion for choosing the

optimal n was the value that best minimized the overall

mean bias errors (see validation section), for an entire

year. We chose a value of n equal to 1.1 for Tmax and Tmin

and 2.0 for precipitation (PTotal) to preserve the broad

patterns in temperature and local variation (i.e., spatial

detail) in precipitation events.

f. Methodology of product validation

To evaluate the spatial coherence and overall accur-

acy of the interpolated climate surfaces, observation

stations initially withheld from the development of the

dataset were used to perform an independent valida-

tion. There were 104 withheld or validation stations

available with sufficient observational record to be used

in the validation, for the 1950–2006 period. Several

stations had variable records (e.g., 5–49 yr), but none-

theless provide an extremely useful test of our output

climate grids; stations varied by climate division with a

minimum of 9 to a maximum of 21. Furthermore, the

number of stations and distribution (Fig. 1a) are com-

parable to or better than other studies using withheld

stations for validation (e.g., Price et al. 2000; Vicente-

Serrano et al. 2003). The geographic locations for each

station were used to extract an interpolated value from

each gridcell centroid for each climate surface (Tmax,

Tmin, and PTotal) and organized into a consistent time

series for comparison with the observed values at daily

and monthly time steps. The performances of the IDW

interpolated surfaces were then evaluated with the

mean error (ME) and mean absolute error (MAE)

following Eqs. (2) and (3):

ME 5
1

n
�

n

i51
(y9i � yi) and (2)

MAE 5
1

n
�

n

i51
( y9i � yij j), (3)

where yi is the observed value at the validation station,

y9i is the predicted value for the grid cell encompassing

the station, and n is the total number of points. The ME

provides an assessment of the trend in residuals or bias,

either producing generally higher (i.e., overprediction)

or lower (i.e., underprediction) values with respect to

observations. The MAE is an absolute measure of the

deviation of the predicted (i.e., cell value) from the

observed mean at each validation station, ignoring its

sign and thereby providing an indicator of the over-

all performance of the interpolator. In general, high

MAEs indicate poor interpolation performance, while

low MAEs suggest high confidence in the gridded values,

such that the interpolated values reproduce the obser-

vations well (Daly 2006; Willmott and Matsuura 2006).

We avoid using the root-mean-square error (RMSE)

as this statistic generally inflates, often nonmonotoni-

cally, the mean errors and thus provides an overly am-

biguous measure of predicted surface accuracy, especially

when error variance is large (Willmott and Matsuura

2005, 2006). We instead provide the standard deviation of

signed errors (i.e., MEs) to evaluate the spread in the

distribution of errors. The evaluation of the climate sur-

faces allowed the assessment of 1) the realism and rea-

sonableness of the spatial interpolated values and 2) the

accuracy of the gridded values for unknown (i.e., valida-

tion) locations as the interpolation is essentially a pre-

diction of values at locations for which physical data do

not exist. Unless noted otherwise, all statistical tests were

considered significant at the a 5 0.05 level.

3. Results

a. Observed climate patterns

A summary of the observed patterns in climate across

Wisconsin, derived from the final primary station obser-

vation dataset, is shown in Table 1. In general, average

Tmin and Tmax steadily increased from the northwest to

the southeast, with CDs 1 and 2 having the coolest and

CDs 8 and 9 having the warmest observed temperatures.

For CD 6, Lake Michigan decreases the average annual

maximum temperature, averaging 1.48C cooler than sur-

rounding CDs while Tmin is 1.38C warmer than other CDs

within the same latitudinal band (i.e., CDs 4 and 5). Mean

annual air temperatures (MATs) ranged from a mini-

mum of 5.128C to a maximum of 8.258C, for CDs 2 and 9,

respectively, and averaged 6.88C for the entire state.
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Precipitation totals were generally higher in the

southern (CDs 7–9) than northern CDs (Table 1).

