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Summary

� Understanding the pronounced seasonal and spatial variation in leaf carboxylation capacity

(Vc,max) is critical for determining terrestrial carbon cycling in tropical forests. However, an

efficient and scalable approach for predicting Vc,max is still lacking.
� Here the ability of leaf spectroscopy for rapid estimation of Vc,max was tested. Vc,max was

estimated using traditional gas exchange methods, and measured reflectance spectra and leaf

age in leaves sampled from tropical forests in Panama and Brazil. These data were used to

build a model to predict Vc,max from leaf spectra.
� The results demonstrated that leaf spectroscopy accurately predicts Vc,max of mature leaves

in Panamanian tropical forests (R2 = 0.90). However, this single-age model required recalibra-

tion when applied to broader leaf demographic classes (i.e. immature leaves). Combined use

of spectroscopy models for Vc,max and leaf age enabled construction of the Vc,max–age rela-

tionship solely from leaf spectra, which agreed with field observations. This suggests that the

spectroscopy technique can capture the seasonal variability in Vc,max, assuming sufficient sam-

pling across diverse species, leaf ages and canopy environments.
� This finding will aid development of remote sensing approaches that can be used to charac-

terize Vc,max in moist tropical forests and enable an efficient means to parameterize and evalu-

ate terrestrial biosphere models.

Introduction

Projecting the fate of terrestrial ecosystems under a changing cli-
mate requires knowledge of plant physiology and ecology, and
representation of that process knowledge in Earth system models
(ESMs). Photosynthesis is an especially critical process to repre-
sent accurately. In the most widely used model of photosynthesis,
the rate of CO2 assimilation is determined by the maximum car-
boxylation rate of the enzyme Rubisco (Vc,max), the rate of RuBP
regeneration through electron transport, and in some models, the
utilization of triose phosphates (Farquhar et al., 1980; Sharkey
et al., 2007). The Vc,max25, which is Vc,max standardized to a refer-
ence temperature of 25°C (Bernacchi et al., 2013), is a key
parameter at the heart of many ESMs, and variation in this
parameter has repeatedly been shown to be the source of a large
fraction of overall model uncertainty (Bonan et al., 2011; Rogers,
2014; Rogers et al., 2017a; Walker et al., 2017; Ricciuto et al.,
2018). Accurate and comprehensive observations of the biogeog-
raphy, ecology and overall distribution of Vc,max25 are thus a

critical research need for improving understanding of and model
predictions for photosynthesis at local, regional and global scales.

Most ESMs currently represent Vc,max25 with a single static
value for each plant functional type (Bonan et al., 2011; Rogers,
2014). This assumption is most questionable for the tropical
forest biome where forests hold enormous plant functional diver-
sity (Condit et al., 2005; Steege et al., 2013; Asner et al., 2014)
that includes diversity in photosynthetic capacity (Norby et al.,
2017; Walker et al., 2017). Furthermore, for a given species,
Vc,max25 has been shown to vary greatly with leaf development,
growth temperature, and water and nutrient availability (Medlyn
et al., 1999; Wilson et al., 2001; Kenzo et al., 2006; Kattge &
Knorr, 2007; Ali et al., 2015; Norby et al., 2017; Albert et al.,
2018; Kumarathunge et al., 2019; Smith et al., 2019). Recently it
was shown that the seasonality of photosynthesis in Amazonian
evergreen forests, a c. 4 Gt yr�1 fluctuation in CO2 assimilation
(estimated using the envelop calculation approach to extend
existing site-level study in Amazon to the entire Amazon basin),
is driven by the replacement of old leaves that have a low Vc,max25

� 2019 The Authors

New Phytologist� 2019 New Phytologist Trust

New Phytologist (2019) 224: 663–674 663
www.newphytologist.com

Research

https://orcid.org/0000-0001-8991-3970
https://orcid.org/0000-0001-8991-3970
https://orcid.org/0000-0001-9262-7430
https://orcid.org/0000-0001-9262-7430
https://orcid.org/0000-0002-9674-6071
https://orcid.org/0000-0002-9674-6071
https://orcid.org/0000-0002-3915-001X
https://orcid.org/0000-0002-3915-001X
https://orcid.org/0000-0001-7535-045X
https://orcid.org/0000-0001-7535-045X
https://orcid.org/0000-0002-2735-1746
https://orcid.org/0000-0002-2735-1746
https://orcid.org/0000-0003-4136-8971
https://orcid.org/0000-0003-4136-8971


with recently matured leaves that have a higher Vc,max25 (Wu
et al., 2016; Albert et al., 2018). These studies also demonstrated
that it is critical to quantify leaf age and couple this information
with estimates of Vc,max25 to more accurately model leaf CO2

assimilation by tropical forests. This result is likely also to be
applicable to other vegetative biomes that contain plants with
long-lived leaves (e.g. needle-leaf evergreen) or with significant
seasonal variation (Wilson et al., 2001; Han et al., 2008;
Muraoka et al., 2010; Niinemets, 2016). However, scaleable
Vc,max25 data to enable this approach in models is lacking and
tedious to collect in the tropics, which is reflected in the very
poor geographical coverage of tropical plants in plant trait
databases (Kattge et al., 2011; Schimel et al., 2015; D�ıaz et al.,
2016).

