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Abstract
Stomata regulate CO2 uptake for photosynthesis and water loss through transpiration.  
The approaches used to represent stomatal conductance (gs) in models vary. In par‐
ticular, current understanding of drivers of the variation in a key parameter in those 
models, the slope parameter (i.e. a measure of intrinsic plant water‐use‐efficiency), 
is still limited, particularly in the tropics. Here we collected diurnal measurements of 
leaf gas exchange and leaf water potential (Ψleaf), and a suite of plant traits from the 
upper canopy of 15 tropical trees in two contrasting Panamanian forests throughout 
the dry season of the 2016 El Niño. The plant traits included wood density, leaf‐mass‐
per‐area (LMA), leaf carboxylation capacity (Vc,max), leaf water content, the degree of 
isohydry, and predawn Ψleaf. We first investigated how the choice of four commonly 
used leaf‐level gs models with and without the inclusion of Ψleaf as an additional pre‐
dictor variable influence the ability to predict gs, and then explored the abiotic (i.e. 
month, site‐month interaction) and biotic (i.e. tree‐species‐specific characteristics) 
drivers of slope parameter variation. Our results show that the inclusion of Ψleaf did 
not improve model performance and that the models that represent the response 
of gs to vapor pressure deficit performed better than corresponding models that 
respond to relative humidity. Within each gs model, we found large variation in the 
slope parameter, and this variation was attributable to the biotic driver, rather than 
abiotic drivers. We further investigated potential relationships between the slope 
parameter and the six available plant traits mentioned above, and found that only one 
trait, LMA, had a significant correlation with the slope parameter (R2 = 0.66, n = 15), 
highlighting a potential path towards improved model parameterization. This study 
advances understanding of gs dynamics over seasonal drought, and identifies a prac‐
tical, trait‐based approach to improve modeling of carbon and water exchange in 
tropical forests.
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1  | INTRODUC TION

Stomata regulate the exchange of carbon and water between plants 
and the atmosphere (Cowan & Farquhar, 1977; Lawson & Vialet‐
Chabrand, 2018; Sperry et al., 2017). At large scales, control of sto‐
matal aperture regulates regional and global biogeochemical cycles 
of carbon, water and energy, and influences the climate through 
vegetation‐mediated climate feedbacks (Bonan, 2008; Pielke  
et al., 1998; Zeng et al., 2017). Therefore, the representation of sto‐
matal conductance (gs) is a fundamental component of Terrestrial 
Biosphere Models (TBMs), and is essential to formulate correctly be‐
cause it also captures the impacts of ongoing global change on the 
climate system.

Four previously developed and widely used leaf‐level models 
of gs have been adopted by current TBMs. These include the phe‐
nomenological Ball–Berry (BB; Ball, Woodrow, & Berry, 1987), Ball–
Berry–Katul (BBK; Katul, Manzoni, Palmroth, & Oren, 2010), and 
Ball–Berry–Leuning (BBL; Leuning, 1995) models, and the optimal‐
ity‐based unified stomatal optimization model (USO; Medlyn et al., 
2011). The phenomenological models are based on empirical obser‐
vations of stomatal behavior in response to environmental stimuli, 
whereas the optimality model is based on the principle that stomata 
act to maximize carbon gain while minimizing water loss (Cowan & 
Farquhar, 1977). Among these models, the BB and BBK formula‐
tions use relative humidity (RH) while the BBL and USO formula‐
tions represent gs responses to vapor pressure deficit (D). Although 
D‐type models more closely reflect stomatal mechanics and are di‐
rectly proportional to water loss (e.g. Aphalo & Jarvis, 1991; Eamus, 
Taylor, Macinnis‐NG, Shanahan, & de Silva, 2008), both RH‐type and  
D‐type gs models are still widely used in TBMs (e.g. Franks et al., 2018; 
Knauer et al., 2017; Rogers, Medlyn, et al., 2017). Moreover, the per‐
formance of RH‐type and D‐type models has rarely been evaluated 
in natural forests across diverse species with in‐situ gas exchange 
measurements, particularly in tropical forest biomes where changes 
in RH and D are typically tightly coupled. Despite these fundamental 
differences, phenomenological and optimality‐based gs models are 
structurally similar (Medlyn et al., 2011) and they generate compa‐
rable gs predictions under many biotic and abiotic conditions (Sperry 
et al., 2017). Common to all these models is a representation of gs 
that varies approximately linearly with net CO2 assimilation rate (A) 
for a given set of environmental conditions (temperature, humidity 
and leaf‐surface CO2 concentration). Therefore, the slope parameter 
of this coupled gs–A relationship, which is an indicator of intrinsic 
plant water use efficiency (referring to the amount of water release 
through stomata for given A and environmental conditions as shown 
in Figure 1), is fundamental to all these models.

Although it has been shown that the value of the slope param‐
eter can have a large impact on simulated carbon and water fluxes 
(Bauerle, Daniels, & Barnard, 2014; Franks et al., 2018; Jefferson, 
Maxwell, & Constantine, 2017), our understanding of the variabil‐
ity in the slope parameter is far from complete. Particularly, it is un‐
clear what drives variation in the slope parameter, which has been 
shown to change with both biotic (i.e. tree‐species identification 

and associated leaf characteristics) and abiotic factors (i.e. growth 
environment, and seasonal and inter‐annual environmental vari‐
ability such as drought and warming; e.g. Heroult, Lin, Bourne, 
Medlyn, & Ellsworth, 2013; Lin et al., 2015; Medlyn et al., 2011; 
Pantin, Simonneau, & Muller, 2012; Wolz, Wertin, Abordo, Wang, 
& Leakey, 2017). This lack of a clear understanding of the impact of 
biotic and abiotic controls on the slope parameter has contributed 
to the current controversy on the choice of the most appropriate 
and parsimonious formulation of gs models to implement in TBMs. 
For example, recent experimental and seasonal drought‐based 
studies have shown that the abiotic control of the slope parame‐
ter can be as important as the biotic control, especially under soil 
moisture stress (e.g. Drake et al., 2017; Heroult et al., 2013; Zhou 
et al., 2014). This can arise either from the shorter timescale (e.g. 
diurnal) coordinated variation between leaf water potential and D 
(Anderegg et al., 2017), from the increasing soil moisture stress 
that can induce the associated change in plant water potential 

F I G U R E  1  The slope parameter of the unified stomatal 
optimization model (USO; Medlyn et al., 2011) is an indicator 
of intrinsic water use efficiency. The regression slope 
between stomatal conductance (gs) and the USO model index �
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Ca×
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 shown below is almost linearly proportional 
to the stomatal slope of the USO model (see Figure S1). For a given 
CO2 assimilation rate (A), atmospheric CO2 concentration (Ca), 
and leaf‐to‐air vapor pressure deficit (D) a higher regression slope 
(and thus stomatal slope) means that plants maintain a higher gs 
to keep the same photosynthetic rate. As such, the stomatal slope 
parameter is an indicator of intrinsic plant water use efficiency, 
and a greater stomatal slope equates to a lower intrinsic water 
use efficiency. The background scatterplots include diurnal gas 
exchange measurements for two example tree‐species (Vochysia 
ferruginea, blue and Terminalia amazonia, red) at the San Lorenzo 
site in Panama (see Table 1 for more details), and the regression 
coefficients and model performance were summarized in Table 2



     |  825WU et al.

which down‐regulates gs and thus the slope parameters (e.g. Drake 
et al., 2017; Heroult et al., 2013; Zhou et al., 2014), or there is 
coordinated acclimation of the slope parameter with seasonal 
variation in soil moisture and plant water potential (e.g. Koepke 
& Kolb, 2012; Xu & Baldocchi, 2003). Regardless of the reasons, 
the inclusion of a plant or leaf water potential variable with the 
original gs formulations has recently been increasingly advocated 
as a way to improve prediction of gs (Anderegg et al., 2017; Drake 
et al., 2017; Zhou et al., 2014). Despite the recommendation of 
these previous studies, it remains unclear whether these results 
are representative of wider natural plant communities, and impor‐
tantly, systems such as the tropics where tall canopy evergreen 
trees have evolved root systems to adapt to seasonal variability in 
soil moisture content (Giardina et al., 2018; Meinzer et al., 1999).