Extreme high-precipitation events were moderately

similar across the state with generally higher values in

the south-central to southeast climate divisions (CDs

5–9). The distribution of events was dominated by days

with no measurable precipitation (i.e., 0 mm), followed

by precipitation events #5 mm day21 composing 9%

of the observed record (Fig. 2). As shown in Fig. 3,

statewide observed monthly precipitation follows a

simple seasonal cycle and is highest in the sum-

mer (June–August) and at a minimum in the winter

(December–February). For a given month, the interan-

nual variability in total precipitation can be 42%–64%

over the record (1950–2006). The maximum and mini-

mum observed statewide annual rainfall was 972.6 mm

(6137.9 mm) and 532.8 mm (6102.3 mm) in 1951 and

1976, respectively.

b. Interpolation results

The substantial number of daily grids generated here

(64 509 in total) made it impossible to illustrate the daily

sequences of climate grids over the entire climate rec-

ord. Instead we provide examples as seasonal means

representing the World Meteorological Office (WMO)

30-yr normal period of 1971–2000 in Fig. 4. For winter

and summer Tmax and Tmin the spatial patterns exhibit

the expected decreasing average temperature with in-

creasing latitude, with slightly warmer and cooler tem-

peratures near Lake Michigan in the winter and sum-

mer, respectively (Fig. 4). Patterns of gridded precipi-

tation (PTotal) clearly indicate that the summer months

are spatially the wettest (mean gridded precipitation of

314 mm for June–August) in Wisconsin with higher

total accumulation in the western half of the state, while

the winter months are the driest (mean gridded pre-

cipitation of 96 mm for December–February). The

greatest accumulation of winter precipitation was located

in the Lake Superior snowbelt and in the southeast, po-

tentially attributed to lake effect snow accumulation but

also correlated with warmer temperatures that increase

the ability of air to hold more moisture. During the

summer months the south-central and southwest por-

tions of the state are warmest, with daytime high tem-

peratures averaging about 288C and nighttime low tem-

peratures between 148 and 158C. During the summer

months, the spatial coherence of the Tmax grids highlights

the influence of Lake Michigan on Wisconsin’s climate,

with cooler temperatures closest to the lake front, in-

creasing steadily inland (Fig. 4).

c. Validation of climate grids

The full available record for all primary stations used in

the generation of the daily (and monthly) gridded climate

FIG. 2. (a) Frequency distribution of all observed Tmin, Tmax, and

PTotal values at the primary COOP stations. (b) The histogram of

observed and predicted PTotal values; vertical axis is log-scaled to

highlight detail.

FIG. 3. Observed (solid line) and predicted (dashed line) long-term

monthly total precipitation means (1950–2006) for Wisconsin.
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FIG. 4. Meteorological winter and summer means (WMO 1971–2000 normals) for Wisconsin derived from

the gridded temperature and precipitation datasets.
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surfaces, between 1950 and 2006, consists of over 2.1

million daily Tmin and Tmax values and over 2.5 million

precipitation values (Table 1). The summary statistics of

the mean predicted values, mean error or bias error and

mean absolute errors, for daily predicted versus with-

held station observed values are shown in Table 2.

Generally, we find that the mean interpolated values

(both spatially and temporally) of temperature closely

mirror the observed values (Table 2) with generally

small MEs and MAEs for all of Wisconsin. Excluding

CDs 8 and 9, average minimum temperature bias is pos-

itive and significantly different (paired t test, p , 0.0001)

from zero (i.e., no bias), while Tmax MEs are generally

negative and significant (paired t test, p # 0.025), with

generally smaller standard deviation of interpolation

bias relative to Tmin. Correlation analysis illustrates the

overall high degree of explained variance between ob-

served and interpolated values (R2 5 0.97 for Tmin and

R2 5 0.98 for Tmax) over the majority of the observed

temperature range (Fig. 5). Largely, the daily gridded

Tmin values had higher residuals (i.e., ME) and larger

MAEs than Tmax as the IDW interpolator generally pre-

dicted Tmax more accurately than Tmin (Table 1; Fig. 5).

While the errors are generally minimal (Table 2),

individual days can have comparatively large errors.

Examination of the pattern in the prediction bias (i.e.,

ME) demonstrates that there is an underestimation of

the maximum values and overestimation of minimum

values by the interpolated temperature grids (Fig. 6).

There is also modest differentiation in error between

CDs. For example, Tmin bias for CD 9 is relatively flat (i.e.,

near zero) with a peak underestimation of ;58C, while

the remaining CDs average 10% bias for Tmin , 2308C;

CD 7 has the largest bias (14%). Excluding CDs 1 and 7,

CDs have relatively similar error patterns for Tmax,

where the former average a 9% underestimation of high

temperatures (.358C). However, the majority (99%) of

observed Tmin values fell between 2308 and 208C and

98% of the values for Tmax ranged from 2208 to 308C

(Fig. 2), which compose the range where MEs show

minimal deviation from 0 (i.e., predicted 2 observed).

