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Summary

� Leaf mass per area (LMA) is a key plant trait, reflecting tradeoffs between leaf photosyn-

thetic function, longevity, and structural investment. Capturing spatial and temporal variabil-

ity in LMA has been a long-standing goal of ecological research and is an essential component

for advancing Earth system models. Despite the substantial variation in LMA within and across

Earth’s biomes, an efficient, globally generalizable approach to predict LMA is still lacking.
� We explored the capacity to predict LMA from leaf spectra across much of the global LMA

trait space, with values ranging from 17 to 393 gm�2. Our dataset contained leaves from a

wide range of biomes from the high Arctic to the tropics, included broad- and needleleaf

species, and upper- and lower-canopy (i.e. sun and shade) growth environments.
� Here we demonstrate the capacity to rapidly estimate LMA using only spectral measure-

ments across a wide range of species, leaf age and canopy position from diverse biomes. Our

model captures LMA variability with high accuracy and low error (R2 = 0.89; root mean square

error (RMSE) = 15.45 gm�2).
� Our finding highlights the fact that the leaf economics spectrum is mirrored by the leaf opti-

cal spectrum, paving the way for this technology to predict the diversity of LMA in ecosystems

across global biomes.

Introduction

A key objective of plant ecology is to characterize the functional
diversity of plants that have evolved different strategies for
growth, reproduction and for coping with biotic and abiotic
stressors (Wright et al., 2004). Accurate characterization of this
functional diversity in Earth system models (ESMs) will improve
our ability to model the Earth system and understand the effect
of global change on the cycling and storage of carbon (C), water
and energy (Pavlick et al., 2013; Fisher et al., 2018). Therefore,
an increasing number of ESMs are moving towards incorporating
approaches that require a broader and more comprehensive rep-
resentation of plant trait variation within and across biomes (Xu
et al., 2012; van Bodegom et al., 2014; Wullschleger et al., 2014;
Fisher et al., 2015, 2018). As a result, considerable effort has been
invested in the measurement and monitoring of plant traits across
a range of biomes, and the storage and synthesis of that informa-
tion in global databases (Wright et al., 2004; Kattge et al., 2011;
Lebauer et al., 2013; Butler et al., 2017). Yet, the high degree of
plant functional diversity and plasticity makes this apparently
simple goal extremely challenging (Reich et al., 1997, 1999;

Serbin et al., 2014; Wu et al., 2017; Osnas et al., 2018). Conse-
quently, the extent of global trait coverage is still woefully inade-
quate (Schimel et al., 2015).

In recent decades, remote sensing has shown increasing
promise as a means to capture plant traits across scales using spec-
troscopic approaches. For example, several recent studies have
highlighted the capacity to connect remotely sensed spectra to
characterize variation in a number of key functional traits across
individual leaves, canopies and landscapes (Dahlin et al., 2013;
Asner et al., 2015; Singh et al., 2015; Shiklomanov et al., 2016;
Yang et al., 2016; Wu et al., 2017). Approaches have included
empirical spectra–trait modeling, such as partial least-squares
regression (PLSR; e.g. Serbin et al., 2014; Singh et al., 2015; Yen-
drek et al., 2017) and spectral vegetation indices (SVIs; e.g. Feret
et al., 2011), as well as semimechanistic approaches, including
the use of the PROSPECT leaf-level radiative transfer model
(RTM; e.g. Shiklomanov et al., 2016; F�eret et al., 2017). In gen-
eral, all of these approaches rely on the fundamental biophysical
connection between leaf chemistry and structure and the resul-
tant optical properties of plants (Curran, 1989; Ustin et al., 2004;
Kokaly et al., 2009; Ollinger, 2011), and, as a result, could be
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used to fill critical gaps in our understanding of the variation in
plant traits over landscapes and biomes (Schimel et al., 2015; Jetz
et al., 2016).

However, most studies that have illustrated the strong promise
of remote sensing to estimate foliar traits across scales have
focused on a relatively narrow subsample of geographic regions
(e.g. Townsend et al., 2003; Feret et al., 2011; Dahlin et al.,
2013; Asner et al., 2015; Yang et al., 2016), capturing only a
small fraction of total trait and spectral space. In addition,
semimechanistic methods such as PROSPECT may have other
assumptions or limitations that could inhibit their broad applica-
tion, for example, a limited number of supported traits (F�eret
et al., 2017) or the generally poorer performance of needleleaf
species (Malenovsk�y et al., 2006; Shiklomanov et al., 2016). As a
result, the general applicability of existing spectra–trait models
and approaches across biomes and in the wider trait space is not
known. In many cases, those models trained across a limited trait
space have been shown to break down when applied more
broadly (e.g. Sims & Gamon, 2002; Gitelson et al., 2003; le
Maire et al., 2008).

