

Fire effects on bat species diversity present at Brookhaven National Labs

Emma Strassberg, Environmental Biology Department, SUNY Environmental Science and Forestry, Syracuse, NY 13210

Timothy Green, Environmental Protection Division, Brookhaven National Laboratory, Upton, NY 11973

Kathy Schwager, Environmental Protection Division, Brookhaven National Laboratory, Upton, NY 11973

Abstract

Many bat species are under threat from habitat loss, climate change, and white-nose syndrome (*Pseudogymnoascus destructans*), and it's important to know what species are present in order to manage them properly. This project looked at bat species diversity across sites at Brookhaven National Laboratory, which is located in the heart of the Long Island Central Pine Barrens region. Pine barrens ecosystems are highly fire-adapted and thus prescribed fire is an important tool in managing the forest. Bat calls were obtained through acoustic recorders, and models were run to see if there was a difference in habitat use between the intact and disturbed forest. No significant differences were found, although due to the small study area and timescale more research is suggested.

Introduction

Bats play a large role in the environment, and provide many ecosystem services such as arthropod suppression, seed dispersal, and pollination (Kunz et al., 2011). Insectivorous bats in particular have been found to suppress various insect populations, including many species of agricultural and forest pests. Northern long-eared bats (*Myotis septentrionalis*) have been shown to effectively suppress mosquito populations (Reiskind & Wund, 2009). Many bat species are under major threat from habitat loss, climate change, disease so it's important to know what species are present in order to manage them. There are eight species of bats currently found on Long Island, NY, shown below.