Although large variability in the slope parameter has been pre‐
viously observed within and across biomes (Dietze et al., 2014; Lin  
et al., 2015), many TBMs use just two slope parameters to differen‐
tiate between vegetation with the C3 and C4 photosynthetic path‐
ways (e.g. Kowalczyk et al., 2006; Oleson et al., 2013; Sitch et al., 
2003). Other TBMs incorporate additional slope values for differ‐
ent plant functional types (PFTs), for example needleleaf evergreen 
trees, broadleaf deciduous trees and C3 crops (Baldocchi & Meyers, 
1998; Oleson et al., 2010), or by using different slope parameters for 
temperate and tropical plants (Medvigy, Wofsy, Munger, Hollinger, & 
Moorcroft, 2009). While past efforts to define the values of stomatal 
slope across different PFTs were limited by data, recent syntheses 
and analyses have provided improved understanding of global‐scale 
variation in the slope parameter, enabling the data‐driven parame‐
terization of stomata control in up to 10 different global PFTs (Lin  
et al., 2015; Miner, Bauerle, & Baldocchi, 2017).

Tropical forests account for around one‐third of annual terres‐
trial photosynthesis (Beer et al., 2010), and, through stomatal control 
of transpiration, mediate tropical convection and the timing of dry‐
to‐wet season transitions—a potentially important climate feedback 
(Wright et al., 2017). However, for such a globally important and hy‐
perdiverse biome, typically only one value for the slope parameter is 
assigned in current TBMs (Lin et al., 2015; Miner et al., 2017; Rogers, 
Medlyn, et al., 2017). One approach to improve the representation 
of stomatal response in TBMs is to establish empirical relationships 
between the slope parameter and other plant traits (e.g. Lin et al., 
2015). Not only do such relationships provide an empirical way to 
link plant traits to the variability in the slope parameter within vege‐
tation communities (Xu, Medvigy, Powers, Becknell, & Guan, 2016), 
but they might also elucidate the biological mechanisms underlying 
such variability (Lin et al., 2015). However, whether the previously 
observed global‐scale relationships between the slope parameter 
and key plant traits as shown in Lin et al. (2015) also holds within 
forest communities, that is, across tropical tree‐species and forest 
sites, remains uncertain.

The goal of this study was to identify the best potential model 
representation, and explore the underlying ecological understand‐
ing, of the response of gs to seasonal drought in tropical forests. 
Specifically, we examined the impact of stomatal model choice  

(i.e. BB, BBK, BBL or USO), inclusion of leaf water potential (Ψleaf), 
as well as abiotic and biotic drivers of variation in the slope pa‐
rameter on the ability to predict gs dynamics in the tropics. We 
collected a unique field dataset consisting of fifteen evergreen 
tree‐species in two forests over the course of the 2016 dry sea‐
son, which due to a strong 2015–2016 El Niño event (Liu et al., 
2017) was drier than the historical mean. Since both growth en‐
vironment and leaf phenology might affect stomatal response to 
diurnal and seasonal environmental variability, here we aim to first 
standardize these effects by focusing solely on canopy‐top, sunlit 
leaves at their fully mature status. By controlling the leaf age vari‐
ation in this way together with environmental variability captured 
by the gs models, the primary abiotic drivers of the slope parameter 
that we considered included forest sites and the month of mea‐
surement (which represented seasonal variability in soil moisture 
content and atmospheric humidity). The biotic factors included tree‐ 
species specific response and their associated plant traits, which 
are either mechanistically or phenomenologically linked to photo‐
synthesis or transpiration (e.g. Wright et al., 2004; Xu et al., 2016). 
The six plant traits we considered include wood density, leaf‐mass‐
per‐area (LMA), leaf carboxylation capacity (Vc,max25), leaf water 
content, the degree of isohydry (Martinez‐Vilalta, Povatos, Aguadé, 
Retana, & Mencuccini, 2014), and predawn Ψleaf. We asked four 
questions: (a) Does the inclusion of Ψleaf as an additional predictor 
variable improve the simulation of gs of tropical trees? (b) Which 
model formulation best captures observed gs? (c) How do abiotic 
and biotic drivers of variation in the slope parameter influence the 
ability to predict gs? (d) Are there any key relationships with plant 
traits, particularly those widely observed or easily measured, that 
could be used to constrain variation in the slope parameter within 
models? Through answering these questions, we aim to improve 
understanding of gs dynamics in tropical forests, and potentially 
provide a practical approach to advance TBM representation of 
gs, thereby enabling a more accurate representation of carbon and 
water dynamics in tropical ecosystems.

2  | MATERIAL S AND METHODS

2.1 | Sites and materials

This study was conducted at two lowland tropical moist forest sites 
separated by 80  km on opposite sides of the Isthmus of Panama. 
At each site, the Smithsonian Tropical Research Institute maintains 
a canopy‐access crane that enables access to the forest canopy. 
These sites include a seasonally dry forest in the Parque Natural 
Metropolitano (PNM; 8°59′41.55″N, 79°32′35.22″W) near Panama 
City and a wet evergreen forest in the San Lorenzo Protected Area 
(SLZ; 9°16′51.71″N, 79°58′28.27″W), Colon Province. Historic 
(1998–2015) mean annual air temperature is 26.3°C and 25.8°C, and 
mean annual precipitation is 1,826 and 3,286 mm for PNM and SLZ, 
respectively, with ~90% of the rainfall in the May–December wet 
season (Figure 2). For more details on these sites see Wright et al. 
(2003).
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Fifteen evergreen canopy tree‐species with no within species 
replication (n = 7 for PNM and n = 8 for SLZ; Table 1) were selected 
for intensive field measurements of leaf gas exchange and plant 
traits. These tree species were within the canopy crane access 
footprint and were selected to capture the diversity of tree species 
and plant trait space present at each site. In order to minimize the 
effects of leaf phenology and canopy environments on variation in 
field‐measured stomatal conductance, we restricted measurements 
to current‐season, fully‐expanded, upper canopy sunlit foliage. We 
conducted four campaigns in 2016 at monthly intervals from mid‐
February until mid‐May, covering the middle of dry‐season to the 
beginning of wet‐season (Figure 2; Figure S2). We spent 2 days at 
each location each month and conducted diurnal measurements of 
leaf gas exchange and leaf water potential (Ψleaf), measured photo‐
synthetic CO2 response curves and collected additional leaf traits. 
The May campaign had a reduced scope and only focused on mea‐
surements of diurnal leaf gas exchange and Ψleaf.