Among plant traits, foliar morphology is commonly character-
ized using leaf mass per area (LMA) – the ratio of a leaf’s dry
mass to its surface area (g dry mass m–2 leaf area) – or its recipro-
cal, specific leaf area. LMA captures the tradeoff of a plant’s
investment in leaf structure and robustness vs leaf surface area
and light harvesting for photosynthesis (Wright et al., 2004;
Shipley et al., 2006; Poorter et al., 2009). Given its strong linkage
with overall plant functioning (Reich et al., 1997; Wright et al.,
2004; Serbin et al., 2012; Osnas et al., 2018), LMA is a critical
parameter in plant ecology. Illustrations of the importance of
LMA include its use as a basis for monitoring biodiversity (Skid-
more et al., 2015), its role in modeling canopy radiation transfer
(Jacquemoud et al., 2009; Ollinger, 2011), and its widespread
use as an input in ecosystem process models (Fisher et al., 2014;
Xu et al., 2016; Ricciuto et al., 2018).

Importantly, the substantial global variation in LMA, which
ranges from 14 to 1500 g m�2 globally (Wright et al., 2004),
exists within and across species (Castro-D�ıez et al., 2000; Wright
et al., 2004; Paula & Pausas, 2006; Poorter et al., 2009) and is
affected by local gradients in light, water and nutrient availability
(Niinemets, 2007; de la Riva et al., 2016; Liu et al., 2017), leaf
age (Wu et al., 2016), as well as acclimation and adaptation to
short- and long-term climate dynamics (Volin et al., 2002; Paula
& Pausas, 2006; Poorter et al., 2009). LMA variation is
attributed primarily to differences in leaf density and volume-to-
area ratio (Poorter et al., 2009; John et al., 2017). The fundamen-
tal information on these attributes is found in the reflectance
spectrum of a leaf, which captures its physical properties (e.g.
thickness, density, the depth of palisade layers, albedo and ele-
mental composition) (Ollinger, 2011). Given the coordination
between leaf traits and optical properties, we expect that, using a
spectroscopy approach, we can collapse the vast structural and
functional diversity of leaves from different plant species, leaf
types (e.g. grasses, forbs, broadleaf and needleleaf evergreen
trees), across a wide range of environments, that is expressed as
variation of LMA into a single generalizable model.

Here we present a broad, multibiome analysis linking funda-
mental covariation in LMA and spectroscopic (also known as
hyperspectral) reflectance. We use a large dataset to develop a
robust statistical model to infer LMA from corresponding leaf
optical properties, and then validate this cross-biome model using
independent datasets of additional spectra and LMA observations
from a similar range of plant material as well as from external val-
idation sources. The core training and validation datasets include
leaves from the high Arctic to the tropics, and contain measure-
ments from grasses, forbs, deciduous and evergreen shrubs, decid-
uous and evergreen broadleaf trees, needleleaf trees and crop
species. They span a highly diverse range of leaf morphologies,
including glabrous, highly reflective and waxy leaf types;
microenvironments, including measurements from upper-
canopy, sunlit leaves, and lower-canopy, shaded leaves; develop-
mental stages, including recently emerged, mature and old leaves;
and elevations, including measurements from sea level to
> 2000 m above sea level. Thus, our analysis is based on data rep-
resenting a large fraction of the global trait space for LMA.

Materials and Methods

Plant material

We collected and assembled a large dataset (n = 2478 leaves from
> 176 species) of combined LMA and leaf reflectance spectra for
model development from the high Arctic in northern Alaska to
the tropics in central America and Brazil (Fig. 1). Our sites are
distributed across a large proportion of the Earth’s habitable cli-
mate space, encompassing a c. 40°C range of mean annual tem-
peratures and a c. 200–2400 mm yr�1 range in mean annual
precipitation. Our sites in Alaska include coastal tundra vegeta-
tion within the Barrow Environmental Observatory, near Barrow
(now Utqia _gvik), Alaska (Brown et al., 1980; Rogers et al.,
2017b) and dwarf and tall shrub vegetation on the Seward Penin-
sula (Rogers et al., 2016; Serbin & Rogers, 2019). Our sites
located in the Upper Midwest and northeastern US are domi-
nated by northern temperate forest species, including deciduous
broadleaf hardwoods and evergreen, needleleaf conifers (Serbin
et al., 2014). Measurements on Mediterranean and agricultural
plants were conducted in the Coachella and Central valleys of
California (Serbin et al., 2015), and across an elevation gradient
of sites ranging from low elevation woodlands to alpine forests in
the Sierra Mountains (Goulden et al., 2012; DuBois et al., 2018).
The data for tropical species were collected in several separate
locations; a seasonal, wet evergreen Amazonian forest near
Santarem, Brazil (Wu et al., 2017); a seasonal, wet evergreen
forest in the San Lorenzo Protected Area; a seasonal, dry forest in
the Parque Natural Metropolitano near Panama City in the
Republic of Panama (Wright et al., 2003); trees within the Dona
In�es Park urban forest site on the grounds of the Luis Mu~noz
Mar�ın Foundation as well as other locations on the island
of Puerto Rico (specific sites can be found in associated dataset
metdata, Table S1), and a collection of plants grown in an artifi-
cial tropical forest within the Biosphere 2 facility (Walter & Car-
men Lambrecht, 2004). All the data used in this study are
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publicly available, and the published datasets include detailed
descriptions of the sampling locations (Table S1).