Typically, leaf-level Vc,max25 is estimated by fitting a model to
a photosynthetic CO2 response curve measured using gas
exchange in a process that can take over 45 min for a single mea-
surement (Long & Bernacchi, 2003). Although faster methods of
estimating Vc,max have been described recently (De Kauwe et al.,
2016; Stinziano et al., 2017), gas exchange measurements remain
challenging in natural systems such as tropical forests where many
species must be characterized at large scales. Canopy access pre-
sents an additional challenge in some systems, including tropical
forests where canopy height can exceed 30 m, requiring canopy
cranes or tree climbing, which may be prohibitively time-con-
suming or expensive. Moreover, reliably tracking leaf age – using
the leaf tagging method with intensive in situ revisits and surveys
(Reich et al., 2004; Wu et al., 2017) – coupled with leaf gas
exchange measurements, adds another level of difficulty. This
challenge is particularly acute for moist tropical forests in which
periods of new leaf production can last from a week up to a year,
and different tree species have distinct and often irregular new
leaf production patterns both in their timing and amplitude
(Reich et al., 2004; Lopes et al., 2016; Xu et al., 2017). Within
this context, researchers require methods that allow rapid estima-
tion of Vc,max25 and leaf age that can be applied to tall trees in
natural systems, including remote tropical forests.

Recent advances in vegetation spectroscopy offer a promising
solution given that this approach tightly connects leaf optical
properties with their chemical composition, cell structure and
physiological properties (Curran, 1989; Elvidge, 1990; Kokaly
et al., 2009). As such, spectroscopy has been receiving increasing
attention from a broader science community, including those
from plant ecophysiology, functional trait ecology and evolution
(Serbin et al., 2012; Asner et al., 2016; Schneider et al., 2017;
Schweiger et al., 2018). For example, recent studies suggest that
leaf Vc,max can be estimated accurately and rapidly based on leaf
reflectance spectra (Doughty et al., 2011; Serbin et al., 2012;
Ainsworth et al., 2014; Barnes et al., 2017; Dechant et al., 2017;
Yendrek et al., 2017; Silva-Perez et al., 2018). In addition, two
recent studies also have shown that leaf spectroscopy provides an
accurate, rapid means to assess leaf age at both individual and
community scales (Chavana-Bryant et al., 2017; Wu et al., 2017).
Furthermore, some studies also suggest that it is possible that
spectroscopy-based models of leaf Vc,max25 and age could be
extended to the canopy scale by leveraging imaging spectroscopy

instrumentation on tower, unmanned aerial systems and manned
airborne platforms (Serbin et al., 2015; De Moura et al., 2017).
These developments highlight the potential to map changes in
Vc,max25 and leaf age over unprecedented spatial and temporal
scales. However, the ability of spectra to predict the variability in
Vc,max25 across these multiple axes of variation (i.e. species,
canopy position, leaf age and forest sites) has not been tested, and
a spectroscopy-based approach that can account for variation in
both leaf age and Vc,max25 has not been developed.

In the present study leaf gas exchange, reflectance spectroscopy
and leaf age data were collected from three lowland moist tropical
forests. Our goal was to develop a single spectroscopic approach
capable of capturing the variation in Vc,max25 among leaves of dif-
ferent ages from a range of species and canopy environments (i.e.
variation in canopy height and sunlit and shaded environments)
in lowland moist tropical forests. Two main questions were
addressed: (1) Can the spectra–Vc,max25 relationship for mature
leaves also be applied to leaves of other leaf demographic classes
(e.g. immature leaves), and if not, can a new spectra-based model
of Vc,max25 be developed that performs well across all leaf ages?
(2) Can leaf spectra information alone enable accurate estimation
of the developmental trajectories of Vc,max25: the Vc,max25–leaf
age relationship? By answering these questions, the hope was to
understand if the spectroscopy approach can be used to capture
the Vc,max25 variability in moist tropical forests, thereby accelerat-
ing current capacity to parameterize ESMs for improved projec-
tion of terrestrial carbon and water fluxes in the context of a
changing climate.

Materials and Methods

Site descriptions

This study used data collected from three lowland seasonal moist
tropical forests, including two crane sites in the Republic of
Panama and one site in Brazil. The two sites in Panama include a
seasonally dry forest in the Parque Natural Metropolitano
(PNM; 8.9950°N, 79.5431°W) near Panama City and a wet
evergreen forest in the San Lorenzo Protected Area (SLZ;
9.2810°N, 79.9745°W), Colon Province. Both sites are domi-
nated by clay soil (Turner & Romero, 2009). Mean annual air
temperature at both sites is 26°C (1998–2015), and mean annual
precipitation is 1826 and 3286 mm yr�1 for PNM and SLZ,
respectively, with a 4-month-long dry season (precipita-
tion < 100 mm per month) from January to April each year. At
each site, the Smithsonian Tropical Research Institute maintains
a canopy-access crane that enables access throughout the canopy
of these forests. The site in Brazil (2.8500°S, 54.9667°W) is
located around the K67 eddy covariance site in Tapajos National
Forest, near Santarem, Para, Brazil. Part of the Brazilian Large
Scale Biosphere-Atmosphere Experiment in Amazonia (LBA;
Davidson et al., 2012), this site sits on a well-drained clay-soil
plateau. Multiple-year (2002–2005) mean annual air tempera-
ture is 26°C (Hutyra et al., 2007). Mean annual precipitation
(1998–2013) is 2022 mm yr�1 with a 5-month-long dry season
from mid-July to mid-December each year. Single rope access
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techniques were used to climb into and access individual crowns
of canopy trees (Albert et al., 2018). For details about forest com-
position and structure of the sites in Panama see Wright et al.
(2003), and of the site in Brazil see Rice et al. (2004). For infor-
mation about soil fertility of the sites in Panama see Turner &
Romero (2009), and of the site in Brazil see Nepstad et al.
(2002).

