

Photo recognition for 4-poster tick management
system®

Coral Salort1, Timothy Green2

1University of Puerto Rico, Río Piedras Campus, San Juan PR 00925, 2Environmental
Protection Division, Upton, NY 11973

ABSTRACT: The 4-Poster Tick Management System® works as a feeding station for deer
that mitigates tick dispersion by forcing deer to make contact with rollers containing a
tickicide when trying to eat. Time lapse photography is used to monitor deer visitation,
producing about 1 million images per year which must be manually classified by
researchers. The successful implementation of MLWIC: Machine Learning for Wildlife
Image Classification in R package by Mikey Tabak could provide a less time-consuming
and unsupervised data analysis. At the moment, the package has been successfully
installed and is in the testing stage. Although the first step is to enable the package to
identify presence or absence of deer, the end goal is to identify most organisms in the
pictures. Monitoring deer visitation rates to demonstrate the efficiency of the bait stations
is crucial to control the widespread distribution of ticks thus diminishing Lyme and other
tick-borne disease in the laboratory area. This project has sharpened my skills with R and
showed me the importance of stopping to analyze the problem before tackling it. In
addition, I gained experience interacting with GitHub.

INTRODUCTION

 Controlling the tick population in Long
Island is a serious matter. On Brookhaven
National Laboratory (BNL), the
Environmental Protection Division set up
fourteen 4-Poster Tick Management System® in
2013[2] and has been monitoring the efficiency

of the system. Each station is monitored by a
camera trap. This method produces about a
million pictures a year that the scientist had to
manually sort into one of these five categories:
deer, turkey, raccoon, no animals or other
animals. This project is meant to find a
solution to ease the hand work for the
researchers.

 A potential method is using a
Computer Vision code that could sort the
images automatically into one of the above-
mentioned categories confidently with little or
no help from researchers. In 2018, Tabak, M.
et. al presented the MLWIC R package
(Machine Learning for Wildlife Image
Classification)[1]. Internally, these package uses
the Tensorflow framework in which they
trained a ResNet-18 convolutional neural
network to identify certain species with up to
97.6% accuracy. MLWIC is free and available
on GitHub.
 This project seeks to habilitate this
code for the computer located at the research
laboratory. This involves installing it, writing
up a detailed easy to follow guide and testing
the efficiency and viability of using it. This
involves the possibility of training a model with
the pictures gathered throughout the years
thanks to the camera traps.

OBJECTIVES

 Testing viability of MLWIC R package
for the experiment is the main goal. Use
MLWIC for classification with the pre-trained
model and/or training a model with the data
gathered throughout the years. Creating
detailed guides with information regarding
installation and preparation prior to using the
package using MacOS and Windows.

METHODS

 For each of the processes listed below,
a detailed guide was written to guide the user
through each step. These guides are appended
to this document.

MLWIC Installation

 The MLWIC Package is completely
free and accessible on Github. Unfortunately,
the instructions provided in the README are
missing some important details that are key to
a successful installation. To start, the

instructions in the README help, but aren’t
sufficient, for MacOS. There’s another guide
linked in the README targeting Windows
users.
 The first installation attempt was on a
MacBook Air running Catalina. Following the
steps including installing Anaconda, creating an
environment including R and Python 3.6 and
launching R from there. Instructions don’t
direct the user to install Devtools and
Tensorflow 1.14; these have to be installed for
the package to work. The location of Anaconda
has to be noted to run any command.

The Windows installation following
the accompanying guide went by smoothly. It
specifies the version of Anaconda to be
installed and some specifics of the
environment setup.

MLWIC Preparation

 To put the R package to use, there’s
some preparation needed to run the
classify() and train() commands. The
requirements are to have a folder called images
containing all the images to be used, the L1
folder (provided in the Github repository) and
a two-column CSV with certain specifications.
In both cases, the first column should contain
all the names of the images inside the images
folder and labels on the second. The names
have to be unique.

Since the images are directly imported
from the different cameras’ SD cards, some of
them happen to have the same name. To
address this issue, a function called
unique.Naming() was written to rename
each file in a unique manner using the 4-poster
station, the date and a computer-generated
index (eg. “4P-2_05062014_134.JPG”).

Constructing the CSV for classification
is simple since the labels on the second column
aren’t meaningful so it can be filled with zeroes.
On the other hand, labels are crucial. It could
be done manually, but for a large number of
files it is preferable to run a script. The
function createCSV() goes through the
different 4-poster folders, can enter the date

folders and enters the folders containing the
pictures identified by the folder names:
No_Animal, Deer, Turkey, Raccoon,
Other_Animal. Then it assigns all the pictures
of each folder a label represented by numbers:
0, 1, 2, 3 and 4, respectively. To make things
easier, this function can internally call the
unique.Naming() function so everything is
done automatically.

