Introduction

Established in 1947, Brookhaven National Laboratory (BNL) is one of ten national laboratories overseen and primarily funded by the U.S. Department of Energy's (DOE) Office of Science. The only multi-program national laboratory in the Northeast, the Laboratory is operated and managed by Brookhaven Science Associates (BSA), which was founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, and Battelle, a non-profit applied science and technology organization. BNL is committed to longstanding partnerships with researchers, academic institutions, industry, students, teachers, and the surrounding community.

BSA has been managing and operating the Laboratory under a performance-based contract with DOE since 1998. From 1947 to 1998, BNL was operated by Associated Universities, Incorporated. Prior to 1947, the site operated as Camp Upton, a U.S. Army training camp, which was active from 1917 to 1921 during and after World War I and from 1940 to 1946 during World War II.

BNL has a history of outstanding scientific achievements. For over 70 years, Laboratory researchers have successfully worked to envision, construct, and operate large and innovative scientific facilities in pursuit of research advances in many fields. Programs in place at BNL emphasize continual improvement in environmental, safety, security, and health performance.

1.1 LABORATORY MISSION AND POLICY

BNL advances fundamental research in nuclear and particle physics to gain a deeper understanding of matter, energy, space, and time; applies photon sciences and nanomaterials research to solve energy challenges of critical importance to the nation; provides capabilities in computational science and data management for large-scale research and experimental endeavors; and performs cross-disciplinary research on computation, sustainable energy, national security, and earth's climate and ecosystems.

The fundamental elements of the Laboratory's role in support of DOE's strategic missions are the following:

- To conceive, design, construct, and operate complex, leading-edge, user-oriented research facilities in response to the needs of DOE and the international community of users;
- To carry out basic and applied research in long-term, high-risk programs at the frontier of science;

- To develop advanced technologies that address national needs and transfer them to other organizations and the commercial sector; and
- To disseminate technical knowledge, educate future generations of scientists and engineers, maintain technical capabilities in the nation's workforce, and encourage scientific awareness in the general public.

Brookhaven produces transformative science and advanced technologies, and does it safely, securely, and responsibly, with the cooperation and involvement of the local, state, and international scientific communities. BNL's Environmental, Safety, Security, and Health (ESSH) Policy states the Laboratory's commitment to continual improvement in ESSH performance. Under this policy, the Laboratory's goals are to protect the environment, conserve resources, and prevent pollution; maintain a safe workplace by planning work and performing it safely; provide security for people, property, information, computing systems, and facilities; protect human health within its boundaries and in the surrounding community; achieve and maintain compliance with applicable ESSH requirements; and maintain an open, proactive, and constructive relationship with employees, neighbors, regulators, DOE, and other stakeholders.

In 2001, BNL was the first DOE Office of Science National Laboratory to achieve full regulation under the International Organization for Standardization (ISO) 14001 environmental management standard. In addition, in December 2006, BNL was the first DOE Laboratory to achieve full registration under the Occupational Health and Safety Assessment Series (OHSAS) 18001 Standard. These programs are discussed in Chapter 2 of this report.

1.2 RESEARCH AND DISCOVERIES

The Laboratory operates cutting-edge large-scale facilities for studies in physics, chemistry, biology, medicine, applied science, and a wide range of advanced technologies. BNL's world-class research facilities are also available to university, industrial, and government personnel from around the world. The Laboratory integrates sustainable operations and environmental stewardship into all facets of its research and operations and is committed to managing its programs in a manner that protects the local ecosystem and public health.

Current research includes energy security to help address the world's need for new, more efficient, and sustainable energy sources powered by solar, wind, hydrogen, and other renewable sources; photon sciences, focusing ultra-bright light to reveal the structures of materials critically important to energy security, environment, and human health; quantum chromodynamics, using colliding subatomic particles to recreate matter from the dawn of time, and study the source that gives shape to visible matter in the universe today; physics of the universe, to explore cosmic mysteries across the smallest and largest scales, from neutrinos to dark energy; and climate, environment, and biosciences, to map climate change, greenhouse gas emissions, and plant biology to protect the planet's future. In addition to major research activities, the Laboratory provides expertise and other programs in a range of areas including accelerator science and technology, biological imaging, homeland and national security, and advanced computation.