Figure 1. Map of the vegetation communities at BNL

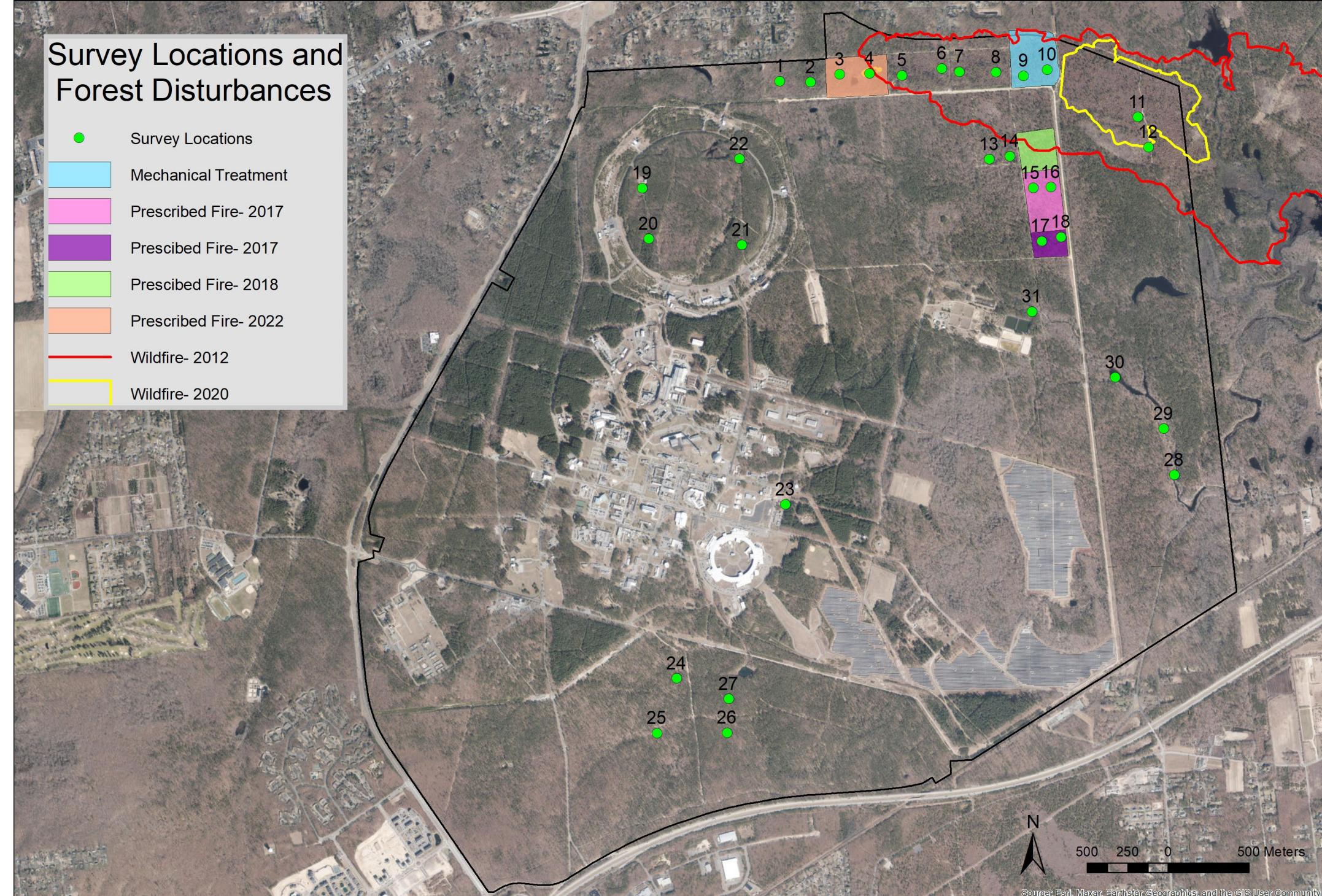
Vegetation Types

Urban
Pitch Pine/White & Black Oak Forest
Pitch Pine/White & Scarlet Oak Forest
Planted White Pine Forest
Red Maple Mescic Heath Forest
Red Maple/Blackgum Wet Forest
Red Maple/Scarlet Oak Mescic Heath Forest
Black Cherry Forest
Scarlet Oak Heath Forest
Cattail Marsh
Water
Grass
Successional