Spectroscopic measurements

The approach, instrumentation and personnel used to measure
leaf spectral reflectance varied across the different sites and pro-
jects included in this study. The leaf reflectance of Arctic plants
was measured using a FieldSpec 3 (Analytical Spectral Devices
(ASD) Inc., Longmont, CO, USA) with the ASD leaf clip assem-
bly, or an HR-1024i full-spectrum spectroradiometer (Spectra
Vista Corporation (SVC), Poughkeepsie, NY, USA) together
with the standard leaf clip assembly as well as the more recent
Leaf-Clip Reflectance-Probe Pro (LC-RP-Pro; SVC). Leaf spectra
collected in the Upper Midwest and northeastern USA were mea-
sured with a FieldSpec pro or FieldSpec 3 (both ASD Inc.) with
the ASD leaf clip assembly. The data collected in California were
measured using either a FieldSpec 3 (ASD Inc.) or a PSR-3500
full-range spectrometer (Spectral Evolution, Lawrence, MA,
USA) with an attached Spectral Evolution leaf clip assembly.
Data from Biosphere2 and Brazil were measured with a FieldSpec
Pro (ASD Inc.) and ASD leaf clip, the data from Puerto Rico
with a PSR+ (Spectral Evolution) with an attached custom fiber
optic connected to a LC-RP-Pro foreoptic (SVC), and data from
the Republic of Panama were measured with an HR-1024i with
the LC-RP-Pro attachment (SVC). All instruments had leaf clip
assemblies that contained an internal calibrated light source, and
all reflectance measurements were referenced against a 99% Spec-
tralon reflectance standard. For needleleaf or very small leaf
species, we used needle or leaf mats (Serbin, 2012). Needles of a
similar age (i.e. current year, previous year, and older) were laid
out edge to edge, creating a single layer and taped at the ends to
hold the needles tightly together before inserting the mat into the
leaf clip. No tape was visible to the fiberoptic inside the leaf clip.
All spectral measurements were processed using the R-FIELDSPEC-
TRA package (https://github.com/serbinsh/R-FieldSpectra). For
SVC data, however, we first corrected the discontinuities in the
spectra in the detector overlap areas using the vendor-provided
software. Measurements at the edges of the spectral range of these
spectrometers (350–500 nm, > 2400 nm) suffer from low signal-
to-noise and were thus excluded from the analysis.

Measurements of LMA

Measurements of LMA also varied among the different studies
and biomes. Various methods were used to determine leaf area,
including measurement of length and width with a ruler and a
hand lens (graminoid species), leaf disk punches (broadleaf
species) and optical approaches. For small or compound leaves
where it was not possible to take disks, area was measured with a
leaf area meter (LI-3100C Area Meter; Li-Cor, Lincoln, NE,
USA) calibrated for use with high edge-to-area ratio leaves and
operated at high (0.1 mm2) resolution, or a flatbed scanner (ever-
green needleleaf trees) followed by area estimation using IMAGEJ
(Schneider et al., 2012; as reported in Serbin et al., 2014). Leaves
and leaf sections of known area were then dried to constant mass
in a ventilated oven (60–70°C) and leaf dry mass was measured
on a top-pan balance. All leaf area data were provided on a pro-
jected leaf area basis.

LMA partial least-squares regression modeling

To relate the variability in LMA across sites, species, and environ-
ments we utilized a PLSR modeling approach (Geladi & Kowal-
ski, 1986; Wold et al., 2001) using the PLS package (Mevik &
Wehrens, 2007) in the R open source statistical environment (R
Core Team, 2017). PLSR is widely utilized in spectroscopy and
chemometric analyses given its ability to handle high predictor
collinearity as well as a large number of predictor variables that
may exceed the number of observations. PLSR minimizes the
implications of these circumstances by reducing the number of
predictor variables down to a relatively few, orthogonal latent
components (Geladi & Kowalski, 1986; Wold et al., 2001).
Moreover, PLSR does not assume the measurement of predictor
variables (reflectance values at given wavelengths in this case) was
made without error.

Our PLSR model development has been described previously
(e.g. Serbin et al., 2014; Ely et al., 2019) and is briefly summa-
rized here. We first applied a square root transformation to the
LMA data to reduce the right skewness distribution of the origi-
nal data (Fig. S1) and satisfy the required normal distribution for
the PLSR analysis. We then randomly split the full dataset into
calibration (80%, n = 1978) and independent validation (20%,

(a) (b)

Fig. 1 General location of the 11 sites where leaf reflectance and leaf mass per area were measured in our model development dataset. Blue circles show
field sites, and the red circle shows the location of Biosphere 2 from which we sampled tropical species within the glasshouse environment. (a) Sites plotted
in climate space, binned by major climatic biomes (Whittaker, 1975); (b) general location in geographic space.
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n = 500) subsets (Fig. S2), ensuring that both subsets spanned the
full range of observations and included measurements from each
study and sample location. Using just the calibration dataset, we
developed the multibiome leaf spectra–LMA model and then
tested this final model using the validation data (500 observa-
tions) derived from our original dataset (2478 leaves). To avoid
the potential to overfit the spectra–LMA calibration model, we
optimized the number of PLSR components in the model by
minimizing the prediction residual sum of squares (PRESS)
statistic (Chen et al., 2004). We calculated the PRESS statistic of
successive model components through a cross-validation analysis
where we minimized the PRESS statistic until successive PLSR
components did not reduce model predictive error as assessed
using a t-test (Serbin et al., 2014). Lastly, we calculated the vari-
able influence on projection (VIP) metric (Wold et al., 2001) of
the final model to identify the regions of the spectrum that con-
tributed significantly to the prediction of LMA (Serbin et al.,
2014).