After the CSV is created, the end of line
(EOL) has to be changed to Linux Linebreaks.
This is solved by opening the CSV in
Notepad++, going to “Edit” > “EOL
Conversion” > “Unix (LF)”. The CSV
filename has to be changed depending of its for
training or classifying, and also de operating
system (check the appended guide). Finally,
the README does suggest resizing the
pictures to 256x256 pixels, but its optional.

Classifying with MLWIC

 Once the preparation is ready, if done
correctly, the classification process is just
running one line of code:

classify(python_loc = pydir)

where pydir is the location of installation of
Anaconda in your machine. To make the
output reading friendly, run the function
make_output() to produce a CSV with the
results.

Training with MLWIC

 In contrast to the classification process,
training takes more preparation effort,
computational power and running time.
Consider the use of GPU’s or clusters
depending on the amount of annotated data.
 Choosing the images to train the model
is something to keep in mind. Images taken
during daytime and nighttime should be
considered (Figure 1). There should also be
equal representation of each classification
group (Figure 2), meaning there should be
approximately a similar number of pictures
from each group. Finally, there must be
samples from all the above mentioned from
each 4-poster station.

When the preparation is done, run the
following command:

 train(log_dir_train = model_loc,

os = "Windows",
delimiter = ",",
num_classes = 5,
python_loc = pydir,
retrain = FALSE)

Where model_loc is where the user wants the
training data to be stored and pydir is the
location of installation of Anaconda in your
machine. After the whole process is done, in
order to use the newly trained model, call the
classify function with an additional parameter:
log_dir = model_loc.

DISCUSSION

 After successfully installing the
MLWIC R package an being able to run the
classify function for the example provided on

Figure 1: Two images taken on the 4P-2 station identified
as containing deer. (a) was taken during the day and (b)
during the night.

(a) (b)

Figure 2: Images taken on the 4P-10 station where (a) has a turkey, (b)
raccoons and (c) squirrels (other animals).

(a) (b) (c)

Github, the same function was run over the
freshly obtained data from the camera traps in
the field. Running the pre-trained model didn’t
provide satisfactory results. The model was
consistently identifying species of animals that
aren’t even found on site. This model was
trained for more than 25 groups of animals,
and the researchers are only looking to identify
confidently between 5 classes: No_Animal,
Deer, Turkey, Raccoon and Other_Animal.
For this reason, it was decided to train a model
using the annotated data from previous years.
 After 3 weeks of preparing the data for
training, writing and debugging the R scripts
for the unique.Naming()and createCSV()
functions, the training function was going to
take up to three weeks to run. For this reason,
it was decided to document all the preparation
enough so someone can pick up where it was
left off.

NEXT STEPS

 This project leaves some work for
future researchers. It was possible to install and
run both on Windows and MacOS but
installing MLWIC on Linux and writing an
installation guide for future users is still an
undone task. Also, training the model using
the camera trap images from previous years,
preferably with a computer with multiple
GPU’s or a cluster. After this is done, it would
be helpful to write an R script to sort the
classified images in folders named after the
class they’ve been assigned to.

ACKNOWLEDGEMENTS

This project was supported in part by
the U.S. Department of Energy, Office of
Science, Office of Workforce Development
for Teachers and Scientists (WDTS) under the
Science Undergraduate Laboratory Internships
Program (SULI). It was possible thanks to the
support of Timothy Green and Jennifer Higbie
from the Environmental Protection Division at
Brookhaven National Laboratory.

REFERENCES

[1] Gosselin, T., & Green, T. The efficiency of 4-

poster tick management stations on three tick
species populations within Brookhaven
National Laboratory.

[2] Tabak, M. A., Norouzzadeh, M. S., Wolfson,
D. W., Sweeney, S. J., Vercauteren, K. C.,
Snow, N. P., . . . Miller, R. S. (2018).
Machine learning to classify animal
species in camera trap images:
Applications in ecology. Methods in
Ecology and Evolution, 10(4), 585-590.
doi:10.1101/346809

APPENDIX A:

MLWIC: Machine Learning for Wildlife Image Classification
in R (guide)

By: Coral Salort (csalortno@bnl.gov)

Installation Guide (on Windows)
This guide is being based on the guide provided by one of Mikey Tabak’s contributors on
the MLWIC GitHub repository.