Plant materials

Sixteen canopy tree species from the two sites in Panama (n = 8
for SLZ and n = 8 for PNM) and five canopy tree species from
the Brazilian site were selected for intensive field measurements
of leaf gas exchange, reflectance spectra and traits (i.e. leaf mass
per area, LMA; Supporting Information Table S1). Sampled
leaves were classified into two main age classes: immature leaves
(< 2 months; corresponding to the leaves from emergence up to
fully expanded, but not fully green, thickened, or physiologically
matured) or mature leaves (≥ 2 months old), following the similar
age categories as presented in Coley (1983), Wu et al. (2016),
and Albert et al. (2018). This classification of leaf age is very simi-
lar to the three-age-category (young, mature and old) used in Wu
et al. (2016), except that mature and old age classes were grouped
together into a single mature age class, the reason being that leaf
age was not tracked as frequently in Panama as in Brazil (Wu
et al., 2017), and therefore lacked the resolution to differentiate
three age classes. Field measurements in Panama were conducted
in the 2016 and 2017 dry seasons on sunlit upper canopy foliage.
In the 2016 field campaigns in mid-February and mid-April the
dominant leaf class(es) were sampled from eight trees at each site.
In February 2017 the measurements included both age classes if
present within the top meter of a sunlit branch from four canopy
tree species at the SLZ site (Table S1). Field measurements of
canopy trees in Brazil, including leaves of both age classes from
sunlit and shaded branches, were conducted during the 2012 dry
season field campaign from mid-August until early-December
and a 2013 dry season campaign in August, using single-rope
access techniques. For more details on surveyed tree species,
please refer to Table S1 and Albert et al. (2018).

Field measurements

Leaf gas exchange Six portable gas exchange systems were used
in Panama and two in Brazil (LI-6400XT; Li-COR Inc., Lincoln,
NE, USA). Measurements of the response of net assimilation rate
(A) to intracellular CO2 concentration (Ci), commonly known as
A–Ci response curves, were conducted on leaves from cut
branches. In Panama, all branches were sampled before dawn
using the canopy cranes. Steps were taken to avoid inducing
xylem embolism when collecting branches, and when it was pos-
sible, the initial cut was made under water by bending the branch
section into a bucket filled with water. Otherwise, the initial cut
was made in the air and then a second cut was made underwater
c. 1 m from the initial cut. In all cases, several cuts were made
sequentially closer to the branch tip to relax xylem tension, fol-
lowing the protocol as described by Sperry (2013). Samples were

stored in individual buckets and kept in deep shade until used for
measurements, which was normally within 4 h after harvesting.
Measurements of A–Ci curves closely followed Rogers et al.
(2017b), with the reference CO2 concentration controlled as fol-
lows: 400, 325, 250, 175, 100, 65, 40, 400, 400, 400, 475, 575,
675, 800, 1000, 1400 and 1800 lmol mol�1; leaves were held at
31� 2°C and 83� 5% relative humidity under saturated light
conditions (i.e. 2000 lmol m�2 s�1). In Brazil, branch samples
were collected via tree climbing, and gently lowered to the
ground with ropes in the morning, and re-cut under water within
15 min. Samples were stored in individual buckets and kept in
deep shade until used for measurements (typically within 4 h
after harvesting). Full details of leaf gas exchange measurements
from Brazil are in Albert et al. (2018). In brief, the protocol was
similar to that described above except that in Brazil, the reference
CO2 concentration was controlled as follows: 400, 100, 50, 100,
150, 250, 350, 550, 750 lmol mol�1, and then increased by
increments of between 200 and 500 to reach saturation at c.
2000; leaf temperature was controlled at 31� 2°C and chamber
humidity was controlled at 46� 11%.

Before curve-fitting, quality control procedures for gas
exchange measurements from all sites excluded values associated
with instrument error and other known artifacts, such as spurious
logs and data where leaks were clearly apparent, as described in
Rogers et al. (2017b) and Albert et al. (2018). Finally, apparent
maximum carboxylation capacity standardized to a reference
temperature of 25°C (Vc,max25) was estimated using the kinetic
constants and temperature response functions presented by Ber-
nacchi et al. (2013) as described by Rogers et al. (2017b). A total
of 186 leaves with estimated Vc,max25 in Panama and 81 leaves in
Brazil were used in the present study, with species-specific mean
and standard deviation summarized in Table S1.

Leaf spectra Following leaf gas exchange measurements, the
branches were kept in water and within 2 h harvested the leaf and
immediately measured leaf reflectance spectra and fresh mass.
Leaf reflectance at the Panamanian sites was measured using a
Spectra Vista Corporation (SVC) HR-1024i (SVC, Poughkeep-
sie, NY, USA; spectral range: 350–2500 nm; spectral resolution:
3.5 nm at 700 nm, 9.5 nm at 1500 nm, and 6.5 nm at 2100 nm)
together with the SVC LC-RP-Pro foreoptic. Similarly, leaf
reflectance of Brazilian plants was measured using a FieldSpec®

Pro spectrometer (Analytical Spectra Devices (ASD), Boulder,
CO, USA; spectral range: 350–2500 nm; spectral resolution:
3 nm at 700 nm, 10 nm at 1400 nm, and 10 nm at 2100 nm)
together with an ASD leaf clip attached to a plant probe assem-
bly. In both cases, the reflectance probes contained internal, cali-
brated light sources to illuminate the samples during spectral
collection. The leaf probe was used together with a black back-
ground for leaf reflectance measurements. To avoid the excessive
heat loads while ensuring the reliable spectral collection, the ASD
integration time was set to 100 ms per scan and each collected
spectra was an average of 10 scans, whereas with the SVC a 1 s
collection time was used with the spectrometer’s automatic inte-
gration optimization. This approach matches that of Serbin et al.
(2012), which originally highlighted the concerns of the excessive
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heat loads on the data quality of leaf spectra collected. For each
leaf, reflectance spectra were measured on 1–6 different parts of
the leaf adaxial surface depending on leaf size, and then averaged
to determine the mean optical properties across all wavelengths.