In addition to the general model development, we also conducted
a PLSR model uncertainty analysis to characterize the predictive
uncertainty, given the variability and error in measured LMA, spec-
tra, and the relationship between the two. This was done by splitting
the original calibration dataset into a balanced 70–30% via 1000
permutations and generating the same number of new model coeffi-
cient vectors, following Serbin et al. (2014). The result of this uncer-
tainty analysis is an ensemble of PLSR models that can be used to
predict new values of LMA based on spectral measurements plus the
predictive uncertainty for each new value.

Finally, we quantified the performance of the multibiome
LMA PLSR model using the independent validation dataset (500
observations). In this step, we validated the model and examined
the residuals for model bias and predictive performance. We used
four main evaluation metrics: the coefficient of determination
(R2), RMSE, the residual, and regression bias. All model and
error results presented in the following are shown in original
LMA units, not the square-root-transformed units that are the
initial output of the PLSR model.

Examples of applying the PLSR model to new observations

We provide a simple R script (Methods S1) to illustrate the util-
ity of our model and how it can be used to estimate LMA values
from leaf spectral reflectance observations not used for model
development. This script can be run to automatically download
the foundational Leaf Optical Properties Experiment (LOPEX)
and ANGERS spectral datasets (Hosgood et al., 1994; Jacque-
moud et al., 2003), apply the PLSR model, and provide the
results. The LMA model coefficients are provided through
GitHub (https://github.com/serbinsh/SSerbin_etal_2019_New
Phytologist) and the leaf spectral data are provided from the Eco-
logical Spectral Information System (EcoSIS) database (https://ec
osis.org).

Furthermore, we also provide an extensive, external validation
of our multibiome PLSR model with data collected in the Upper
Midwest, US, and nine National Ecological Observatory Net-
work (NEON) locations spanning seven NEON domains. The

first dataset consisted of fully expanded, peak-growing-season
samples collected in and around the Madison, Wisconsin, area
and the University of Notre Dame Environmental Research Cen-
ter (UNDERC) between June and September 2017 (A. Chlus
et al., unpublished). A mix of sunlit and shaded foliar samples
were collected from broadleaf trees (n = 7446), graminoids
(n = 74), forbs (n = 2017) and vine (n = 218) species across the
growing season. All samples were immediately scanned using a
FieldSpec 3 (ASD Inc.), HR-1024i (SVC) and/or PSR+ (Spectral
Evolution) with their respective leaf contact probes and external
light sources. A Spectralon white reference was scanned before
each sample to calculate the relative reflectance. After spectral
measurement, the leaf area of each sample was immediately
recorded using the LI-3100 benchtop leaf scanner (Li-Cor). Sam-
ples were subsequently flash-frozen in liquid nitrogen, freeze-
dried in a VirTis lyophilizer (SP Scientific, Gardiner, NY, USA),
and weighed with a precision balance.

The second dataset consisted of peak-growing-season foliar
samples collected during the summer of 2017 at NEON sites in
Wisconsin, Alabama, Georgia, Florida, Virginia, Maryland, Ten-
nessee, Kansas and North Dakota, and also included trees
(n = 2584), graminoids (n = 381) and forb (n = 195) species (Z.
Wang et al., unpublished). Spectra were collected immediately
using the FieldSpec and/or PSR+ with their leaf contact probes.
Leaves were scanned on a 600 dpi flatbed scanner (Epson,
Nagano, Japan), oven-dried at 65°C for 48 h to a constant mass
and weighed on a precision balance. The only processing applied
to the spectra was the removal of spectral discontinuities (follow-
ing Serbin et al., 2012) at c. 1000 and 1900 nm where ‘jumps’
sometimes occur at overlapping wavelengths between detectors
within the instruments. The final multibiome PLSR model was
applied to all spectra and compared with laboratory measure-
ments of LMA.

Data availability

All data used in this manuscript are publicly available through
online data portals, including the U.S. Department of Energy
NGEE-Arctic and NGEE-Tropics data portals as well as the
EcoSIS spectral database (Table S1).

Results and Discussion

We employed an extensive dataset of leaf spectral reflectance and
LMA across multiple biomes and spanning large environmental
gradients (Fig. 1) to develop a generalized approach to model the
variation in LMA (Fig. 2) using only leaf optical properties
(Fig. 3). We found a very strong capacity for the empirical PLSR
spectra–trait modeling approach to accurately model multibiome
variation in LMA using spectral reflectance (Fig. 4). Our results
show that spectra alone can explain 89% of the variation in LMA
with a low model bias (0.96 g m�2) and RMSE (15.45 g m�2)
when compared with our core validation dataset. We provide
more details on our input datasets, PLSR modeling, and valida-
tion in the following, as well as a discussion of our work in the
larger functional trait and remote-sensing research communities.
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Biotic and abiotic variation in LMA

Across our sample sites (Fig. 1), we observed a broad range of
LMA in our model development dataset, with values ranging
from 17 to 393 g m�2 (Figs 2, S1). As expected, mean (� SD)
top-of-canopy LMA of the needleleaf evergreen conifer species
(165� 62 g m�2) was significantly larger than those of broadleaf
deciduous species, as well as grasses and forbs (67� 24 g m�2).
The LMAs of evergreen broadleaf species from arid environments
(169� 72 g m�2) were similar to those of needleleaf evergreen
species, consistent with past observations (Paula & Pausas, 2006;
de la Riva et al., 2016), and owing to the well-documented differ-
ences in leaf life spans that typically require higher resource
investment in leaf construction (Wright et al., 2004; Poorter
et al., 2009). For the tropical species, LMA averaged 106� 37
g m�2 and ranged from 22 to 306 g m�2.