2.2 | Measurements of leaf gas exchange and traits

We used six portable gas exchange systems (LI‐6400XT, LI‐COR 
Inc.) equipped with a 2 × 3  cm2 leaf chamber and red‐blue light 
source. These gas exchange systems were zeroed with a com‐
mon nitrogen standard prior to each campaign. Diurnal leaf gas 
exchange measurements were made in‐situ using cranes to access 
the canopy throughout the day. Each tree‐species was measured 
five to seven times per day, and at each time point two leaves were 
measured and then harvested for subsequent trait measurements. 
Measurements of diurnal gas exchange, including A, gs, leaf sur‐
face CO2 concentration (Ca), intercellular CO2 concentration (Ci), 
RH, leaf‐to‐air vapor pressure deficit (D) and leaf temperature, 
followed the method of Bernacchi et al. (2006), and were used 
to evaluate leaf level gs models (see below). Prior to the gas ex‐
change measurements, the temperature of each measured leaf 
was recorded, and chamber conditions were matched to the ambi‐
ent environment. For each measurement round (time point), the 
sample chamber temperature (Tblock) was set to the ambient air 

temperature. For each tree, the sample chamber light was set to 
the photosynthetically active radiation incident on the leaf. This 
was adjusted throughout each measurement time point to account 
for changing light conditions due to intermittent cloud cover and 
leaf aspect. For each tree‐species, chamber CO2 concentration 
was set to ambient CO2 concentration plus the differential ex‐
pected due to CO2 assimilation. The RH of the air entering the leaf 
chamber was not reduced so as to keep it close to ambient condi‐
tions. A high flow rate (500 μmol/s) was used to minimize the time 
taken for A and gs to stabilize. After clamping in the chamber, rates 
were monitored using the instrument's graphical interface and 
statistical output, and data logged after A and gs reached stability. 
To ensure we were capturing gas exchange rates representative 
of ambient conditions data were logged within a maximum of 90 s 
after clamping the leaf in the measurement chamber.

Over the course of the season we made c. 46 measurements per 
tree‐species for a total 694 individual measurements. Prior to data 
analysis we filtered our initial dataset of survey measurements by 
removing spurious data (e.g. negative values) and data where we be‐
lieved values were not reliable due to a mismatch between sample 
and reference IRGAs, or where measured values indicated an artifact 
(e.g. dew on the leaves early in the morning, or poor contact with the 
leaf thermocouple) or poor replication of ambient conditions. These 
data were identified by flagging data where the Ci:Ca ratio was <0.2 
or >0.9, or where RH was <35% or >90%. Following examination of 
these flagged data records 83% of the total dataset remained and 
was used for subsequent analysis.

Measurement of the response of A to Ci, commonly known as  
A–Ci curves, was conducted on detached branch sections. All 
branches were sampled before dawn using the canopy crane. We 
took steps to protect the samples from xylem embolism, and where 
possible branches were cut underwater by bending the branch into 
a bucket filled with water. In all cases >1 m of branch was removed 
within 15 min of the initial cut by recutting the branch section under‐
water in a large container. Samples were stored in individual buckets 
and kept in deep shade until used for measurements. Measurement 
of A–Ci curves closely followed the approach recently described by 

F I G U R E  2  Four field campaigns were conducted in each of the two Panamanian crane sites in 2016. These are (a) the Parque Natural 
Metropolitano crane site (PNM) and (b) the San Lorenzo crane site (SLZ). Campaigns included diurnal measurements of gas exchange, leaf 
water potential and leaf traits. The rainfall data for historic (1998–2015; black broken line) and 2016 (red line) trends were obtained from 
bioge​odb.stri.si.edu/physi​cal_monit​oring​; the shading indicates one standard deviation (std) of the historic mean. The soil moisture index 
(blue line) measures the relative soil water content, where 1 = fully saturated soil. The soil moisture index was calculated using a daily 
integrated value, and was obtained by averaging soil moisture values across three different soil depths (at 10, 40, and 100 cm) and time (at 
5 min interval across the day), divided by the maximum value in the record
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Rogers, Serbin, Ely, Sloan, and Wullschleger (2017). Apparent maxi‐
mum photosynthetic capacity standardized to a reference tempera‐
ture of 25°C (Vc,max25) was estimated using the kinetic constants 
and temperature response functions presented by Bernacchi et al. 
(2013) as described by Rogers, Serbin, et al. (2017). A total of 120 
estimates of Vc,max25 were used in this study (c. 8 per tree‐species), 
with tree‐species‐specific mean and standard deviation summarized 
in Table 1.

Following in‐situ gas exchange measurement, the leaves were 
immediately harvested for Ψleaf and trait measurement. Leaves 
were sealed in humidified plastic bags and stored in the dark on 
ice for a maximum of two hours before further processing. Ψleaf 
was measured using a Scholander‐type pressure chamber (PMS) 
as described previously (McDowell, Brooks, Fitzgerald, & Bond, 
2003). We also tested the robustness of our methodology used 
to measure Ψleaf through an experimental test by examining the 
impact of the time duration of wait time prior to measurement on 
the Ψleaf observed, and the results showed that within the 2‐hr, 
leaf storage in the dark on ice had little impact on the estimated 
Ψleaf. These experimental results are summarized in Methods S1 
and Figure S3. We then sampled a known leaf area using cork bor‐
ers and weighed leaf fresh mass with a precision balance (Fisher 
Science Education, Model SLF303). Once weighed, the samples 
were dried to constant mass at 70°C. We then determined dry 
mass to calculate LMA (g/m2) and leaf water content (LWC; as a 
percentage of fresh mass, %). We also collected leaf samples (2–3 
replicates per tree‐species per campaign) before dawn to measure 
pre‐dawn Ψleaf. Based on the predawn and diurnal measurements 
of Ψleaf, we derived a tree‐species‐specific plant hydrological trait, 
degree of isohydry, which is defined by the slope of pre‐dawn and 
mid‐day Ψleaf, following the approach as Martinez‐Vilalta, Povatos, 
Aguadé, Retana, and Mencuccini (2014). In addition, we used the 
existing data on stem wood density for our target tree‐species col‐
lected from the same forests (Wright et al., 2010). Canopy height 
and diameter at breast height for the target tree‐species referred 
to Dickman et al. (2019).

Independent of the diurnal measurement campaigns, for the 
same tree‐species at each site, we also measured stem hydraulic 
conductivity as a function of stem water potential (i.e. hydraulic vul‐
nerability curves) in terminal branches of canopy trees. Following 
the approach described by Wolfe, Sperry, and Kursar (2016), we 
measured hydraulic conductivity on 20–52 stem segments per tree‐
species (mean stem diameter = 5.9 mm) that had been air dried to 
reach varying stem water potential. For each tree‐species, stem hy‐
draulic conductivity was plotted as a function of stem water poten‐
tial and a Weibull function was fit through the 90th percentile to 
obtain the vulnerability curve parameters (summarized in Table 1).