Leaf traits Leaf mass per area (LMA; g m�2) also was measured
to assess the diversity of plant species that were sampled in terms
of the LMA trait space. In Panama, a known leaf area was sam-
pled using cork borers. The samples were dried to constant mass
at 70°C. Dry mass was then determined with a precision balance
(Model SLF303; Fisher Science Education, Hanover Park, IL,
USA) to calculate LMA. In Brazil, LMA was derived from area
(using a Canon LiDE 120 scanner; Canon USA Inc., Melville,
NY, USA) and DW (also using a precision balance from Fisher
Science Education, Model SLF303, Hanover Park, IL, USA)
oven-dried at 60°C for over 72 h.

Leaf age In Brazil, in field campaigns conducted in August–
September 2013, November 2013, March 2014 and July–August
2014, seven trees of different species were selected (see Table 1 in
Wu et al., 2017) for precise in situ leaf age monitoring. Leaf age
monitoring was carried out by using metal tags and in situ photo
documentation (e.g. fig. S1 in Wu et al., 2017). Monitoring
began in August–September 2013, when most sampled trees were
flushing new leaves, and was continued periodically throughout
the annual cycle. Through this age-tagging technique, leaf age
was accurately tracked from leaf emergence at budburst (0 d) up
to c. 400 d old. From those leaves with accurate leaf age monitor-
ing, a total of 759 leaves was then sampled covering the entire
annual cycle, and measured leaf reflectance spectra using the same
ASD FieldSpec® Pro spectrometer as described above. These
leaves were then used for the development of the community-
level spectra-age model (Wu et al., 2017) and briefly summarized
below. Among these seven trees surveyed for both leaf age moni-
toring and leaf reflectance measurements, four were the same
canopy trees (including leaf samples from both sunlit and shaded
microenvironments) from which were made gas exchange mea-
surements as described above (also see Table S1).

In addition to the above-mentioned accurate leaf age monitor-
ing, RGB photos were also taken for all leaves used for leaf
reflectance measurements in both Panama and Brazil. These
RGB photos together with other related information, for example
visual assessment of the color, size and rigidity of the leaves, and
relative positions and bud scars (when present) within a 1-m
branch length, were then used to classify these leaves into two dif-
ferent age categories: immature and mature leaves.

Spectra–Vc,max25 analysis For all field-based spectral and gas
exchange measurements in Panama and Brazil, only the plant
species with both leaf reflectance spectra and Vc,max25 were
selected (which excluded 25 measurements in Panama and 12
measurements in Brazil with only leaf gas exchange). Finally, a
filtering was performed of outliers of combined spectra–Vc,max25

datasets (which removed c. 5% of data). The outlier detection
method implemented here was originally used in Wu et al.
(2017), which adapted an outlier detection module from ‘LIBPLS’

(accessed at https://www.libpls.net/), using the Monte Carlo
sampling method (Xu & Liang, 2001) for automatic outlier
detection. After the data filtering, the Panamanian dataset had
n = 151 measurements, including 110 mature leaves from all 16
species and 41 immature leaves from nine of the 16 species,
which accounts for 94% of all measurements with both spectral
and leaf gas exchange in Panama. The Brazilian dataset had
n = 65 measurements, including 44 mature leaves and 21 imma-
ture leaves from all five species, which accounts for 94% of all
measurements with both spectral and leaf gas exchange in Brazil.

All of the data sources associated with this study including gas
exchange data, leaf spectral data, leaf trait and leaf age informa-
tion are summarized in Table S2.

Partial least-squares regression (PLSR) modeling of spectra–
Vc,max25 and spectra-age

In order to relate the variability in Vc,max25 across tree species, leaf
age, canopy position and forest sites with the variability in leaf
reflectance spectra and to infer leaf age from leaf reflectance spec-
tra, a PLSR modeling approach (Geladi & Kowalski, 1986;
Wolter et al., 2008) was utilized using the ‘plsregress’ function in
MATLAB (Mathworks, Natick, MA, USA) as described in De Jong
(1993) and Rosipal & Kr€amer (2006). PLSR is a commonly used
approach in spectroscopy and chemometric analyses given its
ability to handle high predictor collinearity and a large number
of predictor variables that may exceed the number of observa-
tions. PLSR accounts for these challenges by reducing the num-
ber of predictor variables down to relatively few, orthogonal
latent variables, each composed of a weighted sum of the original
variables (Geladi & Kowalski, 1986; Wolter et al., 2008). More-
over, PLSR accounts for measurement error in the predictor vari-
ables (i.e. leaf hyperspectral reflectance).

The PLSR model development used herein has been described
previously (Wu et al., 2017) and is briefly summarized here. First
a square-root transformation was applied to the Vc,max25 data and
leaf age data to reduce the right skewness distribution of the orig-
inal data (e.g. Figs S1a,b, S2a,b) and satisfy the normal distribu-
tion assumption of PLSR analysis. Then a one-time, random,
stratified separation of the full dataset into calibration (two-
thirds) and independent validation (one-third) subsets was per-
formed; stratification ensured that each subset included leaf sam-
ples of each age category, of each species, and (when appropriate)
of each canopy position. Next, 70% of the calibration data subset
was randomly selected and used to fit the PLSR model of spec-
tra–Vc,max25; this was repeated 100 times and for each permuta-
tion applying the model to predict the corresponding
independent 30% of the calibration data. To avoid the potential
to over-fit the spectra-based calibration model, the number of
PLSR latent variables was optimized by choosing the number of
latent variables that minimized the root mean square error
(RMSE) from predicting the remaining 30% of the calibration
data over the 100 permutations (Chen et al., 2004; e.g. Fig. S1c).
Meanwhile, the mean and standard deviation also were deter-
mined for the distribution of PLSR coefficients generated by the
100 PLSR fits corresponding to the optimal number of latent
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variables, which were used in the final spectra–Vc,max25 model
(e.g. Fig. S1d).