Within a biome, LMA variation (Fig. S3) was large and related
to biotic differences across species as well as factors such as leaf
and plant age, and abiotic factors such as the leaf growth environ-
ment, including position in the canopy (Serbin et al., 2014; Wu
et al., 2017), consistent with other studies (Niinemets et al.,
2015; John et al., 2017; Osnas et al., 2018). Notably, variation
within species was often as large as that across species (data not
shown), as has been noted in previous work (Butler et al., 2017).
On average, LMA in upper-canopy, fully sunlit leaves were 36
� 20% higher than in fully shaded leaves of the same species, but
this difference varied with growth form and leaf habit, probably
owing to known differences in growth strategies, seasonality and
the difference in the light penetration through a broadleaf or
needleleaf canopy (Wright et al., 2004; Ollinger, 2011; Butler
et al., 2017). Overall, the range in LMA within and across biomes
showed similarities and overlap from the Arctic to the tropics,
despite the vastly different leaf morphologies resulting from envi-
ronmental and biological drivers, and these similarities were
probably related to the underlying variation in leaf density and
volume : area ratios, which can lead to similar values of LMA

with significantly different leaf geometries (Poorter et al., 2009;
John et al., 2017).

Variation in leaf reflectance across biomes

As with LMA, we observed significant variation in the measured
leaf-level spectral reflectance in our model development dataset
within and across biomes (Figs 3a,b, S4). The biome-level spec-
tral reflectance displayed a similar shape and comparable magni-
tude across the spectral range examined here (500–2400 nm;
Fig. S4); however, the within-biome variation (presented as the
coefficient of variation in reflectance by wavelength) showed
some key differences (Fig. 3b) in the visible (i.e. 500–700 nm)
and shortwave infrared (SWIR) regions (e.g. 1900–2500 nm).
The biome-level mean reflectances appeared similar owing to the
large variation in reflectance across wavelengths within each
biome (Fig. S4), which mirrored the considerable within-biome
variation in LMA (Figs 2, S3). This pattern has been observed in
past research for similar vegetation types (Asner & Martin, 2008;
Feret et al., 2011; Yang et al., 2016). Across the entire shortwave
spectral region (i.e. 500–2400 nm), we also found that reflectance
displayed the highest variation (Fig. 3b) in the visible region
between about 500 and 700 nm (23–32% across biomes), in the
SWIR region between 1300 and 1700 nm (15–17% across
biomes), and in the far-SWIR region between 1900 and 2500 nm
(24–37% across biomes). The near-infrared (NIR) region dis-
played only minor variation of c. 10% for all biome-level leaf
spectra (Fig. 3b).

Exploring the connection between LMA and leaf spectral
reflectance in the visible, NIR, and SWIR regions highlighted the
strength and direction of the relationships between reflectance
and LMA in different parts of the spectrum (Fig. S5). In the visi-
ble portion of the spectrum (Fig. S5a–c), the relationship
between LMA and spectra is generally positive, as with the NIR
(Fig. S5d) despite the much lower coefficient of variation in that
region (Fig. 3b). There was a strong negative relationship
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Fig. 2 Tukey box plots showing the range of
leaf mass per area (LMA, gm�2) in our
model development dataset calculated from
measurements of leaf area and dry mass for
our 11 regions, including the Biosphere2
glasshouse location. Sites are color-coded by
broad biome class (red, Arctic; green, boreal/
temperate; purple, Mediterranean; orange,
tropical). These are binned into four main
biomes for clarity but correspond to the six
Whittaker classes shown in Fig. 1. Box plots
show the interquartile range (box), and
median (solid horizontal line). The whiskers
show lowest and highest datum still within
1.59 interquartile range of the lower and
upper quartiles. Outliers are shown as black
dots. Sample sizes by region: 609 Arctic
leaves, 935 boreal/temperate leaves, 102
Mediterranean leaves (including 33
agricultural samples), and 832 tropical leaves
(including 72 Biosphere2 samples)
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between LMA and reflectance in the two SWIR (Fig. S5e,f) wave-
lengths (1800 and 2200 nm). Overall, these patterns are consis-
tent with previous studies (le Maire et al., 2008; Asner et al.,
2011; Feret et al., 2011). For example, Feret et al. (2008) showed
that spectral absorption of leaf dry matter content (the Cm or
LMA parameter in the PROSPECT model) is generally near zero
in the visible and NIR, but increases substantially when moving
further out into the SWIR wavelengths. On the other hand, Sla-
ton et al. (2001) illustrated the relationships of leaf morphology,
thickness and other structural characteristics to changes in NIR
reflectance across a range of leaf types and also found that there
was a generally positive relationship between NIR reflectance (at
800 nm) and leaf structure parameters, including cuticle thick-
ness and mesophyll properties.