We recognize that there are alternative approaches to deriving 
fitted parameters and additional value in many of the traits we have 
collected. Therefore, all the data associated with this study including 
raw gas exchange data, fitted photosynthetic parameters and leaf 
trait are publicly available at the NGEE‐Tropics dataset archive (Ely 
et al., 2018a, 2018b; Rogers et al., 2018a, 2018b; Wolfe et al., 2018), 

the TRY database (Kattge et al., 2011) and the database (www.
BETYd.org) associated with the PEcAn project (LeBauer et al., 2018).

2.3 | Stomatal conductance models

We utilized the four common models to describe the coupled gs–A 
relationship to environmental variables, including BB, BBK, BBL and 
USO (as described in the Introduction).

The BB model (Ball et al., 1987) is formulated as follows:

where RH is the leaf‐surface RH, Ca is the leaf‐surface CO2 concentra‐
tion (μmol/mol), A is the net photosynthesis rate (μmol CO2 m−2 s−1), m 
is the slope parameter (unitless), and g0 (mol m

−2 s−1) is the intercept of 
the regression, representing baseline gs.

The BBK model (Katul et al., 2010) as Equation (2) is an extended 
version of the BB model that also accounts for the CO2 compensa‐
tion point (Γ*) of assimilation in the absence of dark respiration.

where m1 is the slope parameter, and Γ* is a function of leaf tempera‐
ture using the same formula as Leuning (1995), shown in Table S1.

The BBL model (Leuning, 1995) is an alternative way to relate gs 
to the environment incorporating an empirical dependence on leaf‐
to‐air vapor pressure deficit (D, kPa) as follows:

where a1 is the slope parameter and D0 is a fitted parameter. A practi‐
cal issue with Equation (3) is that the parameters a1 and D0 are highly 
correlated (Medlyn, Robinson, Clement, & McMutrie, 2005) and thus 
not statistically valid to interpret values of a1 across different tree‐ 
species when D0 is fitted simultaneously. To avoid this issue, we em‐
ployed a two‐stage fitting procedure where we initially fitted BBL for 
the full dataset to derive D0 (=0.61), and then assigned the same D0 
throughout all tree‐species when estimating tree‐species‐specific a1.

The USO model as follows is an optimality model developed by 
Medlyn et al. (2011), with the slope parameter of g1.

Of particular note, in the original derivation of the gs models 
shown above, the intercept term g0 ensures correct gs response 
when A approaches zero. The term g0 is often thought to represent 
the cuticular gs, or the conductance with closed stomata. Similar to 
Lin et al. (2015), we did not fit g0. First, fitted values of g0 and the 
slope parameter tend to be correlated, meaning that the estimated 
slope parameters can be ill‐posed and differences in the slope pa‐
rameters among datasets cannot be clearly interpreted. Second, 

(1)gs=g0+m×
A×RH

Ca

,

(2)gs=g0+m1×
A×RH

Ca−Γ∗
,

(3)gs=g0+a1×
A

(

Ca−Γ∗
)

×
(

1+D∕D0

) ,

(4)gs=g0+1.6×

�

1+
g1
√

D

�

×
A

Ca

.

http://www.BETYd.org
http://www.BETYd.org
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measuring cuticular conductance instead of fitting the parameter is 
likely a better means to capture g0. Since we did not measure cu‐
ticular conductance, in our data analysis, we assume g0 = 0 for all 
tree‐species.

To evaluate whether inclusion of Ψleaf as an additional model 
variable improves predictions of the four gs models (Equations 1–4), 
we adapted the equation below from Anderegg et al. (2017):

where b and c are two tree‐species‐specific parameters, which de‐
scribe the Weibull form of the xylem conductivity functions, and hy‐
draulic conductivity = kmax× fΨleaf

, where kmax describes the maximum 
rate of hydraulic conductance in the absence of water stress, that is, 
Ψleaf = 0 MPa (Sperry et al., 2017).

Taking BBL as an example, the model that incorporates Ψleaf is 
shown below:

2.4 | Modeling experiments, model fit and 
drivers of the slope parameter variation

We first evaluated model choice and whether inclusion of Ψleaf 
would improve predictions of the four gs models through the fol‐
lowing three tests: (a) we calculated the model residuals (that we 
defined as the modeled gs minus observed gs) for the modeling 
scenarios without Ψleaf and quantified the extent to which these 
model residuals can be explained by measured Ψleaf; (b) we per‐
formed model optimization for each of the four gs models with 
(including three parameters: the slope parameter, b and c) and 
without (that has just one parameter: the slope parameter) Ψleaf, 
and evaluated the model selection with the coefficient of determi‐
nation (R2), the root‐mean‐squared error (RMSE) of the model and 
the Akaike information criterion (AIC). AIC allows for the determi‐
nation of relative statistical model robustness and parsimony by 
estimating the degree to which the inclusion of additional param‐
eters between models improves model fit versus the loss of sta‐
tistical power; and (c) performed a second model optimization at 
the tree‐species level, but instead of using the optimized Weibull 
parameters (b and c; Equation 5) for describing the xylem conduc‐
tivity function as in the second test, we used the tree‐species‐ 
specific Weibull parameters derived from laboratory‐measured 
stem hydraulic vulnerability curves (Table 1). The model selection 
was then evaluated through corresponding R2, RMSE, and AIC.

In addition to the tests including Ψleaf, we also evaluated the 
models in their original forms (Equations 1–4). For each gs model 
we examined how the abiotic (i.e. site: PNM and SLZ; month‐of‐ 
measurement: February, March, April and May) and biotic (i.e. tree‐
species, n = 15) factors separately and jointly influence the estima‐
tion of the slope parameter used to predict gs. We started with the 
scenario that only accounts for the fixed effect, that is, assuming a 

common slope parameter for the full dataset. We then performed 
the analysis iteratively by adding one level of the random effects 
(i.e. allowing for variation in the slope parameter associated with 
different abiotic and/or biotic factors) in each analytical scenario, 
following the order of random effects induced by month, site‐month 
interaction, tree‐species and tree‐species‐month interaction, re‐
spectively, until the full random effects were represented in the final 
analysis. Three metrics (R2, RMSE and AIC) were also calculated to 
compare different analytical scenarios.

Additionally, we bootstrapped the full dataset 1,000 times for 
cross‐model performance comparisons. For each bootstrap, we 
randomly selected 70% of the data to fit parameters and used the 
remaining 30% for validation. For the validation results (quantified 
using both the R2 and RMSE statistics calculated for each iteration), 
statistical differences between model pairs were identified with t 
tests.

Last, we derived tree‐species‐specific slope parameters for each 
of the four gs models in their original forms using the ordinary least 
squared nonlinear model fit. We assessed these slope parameter 
correlations with all six available plant traits, which have previously 
been linked with either plant photosynthesis or transpiration. These 
six plant traits included wood density, LMA, Vc,max25, LWC, degree of 
isohydry and pre‐dawn Ψleaf.