Finally, the performance of this spectra–Vc,max25 model was
quantified using the independent validation dataset. Three main
evaluation metrics were used: the coefficients of determination
(R2), RMSE and the regression bias. All model results presented
in this study are shown in the original Vc,max25 units rather than
the square-root transformed unit that is the initial output of the
PLSR model. The same spectral analytical approach was applied
to the Brazilian spectra-age dataset to derive the community-level
spectra-age model (Fig. S2 and Wu et al., 2017). All of the code
used for model development and data analysis were developed in
MATLAB (Mathworks).

Generalizability of spectra–Vc,max25 relationship

In order to determine whether the spectra–Vc,max25 relationship
can be generalized across species, leaf age and canopy environ-
ment two tests were performed. In the first test, a spectra-based
PLSR model was developed using two-thirds of the Panamanian
data for mature leaves to train the model (including all 16
species). This model was then applied to the remaining Panama-
nian dataset of mature leaves, as well as to the independent vali-
dation dataset of Panamanian immature leaves, and Brazilian
mature and immature leaves. Through this test, it would enable
assessment of whether the spectra–Vc,max25 relationship of mature
leaves also can be applied to leaves of immature age class or leaves
of a different forest site in Brazil. In the second test, a new spec-
tra-based model was developed in which all datasets (including
two-thirds of all leaves from both Panama and Brazil) were used
to train the model. Model performance was evaluated using the

remaining, independent datasets, which are the same as that were
used in the first test. Through this test, it would enable assess-
ment of whether a single spectra–Vc,max25 relationship can be
applied to leaves of both leaf age classes and different forest sites.

Spectral-based seasonal variability in Vc,max25, or Vc,max25–
age relationship, using a combination of spectral models of
Vc,max25 and leaf ae

With the developed spectra–Vc,max25 model and spectra-age
model as described above, these two models were then used in
combination to explore whether leaf spectra information alone
can be used to reconstruct the life-history variability in leaf
Vc,max25 for tropical trees. The spectra-age dataset in Brazil were
used for this test, as the dataset covered the leaf spectra through-
out their life cycles (Wu et al., 2017) while having some ground
truth of Vc,max25 derived from gas exchange measurements
(Albert et al., 2018). These two models are both at the commu-
nity level and their model regression coefficients are shown in
Figs S1(d) and S2(d), respectively. The models were driven by
the input of leaf spectral reflectance only but can predict leaf
Vc,max25 and leaf age, respectively (see the provided sample MAT-

LAB script in Notes S1). By combining the model output of
Vc,max25 and age together, the spectroscopy approach was thus
used to estimate the Vc,max25–age relationship, or the life-history
variability in leaf Vc,max25 with leaf age.

Results

As shown in Fig. 1 and Table S1, large variability in leaf Vc,max25

was found for the surveyed 21 tropical trees from three tropical

(a) (b)

Fig. 1 Large variation in leaf maximum carboxylation rate of Rubisco standardized to 25°C (Vc,max25) (a) within individual trees and (b) across tropical
forests. The data were from the Tapajos K67 site in Brazil, the San Lorenzo crane site (SLZ) and the Parque Natural Metropolitano crane site (PNM) in The
Republic of Panama. At the individual tree level (a), Vc,max25 is associated primarily with leaf development (orange for variation in mature leaves, and blue
for variation in immature leaves; see the Materials and Methods section) and canopy position (circles for the leaves sampled from the sunlit canopy
environment, and triangles for the leaves sampled from the shaded canopy environment). Across tropical forests (b), the spread of tree specific (sunlit
canopy, mature leaves) mean Vc,max25 of each forest site is displayed with a boxplot, in which the central mark is the median, the edges are the 25th and
75th percentiles, and the whiskers are the 5th and 95th percentiles.
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forest sites: field-measured Vc,max25 ranged from 7 to
102 lmol CO2 m

�2 s�1. These surveyed trees also spanned a very
large variation in leaf morphology, as shown in the observed
LMA trait space (i.e. 70–213 g m�2). It was also found that the
variation in Vc,max25 is attributable to species (Fig. 1a; Table S1),
leaf age (mature vs immature; Fig. 1a), canopy environment (sun-
lit vs shaded; Fig. 1a) and forest sites (Fig. 1b). The large
intraspecific variation in Vc,max25 is primarily associated with leaf
age, and the large interspecific variation in Vc,max25 is attributable
to both species difference and forest sites. Such large variation in
Vc,max25, especially the variation with leaf age, will make the tra-
ditional approaches for measuring this diversity challenging due
to the requirement for lots of measurements.

The first question of whether the spectroscopy approach can
be an efficient, alternative means to help estimate Vc,max25 across
species, leaf age, canopy environment and forest sites was evalu-
ated through the two tests (see the Materials and Methods section
above). In the first test, it was found that the model based solely
on Panamanian mature leaves was able to predict the field-ob-
served Vc,max25 of independent Panamanian mature leaves with
very high accuracy (R2 = 0.90; RMSE = 5.9 lmol CO2 m

�2 s�1;
n = 36 leaves; Fig. 2a), suggesting a tight covariation in the spec-
tra–Vc,max25 relationship for Panamanian forests across a diverse
range of tree species, canopy heights and leaf traits (Table S1).
However, this model did not perform as well when applied to a
dataset of independent, Panamanian immature leaves from a sub-
set of the same trees (n = 9 species; Table S1), with the model fit
having a marked deviation from the 1 : 1 line (between modeled
and observed Vc,max25) and displaying poor predictive ability
(R2 = 0.02; RMSE = 20.7 lmol CO2 m

�2 s�1; n = 14 leaves;
Fig. 2b). When the model of Panamanian mature leaves was

applied to independent, Brazilian mature and immature leaves
the model performance also was poor (R2 = 0.23;
RMSE = 38.8 lmol CO2 m

�2 s�1; n = 22 leaves; Fig. 2c). This
showed that the model developed from Panamanian mature
leaves could be directly applied neither to immature leaves of the
same trees nor leaves sampled from other tropical forests without
marked reduction in predictive power (Fig. 2d).