Modeling the variation in LMA across biomes using
reflectance spectroscopy

Using the observed variation in measured LMA (Figs 2, S1), leaf
reflectance data (Figs 3a, S4), and the covariation between the
two (Fig. S5) within our model development dataset, we then
evaluated the capacity to build a widely applicable, multibiome
model to estimate LMA from leaf spectral reflectance across the
broad range of plant species, growth environments, leaf ages,
measurement approaches, and spectrometer instrumentation
reflected in our dataset. Our PLSR results (Figs 3c,d, 4) showed
that a model based on leaf reflectance data was able to explain
89% of the variation in LMA in the independent validation data
(and 91% in the calibration data using a cross-validation analysis;
Fig. S6a). Our multibiome model also displayed a low overall
independent validation error (RMSE = 16 g m�2) and bias (resid-
ual bias = 0.96 g m�2, regression bias = 2.95 g m�2), with the
model calibration and validation residuals both centered around
zero (Fig. S6e,f). Within each biome in the core calibration and
validation datasets, the model fit also showed low error, ranging
from a minimum RMSE of 12 g m�2 in the Arctic plants to
30 g m�2 in the Mediterranean plants (Fig. S7). We further
explored whether there were significant model biases attributable
to variation with canopy position (Fig. S8) and across leaf ages
(Fig. S9). Our results demonstrated that the model performance
was very consistent across these different axes of variation,

500 1000 1500 2000

0
20

40
60

R
ef

le
ct

an
ce

 (%
)

Mean reflectance
Min/max
95% CI

(a)

500 1000 1500 2000

0
20

40
60

80
C

oe
ffi

ci
en

t o
f v

ar
ia

tio
n 

(%
) Arctic

Boreal/temperate
Mediterranean
Tropics

(b)

500 1000 1500 2000

−1
.5

−0
.5

0.
5

1.
5

P
LS

R
 c

oe
ffi

ci
en

t (
−)

(c)

500 1000 1500 2000

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Wavelength (nm)

P
LS

R
 V

IP
 (−

)

(d)

Fig. 3 Leaf reflectance and associated statistics. (a) Mean leaf reflectance,
95% confidence interval (green shading) and minimum and maximum
reflectances (dotted lines) in our model development dataset. (b)
Coefficient of variation for spectra from the four biomes represented in
this study (red, Arctic; green, boreal/temperate; purple, Mediterranean;
orange, tropical). (c) Plot of the partial least-squares regression (PLSR)
model coefficients. (d) PLSR variable influence on projection (VIP).
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Fig. 4 Observed leaf mass per area (LMA) calculated from measured leaf
area and dry mass vs LMA predicted using our spectral model. Our model
development dataset (n = 2478) was split into two groups that were used
to calibrate (black circles, n = 1978) and validate (gray circles, n = 500) the
model. The validation points are shown with� 95% confidence interval
(CI) error bars. For clarity, validation points are shown layered on top of
calibration points. The 1 : 1 line is shown as a broken black line and the
predictive interval of the model is shown as solid black lines. The regression
between observed and predicted LMA is shown in blue (regression, thin
blue line; 95% CI, thick blue line). The R2, root mean square error (RMSE)
and regression bias (y-axis intercept) for the validation dataset are shown
inside the panel. Data and statistics are presented in back-transformed
standard LMA units.
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although the leaf age evaluation displayed some bias in the young
(expanding leaves or current year foliage) and mature (1 yr old)
and mature (> 1 yr old) leaf age classes. Combined, the predictive
error (dark black lines, 95% CI error bars on the points in Fig. 4)
for the estimated LMA is small, particularly for the most com-
monly observed values of LMA (e.g. LMA ≤ 150 g m�2; Fig. S1).

Our multibiome LMA PLSR model has a performance similar
to or better than previous studies using leaves from a much
smaller range of species, locations and growth environments (e.g.
Asner et al., 2011; Serbin et al., 2014; Yang et al., 2016). In addi-
tion, the model is able to cover a larger range of the global LMA
trait-space (Figs 2, S1), habitable climates (Fig. 1) and variation
in leaf optical properties (Fig. S4) than earlier work. This
includes previous studies utilizing semimechanistic leaf RTMs,
including the PROSPECT model (e.g. Feret et al., 2008, 2011;
Shiklomanov et al., 2016). For example, F�eret et al. (2018) found
that performance of PROSPET-D LMA inversion varied based
on the input dataset (and species within), inversion approach and
spectral domain, but that the overall PROSPECT-D inversion
results across a smaller set of tropical to boreal samples were com-
parable to those shown here. Similarly, Shiklomanov et al. (2016)
also found comparable results using a Bayesian inversion of
PROSPECT-5b. However, in both cases, and with previous
research (Malenovsk�y et al., 2006), thicker leaves and needles
have hindered the inversion accuracy of semimechanistic models
like PROSPECT (e.g. Shiklomanov et al., 2016) and, as a result,
needleleaf species are typically removed before analysis (e.g. F�eret
et al., 2018). Although approaches like PROSPECT are attractive
to the remote-sensing and plant trait ecology communities, issues
surrounding the handling of more complex leaf morphologies
and absorption properties need to be addressed in order to facili-
tate the confident use of these models’ global applications. On
the other hand, our empirical approach was able to account for a
broad range of morphologies and other drivers of leaf optical
variation to produce a widely applicable multibiome model
(Fig. 4).