1. Make sure you have R and RStudio installed. Otherwise, find it here.

2. Install Anaconda: Installing the right version of Anaconda is very important. Instead of
installing the latest version, follow this link. Find the version that agrees with this
information:

> Anaconda3-5.2.0-Windows-x86_64.exe
> 631.3M
> 2018-05-30 13:04:18

TIP: Copy the .exe name, press CTRL + F and paste it. It’ll show the one that we need.
Conversely, if you follow the guide link, there’s a direct link for the download there.

3. Take note of the location of the install: After the Anaconda window opens, accept Terms
and Conditions, install for “Just Me” and record the location where the installation will
occur. In my case, this is C:\Users\csalortno\AppData\Local\Continuum\anaconda3 . Use
recommended settings for the rest of the installation.

4. Launch Anaconda Navigator: Go to the Start Menu and find Anaconda Navigator in the
app list. Launch it.

5. Environment setup

1. Go to the “Environments” tab and make sure the only existing environment is
base(root) . Delete any other environment that are unfamiliar to you.

2. Using the search bar, search for setuptools , and click on the green square. If the

option “Mark for update” is available, select it and click “Apply” on the lower right.
3. Search for tensorflow and click on the green box. It’ll become a downwards arrow.

Click “Apply”.

NOTE: This is what the guide says. For me it didn’t work at first. I tried again after following
the next step and it worked once. If it still doesn’t work, keep going on with the process.
An error may pop up when trying to run the classify() function. When it does, try again
and that’s when it worked for me.

4. Search for the package cudnn . Single-click the small green box with the checkmark
inside it and choose “Mark for specific version installation”. Choose version 6.0. This
may prompt you to install tensorflow 1.11 instead of a later version. Accept this and
click “Apply”. (Copy and paste from guide)

6. Install and launch R within the Anaconda Environment: Having the base(root)
environment active (there’s a green vertical bar on the left of the environment tab), go
back to the “Home” tab and click “Install” RStudio. When its done, launch it.

7. Download L1 Folder: Download the whole zip folder here. I suggest you make a Test
folder folder and locate it on the Desktop and put the extracted L1 folder in here.
(Remember to note the location of the L1 folder). This step can be done at the beginning
but I’m following the guide.

8. Download example folder: Go here and download the example provided. This will
serve as a way to make sure everything is working correctly. Locate the “images” folder in
the same folder as the L1 folder (Test folder). Rename the image_labels.csv file to
data_info.csv and place it inside the “L1” folder. The MLWIC function classify
command attempts to find this file and copy it into the “L1” folder, but this has met with
mixed success on Windows computers; so, it’s best to name and locate the file as the
classify command expects. (Copy and pasted from guide). On the other hand, I had
success with leaving it outside the L1 folder, in the Test folder.

9. On RStudio: Let the Anaconda location (noted on step 3) be represented as conda_path
in this example and wdir is where the Test folder is located.

Location of Anaconda (noted on step 3)

conda_path <- "C:/Users/csalortno/AppData/Local/Continuum/anaconda3"

wdir <- "C:/Users/csalortno/Desktop/Test"

install.packages("devtools") # Install devtools

devtools::install_github("mikeyEcology/MLWIC") # Install MLWIC

setwd(wdir) # Set working directory

setup(python_loc = conda_path)

classify(python_loc = conda_path)

Installation Guide (on Mac)

1. Install Anaconda. Use this guide to take you through the process.

2. Launch Anaconda. Go to the Environments tab and click on Create. Include the R and
Python 3.6 packages. Then, go to the Home tab and Launch RStudio.

3. Install the Devtools package. Run the following command:

install.packages("devtools")

4. Install the MLWIC packages from GitHub.

devtools::install_github("mikeyEcology/MLWIC")

When asked if you want to update the packages, press 1 and [ENTER]. This will install all
the updates.

5. Run the following commands:

library(MLWIC)

setup()

6. Download the L1 folder from this link . It’s crucial that this folder is located in the same
folder as your “images” folder and a double column CSV file named
“image_labels.csv” (first column includes the filename of each image and the second will
be the Class ID). For the sake of testing our installation, download this folder (provided
by the author) and use these images and CSV to run the functions. (Take time to look at the
CSV folder provided in the example and use it as template for later). It is recommended to
create a folder with just those 3 elements: L1 folder, the images folder and the CSV. Take
note of the directory.