www.bnl.gov

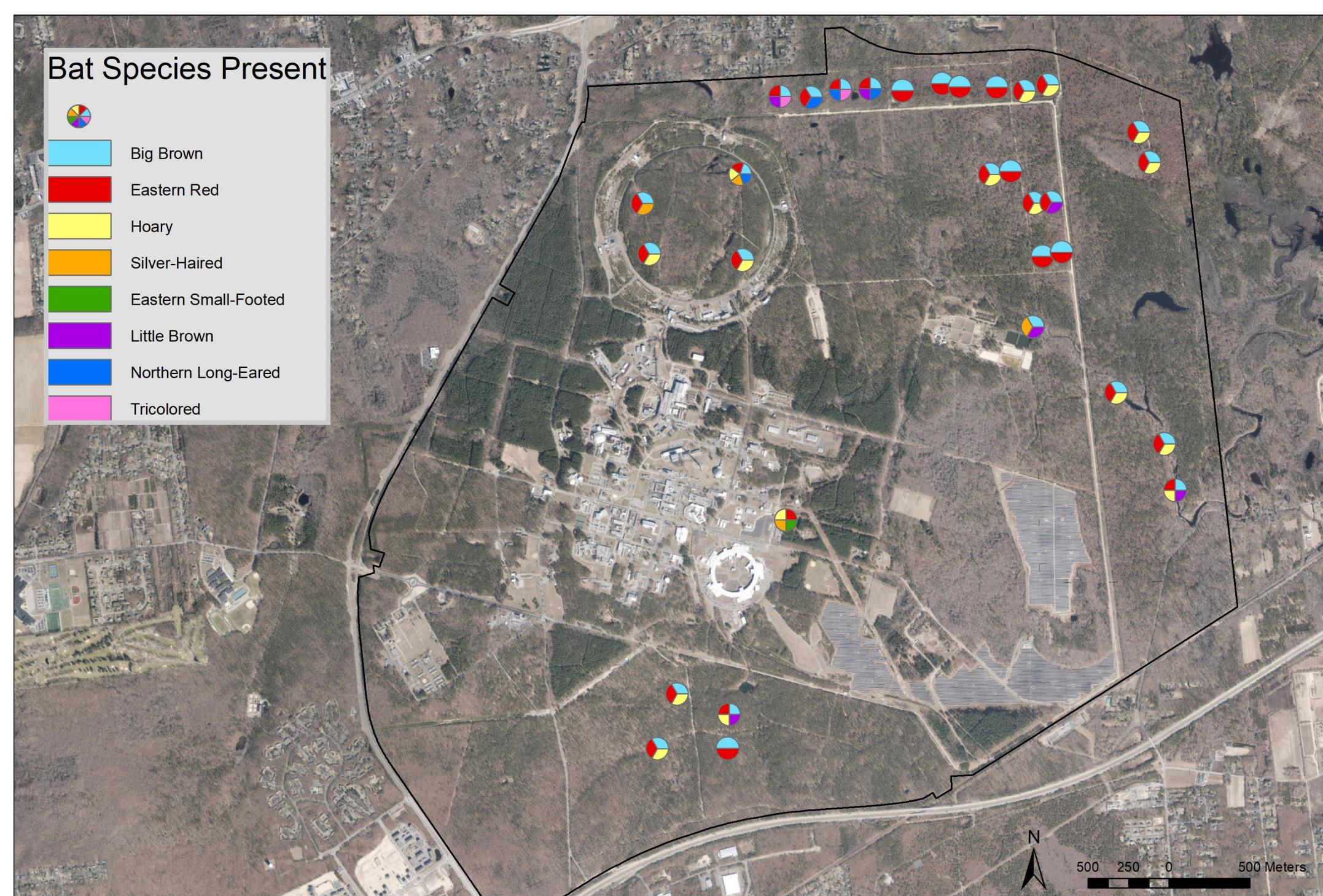
Methods

Field Surveys


Ultrasonic recorders (Song meter mini bats) were used to passively detect bat vocalizations, set up over the course of 10 weeks from June through August. There were 12 surveyed plots- one mechanically treated site, three sites that had undergone wildfire, three sites with a prescribed burn, and five sites that had not been burned or cleared. At least two detectors were set up in each plot, a minimum of 50m apart, for a total of 31 survey locations. Detectors were set-up in each plot approximately five ft up the tree, secured with paracord, and left to record for a minimum of three nights, set to start 30 minutes before sunset to 30 minutes after sunrise subject to triggering.

Analysis

Field recordings were analyzed using Kaleidoscope Pro® software to batch process the recordings. Default signal parameters were used, and recordings were filtered to automatically discard noise files. The Auto ID for Bats feature was used to identify the species. If that species had a presence p-value of <0.05, then it was determined that that species was present at that location. If that species had a presence p-value of >0.05, then it was determined that there was insufficient evidence to prove that species was present. Program presence was used to see if any of the disturbance types had affected habitat use by the bats in intact (N=17) and disturbed (N=14) forests. Models were stratified by occupancy probability, detection probability, or both by forest type, and model fit was assessed with a Goodness of Fit test.


Figure 2. Map showing survey locations and where they occur in relation to the forest disturbances

Results

Over 40,000 audio files were processed, with approximately 16,00 possible bat identifications. For all species tested, the null model, with no effect of forest type on either occupancy or detection, had the highest support.

Figure 3. Map showing where each bat species is present across BNL. All eight species of bats present on Long Island showed up as possible identifications. Important to note that this map does not show abundance of bats, it merely indicates presence or absence at each site.

Discussion

Big brown bats and eastern red bats were the most prevalent across sites, both showing up in 30 out of 31 of the survey locations. While there were no significant differences detected over the different treatment types here, due to the small study area of study and short time frame these may not be indicative of the actual relationship between bats and fire in this habitat and more research is recommended.

Although some people have negative preconceived notions about bats, they are an integral part of the ecosystem and provide many benefits. Many species of bats are declining due to various threats against them, and we need to know more about these amazing creatures to be able to help conserve and manage them. It's been proven that fire affects bats in many ways, both positive and negative, and there is still so much to learn.

References

- BNL. 2021. Natural Resource Management Plan for Brookhaven National Laboratory. BNL-112669. Brookhaven National Laboratory, Upton, NY. October 2021.
- Kunz, T. H., Braun de Torrez, E., Harvey, M. J., Altenbach, J. S., & Best, T. L. (2013). *Bats of the United States and Canada*. Johns Hopkins University Press.
- Bauer, D., Lobova, T., & Fleming, T. H. (2011). Ecosystem Services provided by bats. *Annals of the New York Academy of Sciences*, 1223(1), 1–38. <https://doi.org/10.1111/j.1749-6632.2011.06004.x>
- Lacki, M. J., Cox, D. R., Dodd, L. E., & Dickinson, M. B. (2009). Response of northern bats (*myotis septentrionalis*) to prescribed fires in eastern Kentucky forests. *Journal of Mammalogy*, 90(5), 1165–1175. <https://doi.org/10.1644/08-mamm-a-349.1>
- Loeb, S. C., & Blahey, R. V. (2021). Bats and fire: A global review. *Fire Ecology*, 17(1). <https://doi.org/10.1186/s42408-021-00109-0>
- Reiskind, M. H., & Wund, M. A. (2009). Experimental assessment of the impacts of northern long-eared bats on ovipositing *culex* (Diptera: Culicidae) mosquitoes. *Journal of Medical Entomology*, 46(5), 1037–1044. <https://doi.org/10.1603/033.046.0510>
- Ryan, K. C., Knapp, E. E., & Varner, J. M. (2013). Prescribed fire in North American forests and woodlands: History, current practice, and challenges. *Frontiers in Ecology and the Environment*, 11(s1). <https://doi.org/10.1890/120329>