The evaluation of the global model PLSR coefficient and VIP
plots (Fig. 3c,d) highlights the regions of the spectrum that
provide the strongest predictive power, many of which corre-
spond to the areas showing the highest CV values, but note that
the NIR region was also important. The SWIR spectral regions
are known to contain absorption features related to structure, dry
matter content, C compounds and internal leaf water content
(Curran, 1989) which also covary with LMA (Elvidge, 1990;
Poorter et al., 2009; de la Riva et al., 2016). Our global model
showed relatively high VIPs in the NIR region (Fig. 3c,d), consis-
tent with previous studies that also highlighted the importance of
this region (Asner et al., 2011; Yendrek et al., 2017), particularly
in the transition between visible and NIR reflectance (c. 750–
800 nm) and the region between 950 and 1200 nm. Correspond-
ing PLSR coefficient values in the NIR were highest in the
c. 1000–1200 nm region. In general, the NIR has been shown to
contain information connected to leaf internal scatter related to
mesophyll layer thickness and water content, and varies with
water, structural C, leaf thickness and variation in the epidermis
layer (Ollinger, 2011), which also varies strongly with LMA

(Castro-D�ıez et al., 2000; Jacquemoud et al., 2009; Poorter et al.,
2009; de la Riva et al., 2016).

Our results show the powerful capability of the spectral
approach to estimate a key leaf trait (LMA) across a high diversity
of plant species, growth environments, leaf ages, leaf morphology
and biomes. Our synthesis represents the first time multiple
datasets collected from different locations, by different groups,
with different instrumentation across such large climatic and geo-
graphical ranges and from such a wide diversity of leaf types,
including needleleaf species (Fig. 1), have been combined to test
the ability to generalize the spectral PLSR modeling approach.
Importantly, there appears to be a general pattern in the PLSR
models shown for this and previous studies where similar por-
tions of the visible, NIR and SWIR regions display high impor-
tance in the estimation of LMA with spectra (Asner et al., 2011;
Serbin et al., 2014; Yang et al., 2016). This strongly suggests that
the coordination between leaf optical properties and traits can be
used to develop generalized global models for leaf traits using the
spectroscopic approach.

External validation of the multibiome LMA model

We further tested the predictive capability of our global leaf spec-
tra–LMA model using three additional, completely independent
datasets of measured leaf reflectance and LMA from trees, forbs,
shrubs and grasses. These datasets include the foundational
LOPEX and ANGERS spectral datasets (Hosgood et al., 1994;
Jacquemoud et al., 2003), as well as data collected across NEON
locations in the continental US. The first two datasets have been
heavily used in remote-sensing literature to develop and test the
PROSPECT model (Feret et al., 2008). We applied our model
coefficients (as shown in Fig. 3c) to the first two leaf reflectance
datasets (i.e. LOPEX and ANGERS) and our results showed
strong model performance (R2 = 0.66) and low predictive error
(RMSE = 21 g m�2; Fig. S10). Similarly, using the datasets col-
lected in the Upper Midwest and at select NEON sites, we
applied our model to the measured reflectance data to estimate
LMA and found similar results (RMSE = 16.1 and 12.5 g m�2

for the Midwest and NEON locations, respectively; Fig. S11),
suggesting the high model performance and generality of the
spectra–trait approach for estimating LMA across a range of
species and environments. As such, the development of globally
applicable models like that presented here will reduce time and
money spent developing site- or project-specific models to focus
more on the rapid collection of much larger datasets by utilizing
widely applicable models, like that presented here, to estimate
traits such as LMA using only spectral measurements. The spec-
tral approach has the added benefit of providing the capacity to
repeat measurements of the same leaves during development or
over a season, and during a manipulation or stress event, because
it does not require destructive harvesting.

Main applications of our results

Our study of multibiome convergence in the leaf-level spectra–
LMA relationships has four major implications. First, our

No claim to US Government works

New Phytologist� 2019 New Phytologist Trust
New Phytologist (2019) 224: 1557–1568

www.newphytologist.com

New
Phytologist Research 1563



framework and approach can largely be extended to other leaf
traits. In addition to LMA, some other plant functional traits
(e.g. pigments (Chla,b and carotenoid), chemical concentration
(water%, N%, C%, isotopic N and C), and carboxylation capac-
ity (Vcmax)) are also very important inputs for ESMs, and critical
measures of plant form and function (Xu et al., 2012; van Bode-
gom et al., 2014; Rogers, 2014; Butler et al., 2017; Rogers et al.,
2017a; Ricciuto et al., 2018). As these plant functional traits have
been shown to be connected to leaf spectral reflectance (Asner &
Martin, 2008; Feret et al., 2008; Kokaly et al., 2009; Serbin et al.,
2012, 2014, 2015; Wu et al., 2019), we thus expect that similar
globally convergent relationships with leaf spectra could be devel-
oped for these and other traits. To explore these additional gener-
alities, future work can leverage emerging leaf spectra and trait
databases, such as EcoSIS, which will facilitate much faster and
easier development, testing and refinement of spectra–trait mod-
els.