Predicted annual PTotal was within 2% (;16 mm) of

the observed values for each CD (Table 2). Daily MEs

and MAEs are small, ranging between a minimum of

0.68 mm to a maximum of 1.71 mm for CDs 4 and 8,

respectively, for PTotal MAE. The MEs for PTotal were

generally about 0.1 mm or less and generally had higher

standard deviations (i.e., error variances) than temper-

ature (Table 2), owing to the commonly larger distri-

bution of errors. For example, the ME standard devia-

tion was 50% larger for CD 8 than CD 4, where the

former receives only about 22 mm more precipitation

than the later, annually.

Figure 2b presents the frequency distribution of ob-

served and predicted PTotal (i.e., . 0 mm) at the vali-

dation stations, and shows a moderate but consistent

underprediction of observed event frequency in the

upper range (;25 to 60 mm day21) and a slight over-

prediction of event frequency #15 mm day21. This

highlights the difficulty of mapping precipitation accu-

rately at daily time steps due to the generally patterned

nature of precipitation events (i.e., spotty across large

regions), resulting in the occurrence of small amounts

(generally ,2 mm) of predicted precipitation in regions

where none was observed. For example, the predicted

occurrence of days with no precipitation was about 14%

less than that observed at the validation stations, while

events , 2 mm were overpredicted by ;57%.

Correlation analysis between daily observed and in-

terpolated PTotal [interpolated 5 0.67(observed) 1 0.74,

TABLE 2. Results from the withheld station validation procedure for Tmin, Tmax, and PTotal, across Wisconsin (all) and by CD, where

mean is spatial average of all the gridded Tmin or Tmax cells falling within the areal extent of each CD or across Wisconsin; PTotal yr21 is

the spatial average of the total accumulated rainfall annually; ME is mean of the daily error or bias (predicted 2 observed); MAE is mean

of the daily absolute errors (|predicted 2 observed|); and SD is standard deviation of the signed (i.e., ME) errors.

Tmin (8C) Tmax (8C) PTotal (mm)

Mean ME MAE SD Mean ME MAE SD PTotal yr21 ME MAE SD

All 1.06 0.23 1.51 1.84 12.72 20.03 1.31 1.79 822.02 20.01 1.37 3.94

By CD

1 20.87 0.03 1.58 2.21 11.52 20.08 1.38 1.92 824.16 0.00 1.51 4.18

2 20.90 0.23 1.41 1.97 11.16 20.16 1.23 1.69 827.29 20.04 1.17 3.28

3 20.20 0.95 1.67 2.14 11.87 0.19 1.42 1.98 803.95 20.05 1.10 3.25

4 1.09 0.35 1.89 2.50 13.00 20.55 1.44 1.91 822.45 20.01 0.68 2.36

5 0.98 0.55 1.35 1.75 13.00 20.02 1.05 1.43 815.58 0.08 1.21 3.43

6 2.02 0.13 1.11 1.56 12.67 0.10 1.17 1.68 777.54 20.04 1.51 4.34

7 2.20 0.22 1.64 2.33 13.77 20.09 1.42 1.94 854.02 20.02 1.68 4.68

8 2.32 20.05 1.36 1.89 13.86 0.08 1.29 1.82 843.00 0.01 1.71 4.75

9 2.89 20.75 1.46 1.80 13.62 20.05 1.24 1.72 830.18 20.04 1.33 3.98
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R2 5 0.66, RMSE 5 3.23, p , 0.0001] is lower than

what we found for temperature, with a higher offset,

but still highly significant. Examining the interpolated

and observed monthly accumulation totals we find that

correlation increased substantially (Fig. 7), indicating

that the errors associated with an abundance of pre-

dicted low PTotal events (i.e., , 2 mm day21) do not

strongly affect longer accumulation periods (i.e.,

monthly totals).

The daily and monthly PTotal residuals (Fig. 8) high-

light the tendency to underestimate accumulation totals

.12 mm day21 and about 100 mm month21 for the daily

and monthly PTotal grids, respectively. To understand

the effect daily biases had on the overall accuracy, we

examined the mean (1950–2006) frequency of observed

daily precipitation values (Fig. 9). There were an aver-

age of 113 precipitation events per grid cell, annually,

over the period of record (i.e., 1950–2006) and 82% of

the observed total accumulation, on days with rain, was

composed of precipitation events of 10 mm or less (Fig.

