
Comparison of Eastern Box Turtle (*Terrapene carolina carolina*) home range in relation to summer precipitation trends in Upton, New York

CONCORDIA COLLEGE™

Charlotte Bernhard, Environmental and Forest Biology, SUNY ESF, Syracuse, NY 13210

Chloe Whitten, Biology, Concordia College, Moorhead, MN 56562

Timothy Green, Environmental Protection Division, Brookhaven National Laboratory, Upton, NY 11973

Abstract

The Eastern Box Turtle (EBT), *Terrapene c. carolina*, is a species listed as vulnerable found throughout Eastern North America. With recent declines throughout the region, there is a critical need to examine all aspects of their shifting home ranges and habitat requirements. Using radio-telemetry, our study examined the home ranges of 12 turtles during the summer months of June 2012 to July 2018. Although there is a great deal of individual variation in seasonal home range shifts, precipitation levels may play an important role in their movements for survival, yet it is understudied. Rainfall has been described as a favorable condition for EBT as it has been shown to stimulate activity. Our approach consisted of using geospatial information systems (GIS) to find the area of each turtle's home range each summer from 2012 to 2018 through minimum convex polygon (MCP) estimates. These estimates were then compared with the corresponding rainfall during that period, and drought versus non-drought periods. Mann-Whitney tests showed distinct differences in drought vs non-drought years in June, but not differences in July. Through simple and multiple linear regressions, our results showed no significant relationship between rainfall and home range. Although precipitation or drought did not show a relationship with EBT home range, we did find that there are significant differences between 2013 vs. 2018 and 2015 vs. 2018. The variable or variables causing this difference is still unknown. This research, builds on current long-term understanding of EBT home range movements. As a result, this can be applied to the future understanding of home range and habitat use patterns of EBT, both of which are fundamental to guiding land management and conservation practices for EBT and other turtle species.

Introduction

The Eastern Box Turtle, *Terrapene carolina carolina*, is a species currently listed as vulnerable by the International Union for the Conservation of Nature (IUCN), and on Appendix II by the Convention on International Trade in Endangered Species (CITES), throughout eastern North America (van Dijk 2011, UNEP-WCMC 2014). Over the past few decades, there has been 50%-75% decline in various populations throughout the eastern United States (Donaldson and Echternacht 2015). Possible threats that contribute to these recent declines include habitat loss, vehicle strikes, illegal collection, infectious disease, and climate change- i.e. premature overwintering emergence. These threats are amplified by slow recovery from losses due to the species slow maturation and low reproductive success (Greenspan et al. 2015, Dodd et al. 2001, Erb and Willey 2011). Home ranges of *T. c. carolina* are typically found to be 1-5 ha in size (Dodd et al. 2001), but have been found to reach upwards of 20-25 ha (Schwartz et al. 1984; Ernst and Lovich 2009). Some individuals appear stationary, some even occupying the same home ranges for decades, but home range size has been shown to vary between individuals with influences from various seasonal cues and nest site selection (Hall et al. 1999, Erb and Willey 2011). Therefore, it is important to estimate home range areas across a variety of variables such as weather patterns, habitat types, geographic regions, and other environmental disturbances (Greenspan et al. 2015).

Although there have been some differences resulting from low efficiency in tracking *T. c. carolina* and data interpretation, the number of box turtles recorded in Maryland has shown an evident decline over the span of 50 years. Increasing evidence suggests that changes in hydrology could be a significant factor in their decline (Hall et al. 1999). Studies show that weather can have large impacts on the movements of *T. c. carolina*, with warm, humid, sunny days following rainfall stimulating the most movement (Dolbeer 1969, Dodd 2001). While weather induced activity and seasonal movements of *T. c. carolina* have been studied, home range changes due to weather or climate have remained unstudied. In addition, between the 2015 and 2016 summer months of June-August, Long Island experienced moderate and severe droughts, respectively (NIDIS 2018), but there have been no studies examining the effect of drought or rainfall on *T. c. carolina* home range sizes.