In the second test, it was found that the new model trained on
the data from all species, leaf ages, canopy environment and
forest sites performed dramatically better across the whole range
of leaf types – immature leaves in Panama (R2 = 0.89;
RMSE = 3.9 lmol CO2 m

�2 s�1; n = 14 leaves; Figs 3, S3a) and
all leaf ages from Brazil (R2 = 0.68;
RMSE = 5.9 lmol CO2 m

�2 s�1; n = 22 leaves; Figs 3, S3b) – at
the cost of only slightly lower prediction of mature Panamanian
leaves (R2 = 0.86; RMSE = 7.7 lmol CO2 m

�2 s�1; n = 36 leaves;
Figs 3, S3c). In addition, compared with the initial model of
Panamanian mature leaves (Fig. 2, first test), the new model
(Fig. 3, second test) also significantly reduced the uncertainty in
model predicted Vc,max25, as indicated by the horizontal error
bars shown in Figs 2 and 3. This analysis demonstrated that with
sufficient leaf samples to train the spectra–Vc,max25 relationship
over the full trait space, a general spectra-based Vc,max25 model
can be derived across species, leaf age, canopy environment and
forest sites.

The second question of whether the spectroscopy approach
alone is sufficient to simulate the life-history trajectories of
Vc,max25, or the Vc,max25–age relationship was then examined. To
do this, two models (i.e. the community-level spectra–Vc,max25

model and spectra-age model) were applied to the spectra-age
dataset in Brazil (see the Materials and Methods section). The

(a) (b)

(c) (d)

Fig. 2 A spectra–Vc,max25 model was trained
using two-thirds of the dataset from mature
leaves measured in Panama, and then
evaluated using the independent validation
dataset collected in (a) Panamanian mature
leaves, (b) Panamanian immature leaves, (c)
Brazilian mature and immature leaves, and
(d) all leaf classes collected in Panama and
Brazil. Error bars denote the 95% confidence
intervals for each predicted value based on
the ensemble partial least-squares regression
(PLSR) models (i.e. each PLSR model is
represented by a set of PLSR fitted spectral
coefficients, and in total includes 100 Monte
Carlo model runs; see the Materials and
Methods section); the gray line shows the
ordinary least-squares regression fit, and the
black line shows the 1 : 1 line. Vc,max25,
maximum carboxylation rate of Rubisco
standardized to 25°C.
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results showed that there was large variability in leaf Vc,max25

across leaf life cycles (i.e. from 15 to 400-d old), but that the
spectroscopy approach presented here was able to track leaf age-
dependent variation in Vc,max25 (Fig. 4), particularly during the
period from emergence to physiological full maturity (from 15 to
150 d). With continued aging and senescence (> 150 d), there
was larger deviation between spectra-predicted and field-observed
Vc,max25. This might largely be because the datasets herein had
poor coverage of older leaves (from 150 to 400 d), and thus the
model for the senescent leaves is not well calibrated.

Discussion

Leaf carboxylation capacity Vc,max25 (the maximum carboxylation
rate of the enzyme Rubisco standardized to a reference tempera-
ture of 25°C) is central to the estimation of photosynthetic CO2

uptake by tropical forests in Earth system models (ESMs). In the
present study, it was demonstrated that the spectroscopy
approach is able to accurately predict Vc,max25 across species with
a large range in leaf mass per area (LMA) trait space, leaf age,
canopy position and height, and forest sites (Fig. 3; Table S1). It
was also shown that the combined application of spectroscopy
models of leaf Vc,max25 and age are sufficient to track lifetime
variation in leaf Vc,max25 (Fig. 4). This represents a significant
breakthrough in our ability to rapidly estimate and potentially
map Vc,max25 in high spatial and temporal resolution in tropical
forests.

Consistent with previous studies (Field, 1983; Sobrado, 1994;
Wilson et al., 2001; Kitajima et al., 2002; Kenzo et al., 2006;
Pantin et al., 2012; Albert et al., 2018), large variability in leaf
Vc,max25 (i.e. 7–102 lmol CO2 m

�2 s�1) was found with species,
leaf age and canopy environment across 21 species sampled from
the three lowland moist tropical forests. Such a wide range of
variability in Vc,max25 is comparable with previous studies at the

same forest sites with larger sample size and a focus on mature
leaves (i.e. 15–75 lmol CO2 m

�2 s�1 from 65 species in Panama,
Norby et al., 2017; 10–80 lmol CO2 m

�2 s�1 from 38 species in
Brazil, Domingues et al., 2014). It also is comparable with the
observations from other moist tropical forest sites in Brazil (Car-
swell et al., 2000), Peru (Bahar et al., 2017) and Africa
(Domingues et al., 2010).

These past studies together with the present findings also sug-
gest that leaf age is one of the most important sources of variation
in Vc,max25, which is clearly shown in Figs 1 and 4. Because
Vc,max25 can change markedly with leaf age and the observed
Vc,max25 variability found herein spanned almost the same range
(13–90 lmol CO2 m

�2 s�1) as that used to represent global vari-
ation in Vc,max25 in current ESMs (Rogers, 2014), it further sug-
gests the importance of including such age-dependent Vc,max25

variation in future model formulations. The high Vc,max25 vari-
ability associated with leaf age also highlights the value of the
spectroscopy approach developed herein to enable rapid estima-
tions of Vc,max25: the spectroscopy approach only takes a few sec-
onds to estimate Vc,max25, once the model has been recalibrated,
whereas the conventional approach using leaf gas exchange mea-
surement of a photosynthetic CO2 response curves takes about
an hour (or more). Furthermore, the conventional approach can-
not simultaneously derive leaf age, which is an important piece of
information needed to improve model representation of photo-
synthesis, especially in species-rich, evergreen tropical forests
(Kim et al., 2012; Wu et al., 2016).