9). Within this range of daily PTotal, the average ME bias

is #22.5 mm, thus a maximum of a 25% error. For the

monthly data, the majority (86%) of monthly accumu-

lation falls between 0 and 115 mm month21. Within this

range, there is close agreement between predicted and

observed values with the error averaging 24.88 mm

(4%). This illustrates that the overall effect these biases

have on annual totals is small and thus results in only a

slight overprediction in annual totals by CD (Table 2).

d. Seasonal patterns in error

Finally, we examined the data for seasonality in errors

(Figs. 10, 11). Results for Tmax show that summer

months, with the lowest diurnal variation, have the best

gridded accuracy, while spring and autumn months with

greater daily range in Tmax have a decreased accuracy

(Fig. 10); CD 4 has the greatest MEs and the largest

variation in monthly Tmax. Mean absolute errors for

Tmax are generally less, by CD, relative to the errors in

FIG. 6. Median of the residuals (predicted–observed) of daily Tmin

and Tmax, binned within 58C intervals.

FIG. 5. Scatterplot comparison and associated statistics of the

daily predicted vs observed (top) Tmin and (bottom) Tmax data for

the entire data record.
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Tmin, a situation that reflects the results from the re-

gression analysis (Fig. 5). For Tmin, the spread in MEs

(Fig. 10a) is larger than that for Tmax (Fig. 10c) with CDs

3 and 9 having the largest seasonal biases; the cumula-

tive seasonal ME was 0.238C. The mean bias for Tmin

increased slightly across Wisconsin from May to Au-

gust, while the MAEs were largest in the winter (Fig.

10b). For both Tmin and Tmax the winter months were

more prone to excessive errors than the summer

months, with standard deviations of the MEs about 30%

higher from December to February.

Seasonal patterns were significantly more apparent in

the diagnostics of the gridded PTotal (Fig. 11). Summer

months (i.e., June–August) show greater error in the

average daily precipitation with a slightly positive bias,

relative to the drier (Fig. 4) autumn and winter months

(October–March) across the state. The MAEs for daily

PTotal ranged from ;0.5 to 3 mm during the year and for

monthly accumulation totals we found a range in MAEs

from ;15 mm in the winter and spring to 25 mm in the

summer (data not shown). While in absolute terms the

errors are small (Table 2), they do constitute a highly

variable percentage of the daily precipitation totals

given the seasonal winter dry and summer wet climate

of Wisconsin (see Fig. 2). For example, in the winter

months, MEs were about 4.4% of the daily precipitation

statewide, while in the wettest months the MEs average

up to 35%, peaking at 36% in July across Wisconsin. The

regional differences between CDs illustrate the variation

in interpolation accuracy and highlight the large spatial

differences in total precipitation accumulation, with

larger errors in CDs receiving greater accumulation

(CDs 7–9; Table 1).

4. Discussion

Through a rigorous and concerted effort, daily and

monthly grids of minimum and maximum temperature as

well as precipitation at 8-km latitude–longitude resolu-

tion have been produced for the state of Wisconsin for

the period 1950–2006. These grids have already been used

to examine the impacts of recent climates on crop yields

in Wisconsin (Kucharik and Serbin 2008) and preliminary

studies validating global climate model output. This da-

taset presents a comprehensive, multidecadal, spatio-

temporally complete database that is useful for regional

climate analysis, risk assessment, ecosystem modeling,

and management and planning purposes. This dataset

was produced with a much higher station density and

spatiotemporal resolution and longer data record than

was feasible in many previous gridded databases (e.g.,

Kittel et al. 2004; McKenney et al. 2006; Thornton et al.

1997).

The errors exhibited in the interpolated climate grids

display the intrinsic weather patterns reflecting the

seasonal atmospheric processes found in the region, in

addition to the inherent errors associated with the

cooperative observer station network. These include

FIG. 8. (a) Median of the residuals (predicted–observed) of daily

total precipitation (PTotal) by CD. (b) As in (a) but the residuals

are for the monthly values of PTotal.