3  | RESULTS

3.1 | gs model performance with and without Ψleaf 
as an additional model variable

Regardless of the gs model chosen, our results showed that adding 
Ψleaf as an additional model predictor variable did not appreciably im‐
prove model predictions of gs across all three of our tests of inclusion, 
that is, (a) examining the relationships between the model residuals of 
gs resulting from predictions of gs by the original model formulations 
(Equations 1–4) and from model formulations that included represen‐
tation of field measured Ψleaf (Figure S4), (b) adding in a single pair of 
statistically optimized additional parameters (i.e. Weibull parameters 
b and c; Equation 5) to describe xylem conductivity response to Ψleaf 
(Figure 3), and (c) adding in tree‐species‐specific Weibull parameters 
derived from laboratory‐measured stem hydraulic vulnerability curves 
(Table 1) to describe xylem conductivity response to Ψleaf (Figure 4; 
Figure S5). As shown in Figure S4, we found that the model residu‐
als showed no or very weak relationships (R2 = 0.00–0.04) with Ψleaf 
across all the four gs models analyzed here. This thus provides direct 
evidence that accounting for the variability in Ψleaf did not appreciably 
improve model predictions of gs for these tropical trees.

When using the optimized tree‐species‐specific Weibull parame‐
ters (Figure 3), we found the optimization results for the model for‐
mulations that include Ψleaf have very similar predictive power (in 
terms of R2 and RMSE) compared with the corresponding cases with‐
out Ψleaf, while AIC values indicated that the inclusion of Ψleaf did not 
significantly improve model fit and instead reduced model parsimony. 
This is especially apparent for the scenario of “tree‐species‐month 

(5)fΨleaf
=e

−
(

−Ψleaf

c

)b

,

(6)gs=g0+a1×
A

(

Ca×Γ∗
)

×
(

1+D∕D
) × fΨleaf

.
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interaction” (Figure 3c). For each of the four gs models the AIC value 
when including Ψleaf is far higher than the corresponding case without 
Ψleaf, and is also even higher than the scenario of “all” (Figure 3c; which 
assumes a common slope parameter for the full dataset), indicating 
that the models with Ψleaf were over parameterized.

When using the derived tree‐species‐specific Weibull parame‐
ters (as in Table 1) rather than optimized parameters, we found that 
the performance of gs models coupled with Ψleaf was markedly lower 
than the corresponding cases without Ψleaf (Figure 4; Figure S5; 
Table S2). Particularly, at the tree‐species level, regardless of the gs 

model chosen, the former cases (with Ψleaf) only have the predictive 
power of R2 = 0.17–0.19 across all 15 tree‐species (Figure 4b,d,f,h), 
while the later cases (without Ψleaf) have much better model perfor‐
mance (R2 = 0.64–0.74; Figure 4a,c,e,g).

3.2 | RH‐type versus VPD‐type gs models

We now focused on the original gs models, without further considera‐
tion of the addition of a leaf water potential formulation (i.e. Equation 
5). When using a common, model specific, slope parameter for the full 

F I G U R E  3  Model performance comparisons across different 
gs models and with/without including leaf water potential (Ψleaf). 
Statistics for the four gs models (color symbols) that exclude (solid 
lines) or include (dash lines) Ψleaf as an additional model predictor 
variable, including (a) the coefficient of determination (R2), (b) 
root‐mean‐square‐error (RMSE) between modeled and observed 
gs, and (c) Akaike information criterion (AIC), for the entire dataset 
(n = 574 observations from 15 tree tree‐species). The x‐axis 
represents different scenarios for model treatments of the whole 
dataset, by separating them according to different combinations 
among month, site and tree‐species. The results shown here are 
based on the statistically optimized nonlinear model fitting. AIC 
is a statistic metric that allows inference on the relative quality of 
statistical models, and the models with relatively lower AIC values 
are generally chosen over another. The four gs models are Ball–
Berry (BB), Ball–Berry–Katul (BBK), Ball–Berry–Leuning (BBL), and 
Unified Stomatal Optimization (USO)
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F I G U R E  4  Model performance comparisons across gs models 
with and without tree‐species‐specific Weibull parameters. The 
tree‐species‐specific Weibull parameters were derived from 
laboratory‐measured stem hydraulic vulnerability response curves 
(parameters are shown in Table 1) and field measurements of leaf 
water potential (Ψleaf). The left hand panels (a, c, e, g) show the 
results from the four models in their original forms (see Equations 
1–4), and the right panels (b, d, f, h) show those same models with 
formulations that include Ψleaf and derived Weibull parameters. The 
four gs models are Ball–Berry (BB), Ball–Berry–Katul (BBK), Ball–
Berry–Leuning (BBL), and Unified Stomatal Optimization (USO). The 
model results shown here are based on the entire dataset (n = 574 
observations from 15 tree‐species); tree‐species‐specific model 
evaluation is reported in Figure S5 and Table S2. R2 for coefficient 
of determination, RMSE for root‐mean‐square‐error, and p for 
significance level of modeled versus observed gs correlations. Black 
lines indicate the 1:1 relationships
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dataset, the gs models captured 56% (BB), 55% (BBK), 64% (BBL) and 
65% (USO) of the variability in field‐measured gs (Figure 3). Notably, the 
two D‐type models (BBL and USO), which represent the gs response to 
vapor pressure deficit, outperformed the other two RH‐type models 
(BB and BBK), which represent the gs response to RH. Our bootstrap‐
ping analysis and associated t tests also suggested the D‐type models 
had significantly higher model performance compared to the RH‐type 
models (Figure S6; Table S3), with the relative rank among these four 
models as follows: USO > BBL >> BB > BBK.

3.3 | Abiotic versus biotic control on the stomatal 
slope parameter

We examined the relative impacts of biotic (i.e. tree‐species) and 
abiotic (i.e. month, site‐month interaction) drivers of variation of the 
slope parameters used in the four gs models on the ability to pre‐
dict gs. For all four models, we observed that accounting for tree‐ 
species‐specific and tree‐species‐month‐specific variation in the 
slope parameter provided the most significant improvement in the 
prediction of field‐observed gs, with a >10% increase in R

2 and ~20% 
decrease in RMSE% (Figure 3), relative to a common, model spe‐
cific, slope parameter for the full dataset. In contrast, accounting for 
month‐specific variation in the slope parameter did not improve gs 
prediction (Figure 3). In addition, our results showed that account‐
ing for site‐month‐specific variation in the slope parameter improved 
gs prediction only for the two RH‐type models but not for the two 
D‐type models. In addition, our results also showed that the two RH‐
type models had similar model performance, but consistently yielded 
lower R2 and higher RMSE than the two D‐type models (Figure 3).

3.4 | Large inter‐tree‐specific variation in slope 
parameters and their relationships with plant traits

Given the role of tree‐species in driving stomatal slope variation 
(Figure 3), we further explored the potential for important relation‐
ships between stomatal slope and tree‐species‐specific plant traits. 
To do this we first examined inter‐tree‐specific variation in the slope 
parameters and then assessed their correlations with six field‐col‐
lected plant traits. We found large inter‐tree‐specific variation in the 
slope parameters (Figure 5; Figures S7–S9; Table 2), with around two 
to three fold variation depending on the model choice. Such high inter‐ 
tree‐specific variation in the slope parameter was also found within 
each of the two tropical forests, with seven‐tree‐species average slope 
parameters and standard deviations of 7.38 ± 1.12 (BB), 6.34 ± 0.95 
(BBK), 12.65 ± 2.18 (BBL), and 2.68 ± 0.59 (USO) for PNM, and eight‐
tree‐species average slope parameters and standard deviations of 
6.64 ± 1.55 (BB), 5.78 ± 1.35 (BBK), 10.72 ± 2.40 (BBL), and 2.17 ± 0.70 
(USO) for SLZ. Similarly, we also observed relatively high inter‐tree‐
specific variation in our plant traits (see Table 1 and Figure 5), including 
wood density ranging from 0.34 to 0.75 g/m3, LMA (84–154 g/m2),  
Vc,max25 (18–85  µmol  m

−2  s−1), LWC (46%–65%), degree of isohy‐
dry (−0.21 to 1.96; unitless) and pre‐dawn Ψleaf (−1.9 to −0.8 MPa). 
Exploring the relationship between derived tree‐species‐specific slope 

parameters and plant traits (Figure 5; Figures S7–S9) yielded only one 
significant correlation, LMA (R2 = 0.66–0.67), consistent among all four 
gs models. The other five traits we examined, that is, a wood trait (wood 
density), a leaf photosynthetic trait (Vc,max25), and three hydraulic traits 
(LWC, degree of isohydry and pre‐dawn Ψleaf), showed no significant 
relationships with the slope parameters.