7. Set your working directory in RStudio. Set the location of the folder of the previous step
as your working directory by running this command:

setwd(path)

In my case, I named the folder “Test” and located it in my Desktop for easy access. I would
run setwd("~/Desktop/Test") .

8. Get the directory where Python is. Type and run system("which python") . This returns
the absolute path. In my case it returns /Users/coralsalort/Library/r-miniconda/envs/r-
reticulate/bin/python . The way we’ll record this is substituting the user directory by "~"
and disregarding the word “python”. In my example, it would be ~/Library/r-miniconda/
envs/r-reticulate/bin/ . Set a variable called pydir with this string of information. (eg.
pydir <-"~/Library/r-miniconda/envs/r-reticulate/bin/")

9. Install Tensorflow 1.14. Type and run system("pip install tensorflow==1.14) .

10. Run the classify() function. Run the following command:

classify(python_loc = pydir)

REMINDER: `pydir` is the variable we created on step 8

11. Use the make_output() function to a CSV with the prediction results.

Function classify() in Windows
You can follow steps 7-9 from the Windows Installation Guide, and replace the images and

your images and create a new CSV.

What you’ll need:

1. A folder with images with unique names
2. CSV in Unix Linebreaks with all image names on the first column and zeroes on the

second column (data_info.csv)
3. L1 folder
4. L1 and images folders in the same directory, CSV inside L1 folder.

Instructions

1. I created an R script containing 2 functions: createCSV() and unique.Naming() that
can be found by the end of this document or accompanying it under the names
createCSV.R and unique.Naming.R. Find them and copy the text and paste it in the
RStudio console one at a time.

2. Set your working directory to be the images folder. (setwd() function)
3. Run the following command for each 4-Poster: createCSV(training = FALSE,

renaming = TRUE, image_ext = "JPG", poster = "4P-XX", date = "DDMMYY", rep =

TRUE) where XX is the number of the 4-poster (2, 3, 4A, 4B…) and the date
(MMDDYYYY).

4. The resulting CSV won’t be on Unix Linebreaks. To convert the encoding, launch
Notepad++ (not to be confused with Notepad). Go to the Edit tab, look for encoding
and chose the Unix option.

5. Finally, the CSV is ready. Put it inside the L1 folder.
6. Make sure the folder with all the renamed images is named images and is located in

the same directory as the L1 folder. Set this as your working directory using the
setwd() function.

7. Run the following command:

classify(python_loc = pydir)

REMINDER: `pydir` is the variable we created on step 8

8. Use the make_output() function to a CSV with the prediction results.

Function train() in Windows

What you’ll need:

1. A folder with images with unique names
2. CSV in Unix Linebreaks with all image names on the first column and meaningful

labels on the second column (data_info_train.csv)
3. L1 folder
4. L1 and images folders in the same directory, CSV inside L1 folder.
5. (Worked for me) Train locally, not on the drive.

Instructions

Create CSV
1. Have your files organized in the following manner:

 Have all your 4P folders in one place.
 Inside the 4P folders, the folders with dates
 Inside date folders, have the animal folders
 Inside the animal folders, all the images from that particular group.

2. Having your directory set to where all the 4P folders are, call the function createCSV()
to create the CSV.

 To give unique names to images in the process:

createCSV(training = TRUE, renaming = TRUE)

Copies images to images folder with unique names (located in the working

directory)

Creates CSV with meaningful labels (located in the working directory)

 If images have unique names, run the same command with renaming = FALSE .
 NOTE:You can’t create a CSV from the images folder because the ID is lost in
the process of renaming. To keep the ID in the name you can go through the
code of createCSV() and find where unique.Naming() is called and replace
it with:

unique.Naming(save_path = redir_path, ID_4P = folder, date = nfolder, ext =

"JPG", low = lower, ret = TRUE, replace = rep, ID = TRUE, class = afolder)

 Script for creating a CSV parting from this point is still missing, but shouldn’t
be too difficult.

3. The resulting CSV won’t be on Unix Linebreaks. To convert the encoding, launch
Notepad++ (not to be confused with Notepad). Go to the Edit tab, look for encoding
and chose the Unix option.

4. Finally, the CSV is ready. Put it inside the L1 folder.

Training the model

 I had very little time to experiment with this function. Making sure the working
directory has the images folder, L1 folder. I created another folder named Model to
store the model data.
 What worked for me was running the following command:

train(log_dir_train = "C:/Users/csalortno/Desktop/Training/Model/", os =

"Windows", delimiter = ",", python_loc = "C:/Users/csalortno/AppData/Local/

Continuum/anaconda3/", retrain = FALSE)