To date, researchers working at BNL have received seven Nobel Prizes, National Medals of Science, Enrico Fermi Awards, Wolf Foundation Prizes, R&D 100 awards, as well as other recognitions for discoveries made wholly or partly at BNL. Some significant discoveries and developments made at the Laboratory include new forms of matter, subatomic particles, technologies that fuel leading experimental programs around the world, and life-saving medical imaging techniques for diagnosis and treatment of disease.

1.3 HISTORY

BNL was founded in 1947 by the Atomic Energy Commission (AEC), a predecessor to the present DOE. The AEC provided the initial funding for BNL's research into peaceful uses of the atom. The objective was to promote basic research in the physical, chemical, biological, and engineering aspects of the atomic sciences. The result was the creation of a regional laboratory to design, construct, and operate large scientific machines that individual institutions could not afford to develop on their own.

Although BNL no longer operates any research reactors, the Laboratory's first major scientific facility was the Brookhaven Graphite Research Reactor (BGRR), which was the first reactor to be constructed in the United States following World War II. In operation from 1950 to 1968, the reactor's primary mission was to produce neutrons for scientific experimentation and to refine reactor technology. Decommissioning of the BGRR was completed in June 2012, and the remaining structures are currently undergoing long-term routine inspection and surveillance.

The High Flux Beam Reactor (HFBR) was in operation from 1965 through 1996. The facility was used solely for scientific research and provided neutrons for experiments in materials science, chemistry, biology, and physics. The HFBR also allowed researchers to study the basic nature of chemical structures, including the hydrogen bond that holds much of our world together. In late 1996, workers discovered that a leak in the HFBR spent fuel storage pool had been releasing tritium to the groundwater (see SER, Volume II, Groundwater Status Report, for further details). The reactor was shut down for routine maintenance at the time of the discovery and was never restarted. In November 1999, DOE decided that the HFBR would be permanently shut down. With input from the community, a final Record of Decision (ROD) was approved outlining the remedy for the HFBR's permanent decontamination and decommissioning.

Medical research at BNL began in 1950 with the opening of one of the first hospitals devoted to nuclear medicine. It was followed by the Medical Research Center in 1958 and the Brookhaven Medical Research Reactor (BMRR) in 1959. The BMRR was the first nuclear reactor in the nation to be constructed specifically for medical research. Due to a reduction of research funding, the BMRR was shut down in December 2000. All spent fuel from the BMRR has been removed and transported off site. The facility is currently in a "cold" shutdown mode as a radiological facility and has entered a period of surveillance and maintenance.

The Brookhaven Linac Isotope Producer (BLIP) has been in operation since 1972. Positioned at the forefront of research into radioisotopes used in cancer treatment and diagnosis, the BLIP produces commercially unavailable radioisotopes for use by the medical community and related industries. BLIP consists of an accelerator beam line and target area for generating radioisotopes already in high demand and for developing those required at the frontiers of nuclear medicine. In conjunction with this mission, scientists also perform irradiations for non-isotope applications and explore opportunities for emerging radioisotope applications.

High-energy particle physics research at BNL began in 1952 with the Cosmotron, the first particle accelerator to achieve billion-electron-volt energies. Work at the Cosmotron resulted in a Nobel Prize in 1957. After 14 years of service, the Cosmotron ceased operation in 1966 and was dismantled in 1969. Knowledge gained from the Cosmotron led to design improvements and paved the way for construction of the Alternating Gradient Synchrotron (AGS). The AGS is a much larger particle accelerator and became operational in 1960. The AGS has allowed scientists to accelerate protons to energies that have yielded many discoveries of new particles and phenomena, for which BNL researchers were awarded three Nobel Prizes. The AGS receives protons from BNL's linear accelerator (LINAC), designed and built in the late 1960s as a major upgrade to the AGS complex. The LINAC's purpose

is to provide accelerated protons for use at AGS facilities and BLIP. The AGS booster, constructed in 1991, further enhanced the capabilities of the AGS, enabling it to accelerate protons and heavy ions to even higher energies.

The Tandem Van de Graaff accelerator began operating in 1970 and is the starting point of the chain of accelerators that provide ions of gold, other heavy metals, and protons for experiments at the Relativistic Heavy Ion Collider (RHIC). In 2010, BNL began operating a new heavy ion beam source for use by RHIC and the NASA Space Radiation Laboratory, the Electron Beam Ion Source (EBIS). This large electrostatic accelerator can provide researchers with beams of more than 40 different types of ions ranging from hydrogen to uranium. By simulating the effects of radiation both in space and on the ground, scientists and engineers from several other laboratories and companies are improving the reliability of computers.