In the present paper it is demonstrated that leaf spectroscopy
offers a tool to rapidly capture multiple important axes of varia-
tion in Vc,max25: a single spectra-based model of leaf Vc,max25 was
able to predict leaf Vc,max25 across tropical tree species with a very
large variation in LMA trait space, leaf age, canopy position and
forest sites with high confidence (Fig. 3; Table S1). This finding
validates pioneering work that not only demonstrates the feasibil-
ity of using leaf spectra to model Vc,max under a narrow range of
species and conditions (Doughty et al., 2011; Serbin et al., 2012),
but also dramatically expands our confidence to use the improved
spectra–Vc,max25 model across a wide range of species, leaf devel-
opmental stages and locations.

So what is the underlying mechanism for such a tight covaria-
tion between leaf spectra and Vc,max25 across the various axes of
variation (i.e. species, leaf age, canopy positions and forest sites)
considered in this study? There are at least two potential hypothe-
ses.

The first is that the tightly coordinated variation in leaf
Vc,max25 and spectra was entirely based on their relationships with
leaf nitrogen (N) content (Dechant et al., 2017). The theory
underlying this hypothesis is that leaf Vc,max25 is tightly coupled
with the N content in Rubisco which comprises the largest frac-
tion of N invested in a single enzyme within a leaf (Jacob et al.,
1995; Onoda et al., 2004; Dong et al., 2017; Scafaro et al., 2017;
Evans & Clark, 2019). This hypothesis seems moderately sup-
ported by two previous studies conducted at the study sites used
herein (that focused on mature leaves with larger sample size),
including significant, but only modest correlations of Vc,max25

with leaf N (R2 = 0.31; Norby et al., 2017; R2 = 0.33; Domingues

Fig. 3 The final spectra–Vc,max25 model was trained using two-thirds of
our entire dataset, and then applied to the remaining, independent
validation dataset. Error bars denote the 95% confidence intervals for each
predicted value based on the ensemble PLSR models, the gray line shows
the ordinary least-squares regression fit, and the black line shows the 1 : 1
line. Vc,max25, maximum carboxylation rate of Rubisco standardized to
25°C.
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et al., 2014). Given that leaf spectra can efficiently capture varia-
tion in leaf N content (Asner & Martin, 2008; Serbin et al.,
2014; Dechant et al., 2017), it is expected that leaf spectra also
can be used to predict leaf Vc,max25. However, this hypothesis
does not stand up to further scrutiny for several reasons. First, if
the correlation with leaf N content was the primary driver of the
ability to estimate Vc,max25 with spectra, it does not explain why
leaf spectra show far higher predictive power than using leaf N
content alone (R2 = 0.89 for leaf spectra in the present study vs
R2 = 0.31–0.33 for leaf nitrogen content as shown in Domingues
et al., 2014 and Norby et al., 2017). Furthermore, the Vc,max25–
leaf N relationship does not always hold up at the site level
(Bahar et al., 2017; Rogers et al., 2017b; Evans & Clark, 2019)
and recent global syntheses have shown that variation in leaf N
can only explain a small portion of variation in Vc,max (Ali et al.,
2015; Smith et al., 2019). Secondarily, many other studies sug-
gest that in addition to leaf N content, other leaf traits, such as
leaf phosphorus (P) content (Walker et al., 2014; Norby et al.,
2017), leaf chlorophyll content (Croft et al., 2017), LMA
(Walker et al., 2014) and age (Albert et al., 2018), also are related
to Vc,max25, and inclusion of more traits as predictive variables
can significantly improve the power of trait based model to pre-
dict Vc,max25, compared with the just one trait, leaf N content
(Walker et al., 2014). Finally, Serbin et al. (2012) showed that in
poplar the power of leaf N content and LMA to predict Vc,max

varied with temperature treatments, but the reflectance spec-
troscopy approach collapsed this variation into a single model.
This suggests that the ability of the spectroscopy approach to pre-
dict Vc,max is not entirely dependent on the ability of spec-
troscopy to predict leaf N content and LMA and that other
factors are likely contributing to the success of the approach.

Because the correlation with leaf N might not be the only rea-
son for the derived spectra–Vc,max25 model, this further leads to
the second hypothesis: leaf Vc,max25 is correlated with multiple
leaf traits and processes that determine Rubisco content and
activity (e.g. leaf N content, leaf P content, leaf Chl concentra-
tions, LMA, leaf age and many others we do not yet understand),
and leaf spectra emerge from the ensemble of properties that
define leaf chemical, morphological and phenological status
(Asner & Martin, 2008; Serbin et al., 2014; Chavana-Bryant
et al., 2017, 2019). As such, leaf spectra can be used to help infer
leaf Vc,max25, and are indeed a better predictor of leaf Vc,max25

(Serbin et al., 2012) than alternative trait approaches that leverage
well-established links between Vc,max25 and just one or a few indi-
vidual leaf traits (Walker et al., 2014). This second hypothesis
offers a more plausible explanation for the power of the spectra–
Vc,max25 approach. However, a more comprehensive study to elu-
cidate the underlying mechanisms that enable the spectra–
Vc,max25 model is still needed.