FIG. 7. Scatterplot comparison and associated statistics of the

monthly predicted vs observed PTotal values.
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observer error, differences in equipment calibration

and error, observation inhomogeneities (from urbani-

zation, land use bias, etc.), time of observation bias,

and others (Hansen et al. 2001; Peterson et al. 1998).

The accuracies of our temperature and precipitation

grids are bound by both the chosen spatial interpola-

tion (e.g., parameterization, algorithm) and input data

quality.

Geography was also an important consideration in

interpreting our gridded data. For example, CD 4 had a

consistently larger seasonal bias (underestimation) in

Tmax relative to the other CDs, while CD 5 had the

smallest MAE, which was significantly lower than the

average (Fig. 10d). Temperatures were generally

warmer in the summer and cooler in the winter on the

western edge of the state (Fig. 4), with generally larger

diurnal temperature ranges (DTRs) (Moran and Hopkins

2002). These larger DTRs were not due, however, to

the specific impacts of topography. While elevation

often influences climate patterns (e.g., Daly et al. 2007;

Hasenauer et al. 2003; Vicente-Serrano et al. 2003),

topography was not a significant factor in the region for

climate mapping (Xia 2008; You et al. 2008). Further-

more, while proximity to large water bodies can also

influence interpolation results (Daly et al. 2002), the

30-yr climatology across the state (Fig. 4) shows the

expected influence of the Great Lakes.

Prediction biases (i.e., MEs) for temperature were

generally larger (and positive, indicating overestimation)

for Tmin than the corresponding errors for Tmax. Simi-

larly, the MAEs and the average variation [i.e., standard

deviations (SDs)] were higher for Tmin (Table 2). This

result has been observed previously (e.g., Bolstad et al.

1998; Stahl et al. 2006; Thornton et al. 1997) and is likely

due to the number of factors that make interpolation of

nighttime (minimum) temperatures more complex, sev-

eral of which can occur at very small scales (e.g., ,1 km).

For example, the influence of thermal inversions can be

more influential in minimum temperature mapping (e.g.,

Bolstad et al. 1998; Daly et al. 2007, 2002) and the extent

of cloud cover (Dai et al. 1999) can increase the spatial

variation in nighttime temperatures, resulting in a larger

disparity between predicted and observed values at val-

idation stations. While the influence of urbanization (i.e.,

urban heat island effect) was not directly accounted for in

this study, about 90% of the stations were located in rural

settings thus proving to be only a minor influence on

climate patterns.

With some exception (e.g., Vicente-Serrano et al.

2003) the mapping of precipitation totals is generally

more difficult than corresponding maximum and mini-

mum temperatures (e.g., Thornton et al. 1997; Daly

et al. 2007), especially daily values, as temperature is an

intrinsically smoother variable than precipitation, where

the latter is generally more heterogeneous across broad

regions, often depending on season. Here daily precip-

itation was significantly more challenging to model than

temperature because of several issues. For example,

Ensor and Robeson (2008) found that gridding of

daily precipitation, particularly with an algorithm that

includes a smoothing parameter, can have a large im-

pact on the statistical properties of the resulting pre-

cipitation field. As is the case with this study, gridding

often results in a higher proportion of days with pre-

cipitation, but with those days having less precipitation.

The heterogeneity of precipitation can result in a

large PTotal gradient across Wisconsin (Fig. 4), owing to

the often highly localized precipitation events, prevailing

weather, and lake effects (Moran and Hopkins 2002),

which can be difficult to adequately predict spatially.

For example, a high proportion of precipitation falling

from May to September comes from convective (ther-

mal) forcing, often associated with nighttime mesoscale

convective complexes, and large frontal systems pro-

ducing short correlation lengths in the PTotal field. For

the remainder of the year, precipitation is associated

with large-scale synoptic features with the formation

of precipitation occurring at high levels within the

FIG. 9. (bottom) The frequency of average annual observed

precipitation event totals (mm) by 5-mm intervals, and (top) the

corresponding cumulative distribution of events. Note that ;76%

of the annual average total precipitation is composed of events

totaling ;2.5 mm or less.
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atmosphere. When summed to monthly data, the pre-

cipitation results improve and confidence in the data is

increased. This is a consistent issue in the mapping of

daily precipitation (e.g., Daly et al. 2007; Fekete et al.