Methods

Study Area: Pine barren forests at Brookhaven National Laboratory, Long Island, New York

Study Period: June 2012 – July 2018

Tracking:

- Radio telemetry
- Handheld Garmin 64s GPS (UTM)
- EXTECH Mini Infrared Thermometer 42500 gun
- Kestrel 4000 pocket weather tracker

Analysis:

- Geographic Information Systems (GIS)
- Minimum Convex Polygon (MCP) home range estimates
- Mann-Whitney U Test on drought vs. non-drought and MCP home range estimates per month
- Simple and multiple linear regressions on rainfall and MCP home range estimates per month
- One-way ANOVA and post-hoc Tukey on MCP home range estimates per year

Discussion

The p value of June 2012-2018 generated by our first Mann-Whitney U Test ($p=0.001$) was less than our critical value of 0.050, and we therefore can reject the null and assume June non drought vs June drought home range areas to be distinct. The same test for July 2012-2018 generated a p value of 0.088, which is greater than 0.05, so we can accept the null and assume there is not enough evidence to claim July non drought vs July drought home range areas to be distinct. While we did not have enough evidence to support that drought affected July home ranges, we were able to support that drought affected June home ranges. This difference may be due to nesting habits, or may even stem from other sources such as humidity and heat, instead of drought. Another factor which may affect these results is our classifications of drought conditions. Years we classified as “non-drought” included years labeled by the NIDIS as Abnormally Dry (D0), and our “drought” years, 2015 (D1) and 2016 (D2), experienced different drought severities (NIDIS 2018). Our second Mann-Whitney U test generated a p value of 0.712, which is greater than 0.05, so we can accept the null and assume there is not enough evidence to claim 2012-2018 June vs July home range areas to be distinct.

Our simple linear regression revealed a P value of 0.306, which is greater than our critical value 0.05, indicating no significant relationship between a month's rainfall and home ranges. Our multiple linear regression revealed similar results, with the lowest P value at 0.234, which is also higher than our critical value of 0.05. Another simple linear regression, this time testing average home range with precipitation yielded a P value of 0.924 (greater than 0.05). These results indicate that June and July precipitation from 2012-2018 did not affect EBT home range areas. Our one-way ANOVA test on home ranges revealed significant ($P=0.006$) differences in the home range areas of different years, with a p value greater than our critical value of 0.05. The years causing these differences, 2013 vs 2018 ($P=0.010$) and 2015 vs 2018 ($P=0.040$), were revealed in a post-hoc Tukey test, with the P values from those years both being less than 0.05. Construction of sewage treatment basins in 2013 overlapping with multiple study turtles' historic home ranges may have caused turtles to increase the area of their home ranges in order to access less disturbed habitats. Low home range values in 2012 and 2018 may be related to capture frequencies in those years, where turtles were captured a maximum of once per day, and other years turtles may have been captured twice per day. However, 2012's small sample size prevented the year's home range data from being significantly different from other years. These results show that precipitation alone does not alter EBT June and July home range areas.

Other factors may be fully responsible for home range differences, or may be amplified by precipitation. These factors include surface water, heat, and substrate (Dodd 2001). Additional causes may include habitat (Erb and Willey 2011), humidity, construction, capture frequencies, implants and surgery, and nesting. Box turtle home range areas may even be attributed to “individual preference” (Dodd 2001). Limitations of this study include discrepancies in data collection by various interns, such as estimation of GPS locations, misreading notch codes, data input, and disorganization or loss of field notes. While causes of EBT home range size changes largely remain unknown, this research helps to guide future studies and can be applied to various conservation practices for box turtles. We encourage further exploration of additional variables and their relations to box turtle home ranges.

Results

Our Mann-Whitney U Test for June 2012-2018 ($N1=52$, $N2=24$, $U=341$), with $N1$ being non drought and $N2$ being drought, resulted in a p value of 0.001. The results of our Mann-Whitney U Test for July 2012-2018 ($N1=53$, $N2=24$, $U=481$), with $N1$ being non drought and $N2$ being drought, gave a p value of 0.088. Our Mann-Whitney U Test for 2012-2018 ($N1=76$, $N2=77$, $U=2825$), with $N1$ being June and $N2$ being July, resulted in a p value of 0.712.

We conducted a simple linear regression combining all data without respect for year or individual and found no significant relationship between rainfall in a particular month and that month's home ranges ($R^2=0.007$, $P=0.306$). We performed a multiple linear regression using turtle ID, year, rainfall in a particular month, and home range that month and found no significant relationship between each turtle's home range per month per year and the rainfall of the same period ($R=0.018$, $P=0.425$). None of these variables alone approached significance, with the lowest P value at 0.234. A one way ANOVA test showed significant differences in home range by year ($F=3.454$, $DF=6$, $P=0.006$). These differences were explained by a post-hoc Tukey test due to differences between 2013 vs 2018 ($P=0.010$) and 2015 vs 2018 (0.040). Values in 2012 and 2018 were unusually low, but the small sample size for 2012 prevented that year from being significantly different than high years. The small 2012 and 2018 home range values remained unexplained by our analyses.