RHIC began operation in 2000. Inside this tworinged particle accelerator, two beams of gold ions, heavy metals, or protons circulate at nearly the speed of light and collide, head-on, releasing large amounts of energy. By smashing particles together to recreate the conditions of the early universe, scientists can explore the most fundamental building blocks of matter as they existed just after the Big Bang. This research unlocks secrets of the force that holds together 99 percent of the visible universe-everything from stars to planets and people-and triggers advances in science and technology that have applications in fields from medicine to national security. RHIC has been continuously upgraded and its productivity now exceeds its initial design by 100 times. The most recent upgrade is the Low-Energy RHIC Electron Cooling project, which supports a new research program.

The NASA Space Radiation Laboratory (NSRL) became operational in 2003. It is jointly managed by DOE's Office of Science and NASA's Johnson Space Center. The NSRL uses heavy ions to simulate space radiation and study the effects on biological specimens, such as cells, tissues, and DNA, as well as industrial materials. Studies are conducted to identify materials and methods that would reduce the risks astronauts will face on future long-term space missions. The National Synchrotron Light Source (NSLS) used a linear accelerator and booster synchrotron to guide charged particles in orbit inside two electron storage rings for use in a wide range of physical and biological experiments. Using beams of very intense light in the x-ray, ultraviolet, and infrared spectra, the NSLS allowed scientists to study the structure of proteins, investigate the properties of new materials, and understand the fate of chemicals in the environment. Although the NSLS had been continually updated since its commissioning in 1982, the practical limits of its performance had been reached and operations permanently ceased in September 2014.

To continue advances in these fields, the NSLS-II was constructed. The NSLS-II generates intense beams of x-ray, ultraviolet, and infrared light and offers an array of sophisticated imaging techniques to capture atomic-level "pictures" of a wide variety of materials, from biological molecules to semi-conductor devices. NSLS-II has a nanometer-scale resolution—a key resource for researchers at BNL's Center for Fundamental Nanomaterials (CFN)--that will enhance the development of next-generation sustainable energy technologies and improve imaging of complex protein structures.

The Laboratory's Research Support Building (RSB) was completed in 2006 and provides administrative and support functions in a single location for employees and visiting scientists. The RSB has been awarded the Leadership in Energy and Environmental Design (LEED) Silver certification from the U.S. Green Building Council. This award is based on five categories: sustainability, water efficiency, energy and atmosphere, materials and resources, and indoor environmental quality.

Construction of a 32-megawatt Long Island Solar Farm (LISF) at BNL was completed in the fall of 2011 in collaboration with BP Solar, Long Island Power Authority, the State of New York, and other organizations. The LISF is the largest solar photovoltaic (PV) electric generating plant in the Northeast region. Its goal is to help Long Island be less reliant on fossil fuel-driven power generation and to meet peak load demands from summertime air conditioning use. It is generating enough renewable energy to power approximately 4,500 homes and is helping New York State meets its clean energy and carbon reduction goals. The LISF will be one of the most studied solar installations, as it is a focal point of the Northeast Solar Energy Research Center at BNL. Compared to conventional electricgenerating facilities on Long Island, the LISF drastically reduces local sources that contribute to climate change, such as reducing the amount of carbon dioxide by 30,950 metric tons per year and methane by 80 metric tons over 40 years.

BNL's CFN is one of five Nanoscale Science Research Centers funded by DOE's Office of Science and provides state-of-the-art tools for creating and exploring the properties of materials with dimensions spanning just billionths of a meter. CFN scientists are dedicated to atomic-level tailoring that addresses a wide range of energy challenges. CFN focus areas include: improving solar cells and other electronic nanomaterials; designing more efficient catalysts; developing new capabilities and uses for electron microscopy; and nanofabrication based on soft and biological nanomaterials—all aided by theory and advanced computation. The CFN building has also been awarded LEED Silver certification.