4  | DISCUSSION

Understanding abiotic and biotic controls of gs and exploring accu‐
rate representation of gs in TBMs has been a core focus in ecol‐
ogy of climate regulation and plant physiology ecology. Here, we 
used data from two contrasting tropical forests that spanned a large 
range of environmental conditions associated with diurnal and sea‐
sonal variation. We demonstrated that in tropical forests, including 
Ψleaf in model formulations did not improve predictions of gs, and 

F I G U R E  5  Correlations between the tree‐species‐specific 
slope parameter (g1; using the unified stomatal optimization 
model; Medlyn et al., 2011) and associated plant traits, including 
(a) wood density, (b) leaf mass per area, (c) Vc,max25, (d) leaf water 
content, (e) degree of isohydry (approximated by the slope between 
predawn and mid‐day leaf water potential; Martinez‐Vilalta et al., 
2014), and (f) predawn leaf water potential (Ψleaf). Points show 
tree‐species means from the Parque Natural Metropolitano (dry) 
site (n = 7 tree‐species, circles), and the SLZ site (n = 8 tree‐species, 
triangles). R2 for coefficient of determination, and p for significance 
level of slope parameter‐trait correlation. Fitted lines (ordinary 
least square regression, OLS) were only shown for significant 
relationships. Similar results were found for the Ball–Berry model 
(Figure S7), the Ball–Berry–Katul model (Figure S8), and the Ball–
Berry–Leuning model (Figure S9)
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the models that represent gs response to vapor pressure deficit (i.e. 
D‐type models, BBL and USO) performed better than the models 
based on RH (i.e. RH‐type models, BB and BBK). Additionally, we 
demonstrated that accounting for the variation in the slope param‐
eters across tree‐species significantly improved model estimates 
of gs, while accounting for the variation in the slope parameters in‐
duced by abiotic factors (i.e. month and site‐month interaction) did 
not appreciably improve model performance. Finally, we explored 
potential relationships between the slope parameters and six plant 
traits that correlate with photosynthesis or transpiration, and iden‐
tified only one leaf trait, LMA, that had a significant correlation 
with the slope parameter derived from each of the four gs model 
formulations.

4.1 | Modeling gs with or without Ψleaf

Several recent studies have suggested that Ψleaf should be in‐
corporated into models of gs (e.g. Anderegg et al., 2017; Drake  
et al., 2017; Sperry et al., 2017; Venturas et al., 2018; Zhou et al., 
2014). However, in our study the data do not support this argu‐
ment, at least for the tropical evergreen canopy trees analyzed 
here (Figures 3 and 4; Figure S5). This result, while in contrast with 
previous work, is not unexpected. For example, in a recent syn‐
thesis study, Anderegg et al. (2017) used a dataset of 24 woody 
plant species spanning global forest biomes to examine the effect 
of Ψleaf on model prediction of gs. Their results showed that for 
the majority of tree species analyzed, inclusion of Ψleaf did not sig‐
nificantly improve prediction of gs, which is consistent with what 
we found here. Meanwhile, they did find that for four tree‐species 
gs prediction was significantly improved with Ψleaf (i.e. Δ‐AIC > 3 
with increase in R2 by 10% or more). We note that those four 
tree‐species were derived from studies that examined drought 
impacts on a water‐limited glasshouse plant (Arango‐Velez, 
Zwiazek, Thomas, & Tyree, 2011), saplings (Wolfe et al., 2016), and 
two woody plants (including an evergreen tree in an Australian 
tropical dry forest, and a juniper tree in northern Arizona pinyon‐ 
juniper woodland) without explicitly accounting for the interac‐
tive effect of both leaf phenology and seasonal variability in soil 
moisture content (Choat, Ball, Luly, Donnelly, & Holtum, 2006; 
Koepke & Kolb, 2012).

Since our analysis focused on evergreen tropical canopy 
trees that experience seasonal variability in soil moisture content 
(Figure 2), we hypothesize that there are two major reasons for 
the discrepancy between previous results and those of this study. 
First, including Ψleaf in gs formulations might be more important 
for water‐limited plants (Arango‐Velez et al., 2011; Venturas et al., 
2018; Zhou et al., 2014), for example, saplings or glasshouse plants, 
but might not improve model predictions for mature trees. This is 
especially relevant for evergreen tropical trees that can maintain 
green leaves year‐round, and have deep and extensive root systems 
that enable access to moist soil during seasonal droughts (Giardina 
et al., 2018; Guan et al., 2015; Meinzer et al., 1999; Nepstad  
et al., 1994). Therefore, conclusions drawn from glasshouse plants 

or saplings should be used with caution when considering natural 
forest ecosystems, particularly tropical forests. Second, the slope 
parameters in the original gs models (i.e. Equations 1–4) likely vary 
with leaf age (e.g. Albert et al., 2018), which covaries with Ψleaf (and 
many other traits) over the season in seasonal forests (e.g. Koepke 
& Kolb, 2012; Xu & Baldocchi, 2003), but not in evergreen for‐
ests where mixed leaf ages are often found year round (e.g. Lopes  
et al., 2016; Wu et al., 2016). Thus, including Ψleaf can improve pre‐
dictions of gs seasonality over leaves of different ages, but may not 
be a significant factor when controlling for leaf age as this study. 
This hypothesis is consistent with several studies (e.g. Albert et al., 
2018; Jordan, Brown, & Thomas, 1975; Pantin et al., 2012; Rogers 
et al., 2012) that show a strong age‐dependence of leaf gs under 
controlled environmental conditions. However, additional field and 
manipulation studies are needed to fully elucidate the mechanisms 
and scales at which leaf properties, such as Ψleaf, may regulate gs in 
addition to other, potentially correlated leaf properties.