The finding herein that the spectra–Vc,max25 model of mature
leaves in Panama creates model bias when applied to Panamanian
immature leaves and all Brazilian leaves also is interesting. This
observation could be attributable to different ranges in Vc,max25 for
model development and validation (e.g. 17–102 lmol CO2m

�2

s�1 for the Panamanian mature leaf model; 21–
63 lmol CO2m

�2 s�1 for Panamanian immature leaves; 7–
46 lmol CO2m

�2 s�1 for all leaves in Brazil). However, a more
likely explanation is that the spectra–trait–Vc,max25 linkages (e.g.
regression coefficients) vary with leaf age (Field, 1983; Wilson
et al., 2001; Chavana-Bryant et al., 2017, 2019; Wu et al., 2017)
and forest sites of different soil types and fertility (Walker et al.,
2014; Norby et al., 2017). Regardless of these potential reasons,

(a)

(e) (f) (g) (h)

(b) (c) (d)

Fig. 4 The combination of the final spectral model for maximum carboxylation rate of Rubisco standardized to 25°C (Vc,max25) (Fig. 3) and the leaf age
model (see Wu et al., 2017; also see the Materials and Methods section) enables the prediction of the life-history trajectories of leaf Vc,max25 (gray circles)
in an independent spectra-age dataset collected in Brazil (see the Materials and Methods section), including four tree-species of (a, e) E. uncinatum, (b, f)
C. xinguensis, (c ,g)M. itauba, and (d, h)M. elata. The top panels (a, b, c, d) are shown for the sunlit leaves, while the bottom panels (e, f, g, h) are shown
for the shaded leaves. Here it is shown that for a given leaf age (determined by the spectra model) it is possible to capture the dynamics of field observed
Vc,max25 (red circles). See Supporting Information Table S1 for the full species names, error bars denote the 95% confidence interval of spectral predictions.
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this finding (Fig. 3) suggests that including as many axes of varia-
tion as possible in the training dataset is critical to develop a
broadly applicable spectra–Vc,max25 model. Both leaf spectra and
Vc,max25 can vary with vertical canopy profiles (e.g. various canopy
positions including upper canopy, mid-canopy and understory
trees; sunlit and shaded environments), different tropical forests
types (e.g. flooded, Caatinga, second growth and upland forests)
and other leaf habits (e.g. deciduous trees) that are currently either
under or not sampled in the present study. Therefore, it is appar-
ent that further in-depth pan-tropical and global sampling and
analysis are still needed to develop a highly robust spectra–Vc,max25

model that can be applied with confidence throughout the tropics
and ultimately globally. It also is worth noting that when extend-
ing the spectra–Vc,max25 model to entire vertical canopy profiles,
the epiphyll effect is another issue that is needed to be considered,
as many old leaves in the shaded canopy environment develop epi-
phylls (Sonnleitner et al., 2009), which strongly impacts leaf spec-
tral reflectance (see Roberts et al., 1998).

It was also shown that spectroscopy is able to simulate the life-
history variability in Vc,max25 with leaf age within and across trop-
ical tree species (Fig. 4). The spectroscopy-derived age-dependent
Vc,max25 also is comparable to direct measurements by Wu et al.
(2016) in terms of both amplitude and the relative trend across
three leaf developmental stages: young (1–2 months), mature (3–
5 months) and old (6–14 months). This suggests that the spec-
troscopy approach can be used to track lifetime trajectories in leaf
traits (including but not limited to Vc,max25 shown here), and is a
marked extension of previous studies that demonstrated the feasi-
bility of linking leaf spectroscopy to model leaf Vc,max25 (Serbin
et al., 2012) or leaf age (Chavana-Bryant et al., 2017). Moreover,
the success of spectroscopy-based Vc,max25–age relationships also
highlights that the spectroscopy approach can not only be a novel
means to capture the variability of Vc,max25, particularly associ-
ated with leaf age, but also rapidly generate datasets that enable
the exploration of temporal and spatial variability in Vc,max25

within and across species, an important piece of process knowl-
edge that greatly needs to be incorporated in future ESMs (Xu
et al., 2017).

Finally, the finding that there exists a tight relationship among
leaf-level spectra, Vc,max25 and leaf age can likely be extended to
canopy and ecosystem scales. As shown by many previous theo-
retical and empirical studies (Asner, 1998; Asner & Martin,
2008; Ollinger, 2011; Singh et al., 2015), the fundamental
changes in leaf optical properties with underlying variation in leaf
traits is not scale-dependent; that is, leaf-level or canopy-scale
spectra change in concert with leaf traits. Meanwhile, Serbin et al.
(2015) demonstrated that the imaging spectroscopy technique
could be effectively used to infer leaf Vc,max25 from canopy-scale
hyperspectral reflectance for managed agricultural sites. Given
the predictive success at the leaf level found herein, it is possible
that these findings could help enable better canopy-level predic-
tions in tropical forest ecosystems. Additionally, Wu et al. (2018)
connected leaf-scale optical properties (i.e. reflectance and trans-
mittance) with canopy radiative transfer models to simulate the
leaf age effect on canopy reflectance in tropical forest ecosystems.
The simulated canopy reflectance from the present analysis

showed a good agreement with observations from high resolution
WorldView-2 imagery, further suggesting a potential way to scale
up the leaf-scale spectra–Vc,max25 relationship explored herein to
the canopy scale. Collectively, these recent studies, together with
the present findings (Figs 3, 4), help lay down a solid foundation
from which to build the possibility of monitoring Vc,max25–age
relationships at canopy and ecosystem scales using state-of-the-art
remote sensing technology, for example, leveraging imaging spec-
troscopy from unmanned aerial systems (UASs; Ad~ao et al.,
2017), aircraft (e.g. AVIRIS, Serbin et al., 2015), and the suite of
current and planned space-borne platforms (e.g. EnMAP, Guan-
ter et al., 2015; HISUI, Stavros et al., 2017; Surface Biology and
Geology mission, National Academies of Sciences E, Medicine,
2018). Imaging spectroscopy, if successful in capturing Vc,max25–
age relationships at canopy scales, will greatly advance our capa-
bility to monitor and mechanistically understand Vc,max25 vari-
ability across both space and time, providing critically important
datasets to parameterize and evaluate ESMs.
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