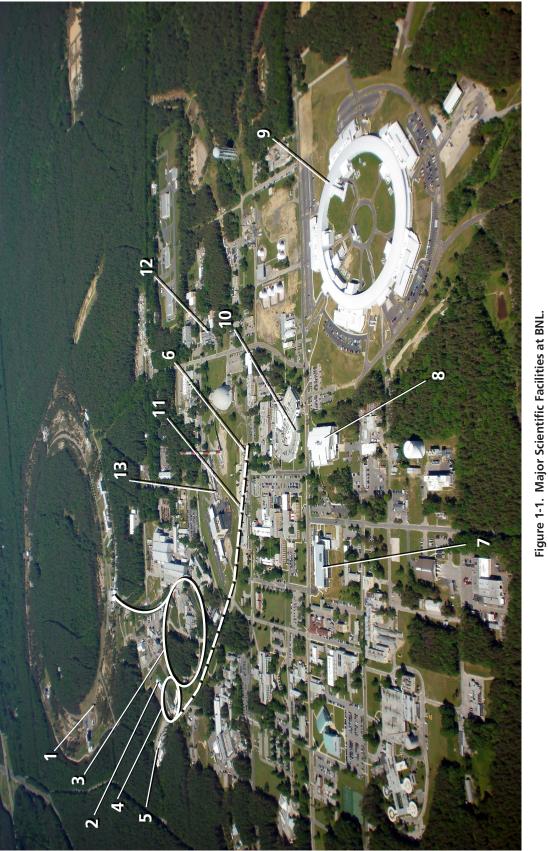
The Interdisciplinary Science Building (ISB), completed in 2013, is an energy-efficient and environmentally sustainable building that provides labs, offices, and support functions to bring together a broad spectrum of researchers, including industry, universities, and other national laboratories. The ISB fosters energy research, focusing on the effective uses of renewable energy through improved conversion, transmission, and storage. The ISB has been awarded LEED Gold certification.

The Computational Science Center (CSC), established in 2016, houses two supercomputers with an ever-expanding fleet of computing cores (50,000 as of 2015) and a suite of tools developed specifically for interactive visual and statistical data analysis. Researchers in biology, chemistry, physics, and medicine together with applied mathematicians and computer scientists—from Brookhaven, Stony Brook University, Columbia University, and other collaborating institutions—use these tools to address questions in computational biology, nanoscience, sustainable energy, environmental science, and homeland security.

1.4 FACILITIES AND OPERATIONS

Most of the Laboratory's principal facilities are located near the center of the site. The developed area is approximately 1,820 acres consisting of the following:

- 500 acres originally developed by the Army as part of Camp Upton, and still used for offices and other operational buildings
- 200 acres occupied by large, specialized research facilities
- 520 acres used for outlying facilities, such as the STP, ecology field, housing facilities, and fire breaks
- 400 acres of roads, parking lots, and connecting areas
- 200 acres occupied by the LISF


The balance of the site, approximately 3,400 acres, is mostly wooded and represents the native pine barrens ecosystem. The location of the major scientific facilities at BNL are shown on Figure 1-1. Additional facilities, shown on Figure 1-2 and briefly described below, support BNL's science and technology mission by providing basic utility and environmental services.

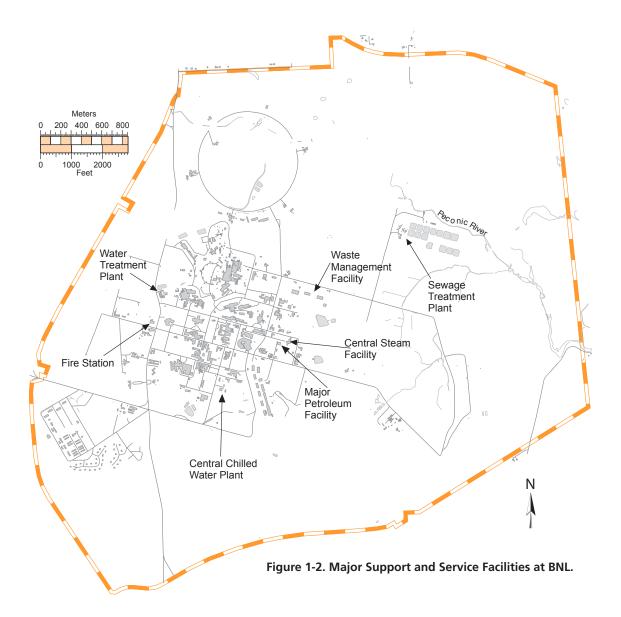
- Central Chilled Water Plant. This plant provides chilled water sitewide for air conditioning and process refrigeration via underground piping. The plant has a large refrigeration capacity and reduces the need for local refrigeration plants and air conditioning.
- *Central Steam Facility (CSF)*. This facility provides high-pressure steam for facility and process heating sitewide. Either natural gas or fuel oil can be used to produce the steam, which is conveyed to other facilities through underground piping. Condensate is collected and returned to the CSF for reuse to conserve water and energy.
- Fire Station. The Fire Station houses six response vehicles. The BNL Fire Rescue Group provides on-site fire suppression, emergency medical services, hazardous material response, salvage, and property protection.
- Major Petroleum Facility (MPF). This facility provides reserve fuel for the CSF during times of peak operation. With a total capacity of 2.3 million gallons, the MPF primarily stores No. 6 fuel oil. The 1997 conversion of CSF boilers to burn natural gas and oil has significantly reduced the Laboratory's reliance on oil as a sole fuel source when other fuels are more economical.