There was still a weak but significant relationship between Ψleaf 
and the gs residuals in three of the four gs models in their original 
forms (Figure S4). Higher residuals at lower Ψleaf indicate that the 
models tended to overestimate gs at low Ψleaf and suggest that there is 
indeed room to improve the models by incorporating Ψleaf. However, 
the proposed model improvements with Ψleaf (i.e. Anderegg et al., 
2017) that we tested failed to improve model performance (Figures 
3 and 4; Figure S5; Table S2). We identified three potential reasons. 
First, it is likely true that Ψleaf can help regulate gs variation, par‐
ticularly when leaf or soil water potential is below certain thresh‐
olds (e.g. under severe droughts or when Ψleaf is close to leaf turgor 
loss point; Brodribb & Holbrook, 2003; Rodriguez‐Dominguez et al., 
2016; Venturas et al., 2018), but not within the range of variability 
we witnessed. As such, Ψleaf does not play a large role in regulating 
the range of observed gs values in this study (Figure 3; Figure S4). 
Second, the additional parameters (i.e. Weibull parameters of b and 
c as shown in Equation 5) required to fit the model come with their 
own uncertainties, since they are based on the laboratory‐measured 
hydraulic conductivity responses (e.g. Wolfe et al., 2016). Such un‐
certainty can propagate into the fitting scheme leading to a lower 
model performance as observed in Figure 4 and Figure S5. Lastly, the 
water potential in the leaves can be more negative than the water 
potential in the stem xylem, and this should be taken into account 
when using Ψleaf to parameterize stem vulnerability curves within gs 
models. For example, as in Figure S5, the stem hydraulic vulnerabil‐
ity curves suggest that most of trees we studied would close their 
stomata (i.e. fψleaf

=0) when Ψleaf is lower than −2MPa, while field ob‐
servations showed that the stomata were still open and that leaves 
were photosynthesizing, even when Ψleaf < −2MPa. The difference in 
water potential between leaf and stem is quite difficult to quantify 
in nature, as it varies largely with tree‐species, growth environment 
and plant traits (Christoffersen et al., 2016; Nolf et al., 2015). For ex‐
ample, in tropical plants, water storage and plant atmospheric water 
absorption have been shown to be effective in buffering diurnal fluc‐
tuation of xylem water potential (Bartlett, Detto, & Pacala, 2019; 
Binks et al., 2019; Meinzer, James, Goldstein, & Woodruff, 2003). 
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Thus, including Ψleaf in the gs models should be done by consider‐
ing a more comprehensive quantification of the entire soil‐plant‐ 
atmosphere continuum (e.g. Giardina et al., 2018).

Regardless of the above‐mentioned limitations, plant hydraulics 
models (e.g. Sperry et al., 2017; Wolf, Anderegg, & Pacala, 2016) that 
rely on stem xylem conductivity response functions (as Equation 
5) can still provide a useful framework for theoretical simulation or 
deduction of plant optimal response to soil and atmospheric water 
stress. However, the uncertainty associated with the Weibull pa‐
rameters (based on direct measurements of hydraulic conductivity), 
the fact that the optimal theory of stomata control might operate at 
a longer timescale (e.g. Buckley, Sack, & Farquhar, 2017; Lin et al., 
2018), rather than at the instantaneous timescale as explored here, 
as well as that the exact biological mechanisms that contribute to the 
hydraulic cost (e.g. damage, repair or loss of opportunity) underlying 
the optimality theory have not yet been identified or readily mea‐
sured, further suggests that more research is needed to determine 
the most appropriate means of incorporating such optimal plant hy‐
draulics theory into process‐based gs models that are integrated into 
TBMs.

4.2 | Stomatal model choice: D‐type versus RH‐type 
gs models

Although D‐type models have been increasingly advocated by 
plant physiologists (e.g. Medlyn et al., 2011; Rogers, Medlyn,  
et al., 2017), both D‐type versus RH‐type models are still widely 
used in many TBMs (e.g. Franks et al., 2018; Knauer et al., 2017). 
Meanwhile, in‐situ gas exchange measurements from mature tall 
trees to examine the difference across these two model types are 
rare. Furthermore, in moist tropical forests, seasonal variation in 
air temperature is small (e.g. Figure S2b), and consequently D and 
RH are typically more correlated than in other biomes; therefore, 
we expected only minor differences in performance between  
D‐ and RH‐type models in the tropics. To evaluate the correlation 
between RH‐ and D‐type models, we made measurements over 
full diurnal cycles and a dry season in a particularly dry El Niño 
year (Figure 2), which captured a wide range of natural variability 
in RH and D experienced in these forests. The two D‐type models 
significantly outperformed the two RH‐type models both across 
and within our dataset (n = 15 tree‐species; Figure 3; Table 2), sug‐
gesting that D‐type models should be used for modeling carbon 
and water fluxes in tropical forest ecosystems, and potentially, 
also in many other ecosystems, particularly those where D and RH 
are not tightly correlated, for example, savanna. The cross‐model 
comparisons between BB (which accounts for the RH effect) and 
BBK (which accounts for RH and includes CO2 compensation point, 
Γ*), shows that including Γ* did not improve model performance 
(Figure 3). Therefore, the improved performance of BBL (which ac‐
counts for D and Γ* effects) relative to BB was primarily because 
BBL captures gs response to D, consistent with the concept that 
stomata respond directly to D rather than to RH (Aphalo & Jarvis, 
1991; Eamus et al., 2008).

Our results also show that the two D‐type models generated 
comparable model performance for our dataset, with USO yielding a 
small but significantly better model performance than BBL (Figure 3; 
Figure S6; Table S3). This finding is consistent with several recent 
studies both relying on empirical observations (e.g. Medlyn et al., 
2011) and mathematical simulations of optimal stomatal behavior 
(e.g. Wolf et al., 2016) for a range of environmental conditions (e.g. 
Ca within the range of 375–425 ppm). However, as Wolf et al. (2016) 
point out, due to the fundamental difference in the forms of D re‐
sponse in BBL (~D−1) and USO (~D−1/2), the predictions of BBL and 
USO models will differ when Ca exceeds 425 ppm, which is expected 
to occur in the next one to two decades. Therefore, we advocate 
that USO should be favored for modeling gs response to D, particu‐
larly in TBMs that aim to capture the impact of global change on the 
climate system.

4.3 | Variation in the slope parameter, sources of 
variability, and its impact on gs modeling

We observed large variation in the slope parameter across the 
sampled 15 tree‐species. Such biotic slope parameter variation 
(e.g. g1 used in USO varied from 1.14 to 3.58) is present at both 
sites (Figure 5; Table 2), and corresponds roughly to the range as‐
signed to six of 10 global PFTs in a recent synthesis using the USO 
approach (Lin et al., 2015). In particular, our observed g1 range 
encompasses the g1 value of 1.84 for a tropical tree in Caxiuana 
National Forest Reserve in the eastern Amazon (Lin et al., 2015), 
overlaps extensively with the g1 (3.00–3.79) for three tropical tree‐
species in Australia (Lin et al., 2015), and is within the range of 
g1 (0.9–6.2) for 21 tree‐species surveyed in central tropical Africa 
(Hasper et al., 2017), including canopy and understory trees. Such 
agreement with previous findings suggests that our results could 
be broadly applicable to other forests in the tropics. Additionally, 
we observed that our g1 range is largely lower than an average g1 
of 4.23 across a set of tree species sampled in a tropical forest in 
French Guiana. This might be attributable to the inconsistent ap‐
proach used for g1 estimate, for example, only one g1 value was 
estimated for the whole dataset due to insufficient replication (Lin 
et al., 2015). In the analysis presented by Lin et al. (2015) they es‐
timated a g1 of 3.77 for a generic tropical rainforest PFT, which is 
higher than our observed g1 range (1.14–3.58). However, this mean 
g1 included the high estimate from French Guiana. When excluding 
the French Guiana data‐point, the mean g1 estimate based on Lin 
et al. (2015) is 3.02, which is well within our g1 range. The particu‐
larly lower g1 values (i.e. all lower than 3.77 and 13/15 tree‐species 
lower than 3.02) observed in our study could also reflect an ac‐
climation to interannual climate variability (e.g. Reyer et al., 2013), 
for example, the drier El Niño year experienced in our study, which 
started at the end of 2014, peaked in late 2015, and ended in May 
2016 (Liu et al., 2017). The increasing atmospheric water deficit in 
the drought year could push plants to evolve a more conservative 
strategy in order to cope with increasing hydrological stress with 
El Niño droughts (Cowan & Farquhar, 1977). Clearly there is a need 
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for a deeper understanding of variation in g1 in tropical forests, 
of particularly value would be replicated measurements that span 
variation in soil fertility, climate, canopy structure, and leaf phenol‐
ogy and morphology.