2004; Thornton et al. 1997) and warrants further study

into methods to minimize this effect of interpolation

(e.g., Hewitson and Crane 2005); there are likely more

datasets with this issue that are not adequately reported

in the literature. Finally, the difficulties in measuring

solid precipitation (i.e., snow and ice) accurately through

collection and appropriate conversion to liquid water

equivalent (LWE) can influence interpolation results,

producing an underreporting of precipitation during the

winter months.

a. Comparison with other gridded climatic datasets

There is a general deficiency of historical daily climate

grids of similar spatial and temporal coverage found in

the present study. However, more attention has been

given in recent years to the application of interpolation

techniques for the development of daily gridded mete-

orological data (e.g., Di Luzio et al. 2008; Hasenauer

et al. 2003; Thornton et al. 1997). The validation of these

emerging datasets has generally followed three tech-

niques: the use of iterative cross validation (Kittel et al.

2004; Stahl et al. 2006; Thornton et al. 1997), a sub-

sample of withheld station data (Bolstad et al. 1998;

Price et al. 2000; Vicente-Serrano et al. 2003), or a

combination of both (Hasenauer et al. 2003; McKenney

et al. 2006). Here we present a comparison with other

datasets reporting representative independent station

validation statistics.

On average, validation results illustrated that the

output accuracy of the gridded data is high (Table 2)

and we find that the spatial patterns in temperature and

precipitation are realistic (Fig. 4). The correlation be-

tween observed and predicted temperatures was found

to be quite good (Fig. 5) and comparable to results from

Thornton et al. (1997). While IDW is found to be gen-

erally deficient in mountainous regions (e.g., Daly et al.

2003), it has been shown to provide comparable results

to more complex spatial interpolation algorithms in

areas with flatter topographic characteristics (e.g.,

Nalder and Wein 1998; Shen et al. 2001; You et al. 2008).

Jarvis and Stuart (2001) and Nalder and Wein (1998)

showed that IDW compared well with more complex

algorithms in regional applications, with and without

appropriate consideration of guiding variables. Stahl

et al. (2006) included elevation as a covariate in several

of the 12 spatial algorithms tested in their interpolation

of daily temperature over British Columbia, Canada.

They reported a range of MAEs from 1.228 to 1.598C

for maximum temperature and 1.558 to 1.998C for mini-

mum temperatures. Hasenauer et al. (2003) observed

FIG. 10. The Tmin and Tmax ME and MAE by month for the daily data. Filled symbols indicate mean errors that were

significantly different from zero based on a t test ( p , 0.05).
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cross-validation errors slightly better than the present

study using ‘‘DAYMET’’ (Thornton et al. 1997), re-

porting an MAE of 1.178 and 1.018C for Tmin and Tmax,

respectively. However, our mean bias errors compared

better to their independent station validation results, re-

porting MEs of 20.38 and 0.18C versus 0.238 and 20.038C

(Table 2) for Tmin and Tmax, respectively. The study by

Bolstad et al. (1998) observed bias values ranging from

20.058 to 0.218C for temperature using kriging, re-

gression, and lapse rate–corrected interpolations and

DeGaetano and Belcher (2007) observed MAEs of 1.148

and 1.438C and MEs of 20.0628 and 20.0158C for max-

imum and minimum temperatures, respectively, using

IDW adjusted for elevation.

We observed seasonal patterns in prediction accuracy

for the temperature and precipitation grids (Figs. 10, 11),

FIG. 11. The (top) ME and (bottom) MAE by month for the daily precipitation data. Filled symbols indicate mean

errors that were significantly different from zero based on a t test (p , 0.05).
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which is consistent for areas of differing terrain, station

densities, and using different interpolation techniques

and assumptions (e.g., Daly et al. 2007; Gyalistras 2003).

This variation in error is likely associated with several

factors, such as dominant seasonal weather patterns. For

example, Stahl et al. (2006) observed significant seasonal

variation in validation errors for all spatial interpolation

techniques tested. In addition, DeGaetano and Belcher

(2007) observed increasing MAEs for minimum tem-

perature with increasing snow depth. The MAEs for

Tmin in this study were generally highest for all CDs

during the months with the greatest probability of snow

cover. We also observed low mean absolute errors for

precipitation during the winter and higher MAEs in the

spring and summer months, a finding consistent with

others (e.g., Nalder and Wein 1998).

Despite the difficulties of gridding daily precipitation

events, we found that the overall performance of the

IDW grids is comparable to previous daily (Thornton

et al. 1997; Daly et al. 2007) and monthly (Price et al.