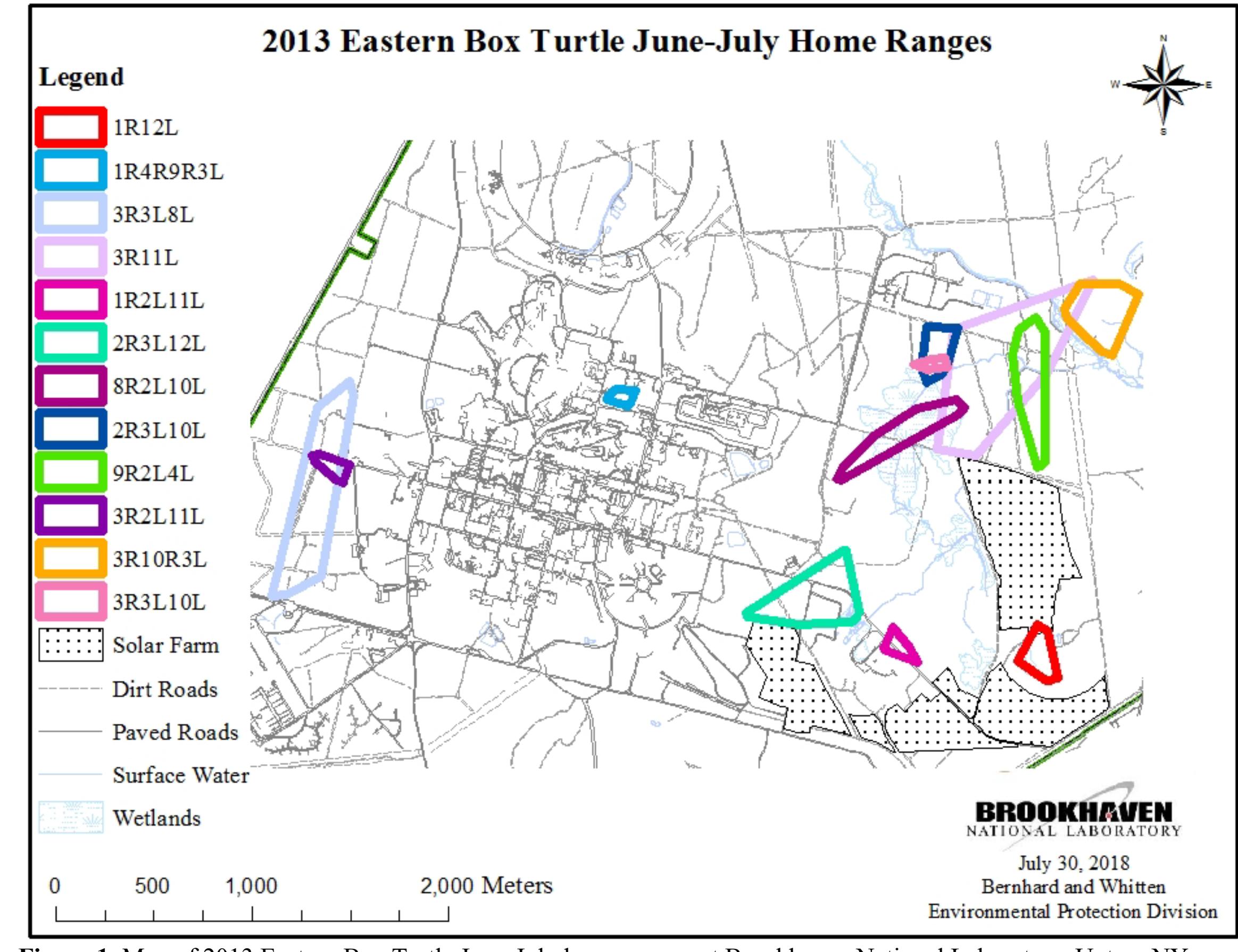


Figure 1. Map of 2013 Eastern Box Turtle June-July home ranges at Brookhaven National Laboratory, Upton, NY.