Second, our work highlights the feasibility of using vegeta-
tion spectroscopy to advance large-scale monitoring of plant
functional traits. This study evaluated the power of the spec-
troscopy approach at the leaf level, but an important next step
is to explore the ability to use a range of imaging spectroscopy
platforms to map traits, such as LMA, at the canopy and land-
scape scales using airborne and spaceborne instruments across
larger regions than currently explored, and ultimately globally
(Schimel et al., 2015; Stavros et al., 2017). Here we show the
capacity to generalize the spectral approach at the leaf scale and
there is strong evidence that similar approaches can be used at
the canopy scale with imaging systems (e.g. Asner et al., 2015;
Singh et al., 2015). This could augment or supplant the need
for direct sampling and measurement of leaf traits at the global
scale, especially given important upcoming satellite missions
(e.g. Surface Biology and Geology Mission (National
Academies of Sciences, Engineering, and Medicine, 2018), pre-
viously named HyspIRI (Lee et al., 2015), and EnMAP (Guan-
ter et al., 2015)). Furthermore, functional trait mapping from
imaging spectroscopy could supplement methods using remote
sensing combined with climatology (Butler et al., 2017;
Moreno-Mart�ınez et al., 2018). These capabilities would signifi-
cantly enhance the use of trait observations to inform ESMs
and would address critical needs in biodiversity monitoring
(Skidmore et al., 2015; Jetz et al., 2016). However, lack of
global coverage, inconsistent processing workflows and other
challenges with the use of imaging spectroscopy have limited
the ability to derive consistent global trait maps. Furthermore,
approaches are needed to separate trait retrieval from climatol-
ogy to allow for the characterization of biotic and abiotic
drivers, and for future mapping under novel climates (Fisher
et al., 2015). This can only be realized with a spaceborne map-
ping imaging spectroscopy mission (National Academies of
Sciences, 2018).

Third, we hypothesized that a single, multibiome leaf
reflectance model of LMA could be developed using datasets
across diverse growth environments. We supported this hypothe-
sis by showing a global convergence in the spectra–LMA relation-
ship across samples representing a large portion of the global

trait-space for LMA (Figs 4, S1), which, when applied to external
datasets from new, independent locations (Figs S10, S11) showed
similar model performance for estimating LMA. Importantly, as
leaf traits, particularly LMA, display adaptations and acclimation
to their growth environment (Poorter et al., 2009; Osnas et al.,
2018), the success of a generalized spectra–LMA model shown in
this study further suggests that the spectroscopic approach could
be an important, nondestructive means to help quantify and
understand how plant traits acclimate to climatic variability and
global change through rapid collection of traits with spectra
(Shiklomanov et al., 2019). Moreover, while the one-time costs
of the spectrometer instrumentation utilized in this work can be
high, this cost is low compared with the overall costs associated
with traditional measurements of LMA (e.g. labor and supply
costs over the lifetime of a project) and provides a much more
rapid means for the retrieval of LMA.

Finally, the resulting multi-biome LMA PLSR model (see
Methods S1 and associated links within) developed here can be
downloaded and used by the scientific community. As measure-
ment of leaf spectral reflectance is the only input required, our
model enables the rapid, accurate and nondestructive estimation
of LMA and can therefore be used for a broad range of additional
applications, such as monitoring plant response to an emerging
stress or evaluating physiological traits of interest to breeders in
high-throughput phenotyping experiments (Silva-Perez et al.,
2017; Yendrek et al., 2017; Ely et al., 2019). As a result, databases
such as EcoSIS can now be mined for increased coverage of
important plant traits by applying this and other spectra–trait
models, potentially increasing the amount of available data for
modeling and ecological research.

Conclusions

In this work, we present a detailed synthesis of an extensive
dataset containing coincident measurements of full-spectrum
(i.e. 0.3–2.5 lm) leaf reflectance and LMA across multiple
biomes and spanning large environmental gradients (Fig. 1).
The variation in our dataset covered a large portion of the
global variation observed for LMA (Fig. S1) and similarly con-
tained a high degree of variation in leaf reflectance spectra (e.g.
Figs 3, S4). Despite this high degree of variation in LMA and
leaf reflectance observed across biomes, species, environment,
leaf age and canopy position, our spectra–trait approach was
able to collapse this variation into a single, widely applicable
model (Fig. 4) that can be used to estimate LMA rapidly and
accurately using only reflectance data (Figs S10, S11). These
results are important because they highlight that the spectral
approach presented here can be used to develop algorithms
using datasets from a range of instruments, groups and locations
to develop generalized models. Furthermore, this work illus-
trates the utility of the spectral approach in providing rapid, rel-
atively low-cost and nondestructive (when the leaves are
accessible) measurements of key plant traits across diverse plant
species. The use of models such as that presented here will help
to rapidly expand trait databases in order to address the known
bias in observational datasets (Schimel et al., 2015).
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