2000; McKenney et al. 2006) gridded climate datasets.

For example, Shen et al. (2001) observed interpolation

accuracies similar to this study using an IDW algorithm

and Xia et al. (2001) observed an MAE only marginally

better than reported here using a thin-plate-spline inter-

polation, or an MAE of 1.17, versus 1.37 mm day21.

Furthermore, the results of this study are highly compa-

rable to Hasenauer et al. (2003) for both cross-validation

and withheld station validation statistics using DAYMET

(Thornton et al. 1997) to interpolate both temperature

and precipitation over complex terrain in Austria; how-

ever, the later study had a significantly larger elevation

gradient. Nevertheless, Hasenauer et al. (2003) used a

1-km-resolution digital elevation model (DEM) to ac-

count for topography in their interpolation.

By examining a longer temporal period (e.g., monthly

data) we found the accuracy and realism of the PTotal

grids increased (Fig. 7), suggesting that the propagation

of error is minimal, which is consistent with Thornton

et al. (1997). A suggested remedy for the daily PTotal is to

use a desired threshold of minimum precipitation (e.g.,

,1 mm) when using the data to drive water balance

calculations in a process model and hydrological appli-

cations (e.g., estimating runoff and levels in catchments).

We also recommend the use of monthly data for the

analysis of some climatological trends. Overall however,

the precipitation grids (Fig. 4) correctly generated the

winter dry and summer wet seasonal pattern of PTotal

(Fig. 3), the west to east gradient of precipitation that is

common for the winter and summer months, and the

mesoscale pattern of high snowfall accumulation in the

Lake Superior snowbelt in the far north (Moran and

Hopkins 2002).

b. Limitations and potential uses of the data

As with using any spatial interpolation algorithm to

generate gridded climate data, a given grid cell will

likely contain a degree of ‘‘smoothing’’ of the data ex-

tremes, particularly where there was no observed data.

Thus, the prediction of record events of Tmax, Tmin, or

PTotal for a given day will not be adequately represented

in the gridded data and as such should not be used for

these purposes. Similarly, the use of these data for legal

purposes (i.e., trials and litigations) is not recommended

and those seeking information on the climate of a par-

ticular day in a specific location should always consult

original station data or a climate expert.

Despite limitations, regional interpolated climatic grids

of daily and monthly temperatures and precipitation are

useful for various purposes. As with previous datasets for

which predicted values are based on observational rec-

ords (Thornton et al. 1997; Rawlins and Willmott 2003;

McKenney et al. 2006) our dataset represents historical

information and variability that can be used to generate

the occurrence and general trends of key events such as

the last and first frosts, as well as daily statistics such as

accumulated growing-degree days (AGDD). This grid-

ded dataset provides a high-resolution alternative to

coarser-scale data for regional-scale analyses such as risk

assessment and input to ecological process models. The

methodology presented is sufficiently portable, in that

the methods can be used to derive climate databases for

other regions where a dense network of COOP stations

exist, with or without increased algorithm complexity

depending on the region of interest, topographic char-

acteristics, and other key factors controlling gridded ac-

curacy (Daly 2006).

5. Summary and conclusions

The societal importance of Wisconsin and other key

forestry and agricultural states will continue to increase

as the global population rises and an emerging market for

biofuels develops in the next few decades. As we become

increasingly reliant on the goods and services that are

provided by our ecosystems in the Midwest, changes in

mean climate and the frequency of extreme events may

result in increased variability in ecosystem productivity

across key forestry and agricultural regions, potentially

compromising food and fiber supplies, and bioenergy

feedstocks (Kucharik and Serbin 2008; Lobell et al. 2006;

Scheller and Mladenoff 2005). Detailed assessments of

the historical influence of climate on such things as forest

productivity, water quality, and changes to hydrological

systems, as well as crop production and yields, stand to

be highly beneficial for the development of adaptive
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management and future planning purposes (Kucharik

2006). To facilitate these types of studies, high-resolution

climate datasets for management and modeling purposes

are increasingly desired, and development of such data-

sets will help society better understand how previous

climate change has impacted ecosystem functioning and

could help to develop adaptive strategies to combat the

undesired consequences of continued climate shifts. We

hope that our scientific colleagues, fellow resource

managers, and policymakers make use of the new dataset

here in their own research objectives.
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