With the observed large inter‐tree‐specific variation in slope 
parameter, we further showed that accounting for such biotic vari‐
ation led to improved model estimates of gs (Figure 3). This finding 
is consistent with previous work, which illustrated the diversity in 
stomatal slope is integral to modelling plant water fluxes (Wolz et al., 
2017). Our results did not show that accounting for the abiotic (e.g. 
month, site‐month interaction) effects of slope parameter variation 
improved D‐type gs modeling (Figure 3). However, we observed that 
variation in the slope parameter induced by the tree‐species‐month 
interaction was the second most important factor for improving gs 
modeling of the full dataset. This may reflect differential drought‐
induced acclimation of the slope parameter across tree‐species 
as reported previously (e.g. Heroult et al., 2013; Zhou, Medlyn, & 
Prentice, 2015). Furthermore, we controlled for leaf age in our ex‐
perimental design but it is clear that accounting for potential phe‐
nological variation in the slope parameter at the longer timescale 
will be critical to more accurately represent the seasonal variation 
in canopy fluxes and the modeling of gs under natural conditions 
(Albert et al., 2018) and warrants further exploration.

We did not find that month‐associated (i.e. month‐specific and 
site‐month‐specific) slope parameter variation was important for gs 
modeling, particularly for D‐type models. This suggests that D‐type 
gs models are able to accurately represent gs response to seasonal 
environmental variability. Further extension of our leaf‐level find‐
ings to interpret ecosystem‐scale transpiration seasonality would 
require the understanding of leaf phenology and forest compo‐
sition, in particular how the slope parameter varies with different 
phenophases, including leaf age (as discussed above) and leaf habits 
(evergreen vs. deciduous trees; Bohlman, 2010), as well as the sea‐
sonal and interannual variation in these phenophases (e.g. Detteo, 
Wright, Calderón, & Muller‐Landau, 2018; Lopes et al., 2016; Wu  
et al., 2018).

4.4 | Plant trait relationships with the inter‐tree‐
specific slope parameter

Our results show that LMA was highly correlated with the inter‐
tree‐specific slope parameter for all four gs models (Figure 5; Figures 
S7–S9). The five other traits we investigated showed weak or no cor‐
relation with the slope parameter. Wood density has recently been 
shown to have a significant relationship with the slope parameter 
at the global scale (Lin et al., 2015), but was not significantly cor‐
related with the slope parameter in this study. It is possible that over 
a narrower geographic range with less variability in wood density 
(the range of wood density is 0.34–0.75 in this study vs. 0.35–1.1 in 
Lin et al., 2015) the relationship may not hold. We hypothesized that 
Vc,max25 may have a negative relationship with the slope parameter 
because as the slope parameter decreases, water use efficiency rises 
and the effective Ci/Ca in a low slope parameter tree‐species (with 

a lower gs for a given A) might require a higher Vc,max25 in order to 
maintain the same A compared with plant with a larger value of the 
slope parameter. The lack of a relationship may imply that it will be 
important to consider the role of mesophyll conductance, especially 
for model applications (Sun et al., 2014). We also anticipated that 
measurements of leaf hydrological traits, that is, leaf water content, 
degree of isohydry and pre‐dawn Ψleaf, may have correlations with 
the slope parameter, given the link between these parameters and 
model formulations that include hydraulic limitations (e.g. Rogers, 
Medlyn, et al., 2017; Tuzet, Perrier, & Luening, 2003; Williams et al., 
1996). The lack of a correlation in this study suggests that Ψleaf, which 
changes markedly during the day, may not share a clear mechanistic 
link to the slope parameter, which likely acclimates to the environ‐
ment over much longer timescales.

The underlying reason for the observed slope parameter–LMA 
relationship might be that LMA is subject to hydrological con‐
straints (Cavaleri, Oberbauer, Clark, Clark, & Ryan, 2010), and re‐
sults from a long‐term evolutionary tradeoff between carbon gain 
and water loss (Terashima, Miyazawa, & Hanba, 2001). As such, 
thicker leaves (with higher LMA) are more resistant to water loss, 
resulting in a higher intrinsic water use efficiency (and a lower 
slope parameter; Figure 1). Consequently, a negative slope pa‐
rameter–LMA relationship was observed in this study. Likewise, 
higher LMA enables leaf temperature to remain nearer to the pho‐
tosynthetic optimum under conditions of varying air temperature 
(Michaletz et al., 2015, 2016), again maximizing water use effi‐
ciency and promoting a negative slope parameter–LMA relation‐
ship. Furthermore, leaves with higher LMA generally have lower 
mesophyll conductance (Niinemets, Díaz‐Espejo, Flexas, Galmés, 
& Warren, 2009), which could increase photosynthesis without 
excessive water cost. Consequently, photosynthesis of high LMA 
tree‐species might be less sensitive to stomatal conductance, re‐
sulting in a lower slope parameter value. Although these previous 
studies provide some explanation of the observed slope param‐
eter–LMA relationship, elucidation of the mechanism underlying 
this relationship is still required. In addition, the LMA–slope pa‐
rameter relationship presented in this study is based on upper 
canopy leaf samples of only 15 evergreen canopy tree‐species. 
Therefore, whether the relationship can be extended to broader 
scenarios, for example, across vertical canopy profiles, different 
tropical forests, variation in leaf age and soil moisture content, is 
pending further examination.

The finding that LMA correlates with the slope parameter is en‐
couraging, as LMA is an easy‐to‐measure leaf trait that is widely used 
in the plant ecology community and well represented in plant trait 
databases; for example, the TRY database has LMA entries for over 
10,000 species (Díaz et al., 2016). Our observation suggests that it 
might be possible for next generation TBMs to implement trait‐based 
parameterization of the slope parameter following the approach used 
for other trait‐based modeling components (e.g. photosynthesis, phe‐
nology and plant hydraulics) already explored in TBMs (e.g. Fisher  
et al., 2015; Franks et al., 2018; Xu et al., 2016) and thereby improve 
representation of carbon and water dynamics in tropical ecosystems. 
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Additionally, recent work on spectroscopic remote sensing suggests 
that it is feasible to remotely estimate LMA at the leaf and canopy 
scales (Asner et al., 2011; Serbin, Singh, McNeil, Kingdon, & Townsend, 
2014; Singh, Serbin, McNeil, Kingdon, & Townsend, 2015), and as 
such, if this LMA–stomatal slope relationship holds it may be possible 
to derive large‐scale estimates of the slope parameter across space 
and time using the suite of current and planned remote sensing sys‐
tems (Stavros et al., 2017).
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