Year	Precipitation (in)	2012mcp (ha)	2013mcp (ha)	2014mcp (ha)	2015mcp (ha)	2016mcp (ha)	2017mcp (ha)	2018mcp (ha)	Mean Area (ha)
2012	16.00	0.971	1.580	2.478	8.307	5.024	0.000	2.502	18.717
2013	12.51	0.321	1.530	0.974	4.370	0.276	3.647	2.184	11.430
2014	4.93	0.000	7.135	0.844	1.955	2.286	0.150	0.328	12.417
2015	6.07	2R3L10L	0.000	3.612	2.760	6.797	9.118	0.742	23.203
2016	4.59	2R3L12L	0.000	3.440	0.712	2.124	1.775	0.512	8.581
2017	7.23	3R3L8L1R	0.000	0.382	0.928	18.341	1.081	0.873	21.630
2018	5.42	8R2L10L	0.403	16.490	3.140	1.427	1.116	0.017	22.303
		9R2L4L	1.879	6.816	3.597	12.915	7.095	0.988	15.696
		3R10R3L	0.000	9.296	5.271	0.500	8.587	3.338	27.073
		3R3L10L	1.309	26.440	4.473	1.328	8.015	1.019	0.060
		3R11L	0.010	0.515	0.199	13.877	4.825	16.578	0.055
		1R2L11L	1.309	0.515	0.199				37.311

Table 1. Table of annual precipitation at Brookhaven National Laboratory, Upton, NY.

Table 2. Table of annual June-July Eastern Box Turtle home range MCP estimates at Brookhaven National Laboratory, Upton, NY.

References

- Dodd, C.K. 2001. North American Box Turtles: a Natural History. The University of Oklahoma Press, Norman, Oklahoma, USA.
- Dolbeer, R.A. 1969. A Study of Population Density, Seasonal Movements and Weight Changes, and Winter Behavior of the Eastern Box Turtle, *Terrapene c. carolina* L., in Eastern Tennessee. Master's Thesis, University of Tennessee. http://trace.tennessee.edu/utk_gradthes/1461
- Donaldson, B. M., and A.C. Echternacht. 2005. Aquatic Habitat Use Relative to Home Range and Seasonal Movement of Eastern Box Turtles (*Terrapene carolina carolina*: Emydidae) in Eastern Tennessee. *Journal of Herpetology* 39(2):278-284.
- Erb, L and L. Willey. 2011. Eastern Box Turtle Conservation Plan for Massachusetts. Massachusetts Division of Fisheries & Wildlife and Natural Heritage & Endangered Species Program, Westborough, Massachusetts, USA.
- Ernst, C.H., and J.E. Lovich. 2009. Turtles of the United States and Canada. The Johns Hopkins University Press, Baltimore, Maryland, USA.
- Greenspan, S.E., E.P. Condon, and L.L. Smith. 2015. Home Range and Habitat Selection in the Eastern Box Turtle (*Terrapene carolina*) in a Longleaf Pine (*Pinus palustris*) Reserve. *Herpetological Conservation and Biology* 10(1):99-111.
- Hall, R.J., P.F.P. Henry, and C.M. Bunck. 1999. Fifty-year trends in a box turtle population in Maryland. *Biological Conservation* 88(2):165-172.
- NIDIS. 2018. U.S. Drought Monitor Animations. The National Drought Mitigation Center and University of Nebraska-Lincoln. Accessed 1 August 2018.
- Schwartz, E.R., C.W. Schwartz, and A.R. Kiester. 1984. The Three-toed Box Turtle in Central Missouri, Part II: A Nineteen Year Study of Home Range, Movements and Population. Missouri Department of Conservation Terrestrial Series 12.
- UNEP-WCMC (Comps.) 2014. Checklist of CITES species. CITES Secretariat, Geneva, Switzerland, and UNEP-WCMC, Cambridge, United Kingdom. Accessed on 1 August 2018.
- van Dijk, P.P. 2011. *Terrapene carolina* (errata version published in 2016). The IUCN Red List of Threatened Species 2011: e.T21641A97428179. Downloaded on 26 June 2018.

Acknowledgements

We would like to thank Tim Green, Jennifer Higbie, Russell Burke, and Kathy Schwager for all their support and assistance through out our research and data collection process.

This project was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).