- Sewage Treatment Plant (STP). This plant treats sanitary and certain process wastewater from BNL facilities prior to discharge into groundwater recharge beds, similar to the operations of a municipal sewage treatment plant. The plant has a design capacity of three million gallons per day. Effluent is monitored and controlled under a permit issued by the New York State Department of Environmental Conservation.
- *Waste Management Facility (WMF)*. This facility is a state-of-the-art complex for managing the wastes generated from BNL's research and operations activities. The facility was built with advanced environmental protection systems and features and began operation in December 1997.
- *Water Treatment Plant (WTP)*. The potable water treatment plant has a capacity of five million gallons per day. Potable water is obtained from five on-site wells. Water pumped from three supply wells located in the western section of the site is treated at the WTP with a lime-softening process to remove naturally occurring iron and with sodium hypochlorite for bacterial control. The plant is also equipped with dual air-stripping towers to ensure that volatile organic compounds are at or below New York State drinking water standards. Water from two supply wells located in the eastern section of the developed site is treated by the addition of sodium hydroxide to increase the pH of the water to make it less corrosive and control bacteria. With the exception of an iron exceedance at the Water Treatment Plant in June, BNL's drinking water and the supply and distribution system were in compliance with all applicable county, state, and federal regulations regarding drinking water quality, monitoring, operations, and reporting in 2018.

Past operations and research at the BNL site, dating back to the early 1940s when it was Camp Upton, have resulted in localized environmental contamination. As a result, the Laboratory was added to the federal Comprehensive Environmental Response, Compensation and Liability Act National Priorities List of contaminated sites in 1989. One of 40 sites on Long Island identified for priority cleanup, BNL has made significant progress toward

BROOKHAVEN

- Relativistic Heavy Ion Collider Ξ.
 - NASA Space Radiation Laboratory
 Alternating Gradient Synchrotron
- Alternating Gradient Synchrotron Booster
- Brookhaven Linac Isotope Producer and Linear Accelerator 4. v.
- 6. Tandem to Booster


Medical Isotope Research Laboratories

13.

11. Tandem Van de Graaff and Cyclotron Accelerator Test Facilities

- Interdisciplinary Science Building
 Center for Functional Nanomaterials
 National Synchrotron Light Source II
 Computational Science Initiative

2018 SITE ENVIRONMENTAL REPORT

improving environmental operations and remediating past contamination. DOE will continue to fund cleanup projects until the Laboratory is restored and removed from the National Priorities List. Major accomplishments in cleanup activities at BNL are discussed further throughout this report.

1.5 LOCATION, LOCAL POPULATION, AND LOCAL ECONOMY

Brookhaven Lab is the only national laboratory located in the Northeast and one of New York State's largest centers of scientific research, and places special emphasis on growing the technology-based elements of the Long Island economy. The future competitiveness of New York's economy depends on its capacity for innovation, and Brookhaven represents a uniquely valuable resource—both as a major science-based enterprise, and as a source of discoveries that drive entrepreneurs and innovators.

BNL is located near the geographical center of Suffolk County, Long Island, New York. The Laboratory's 5,320-acre site is located in Brookhaven Town, approximately 65 miles east of midtown Manhattan. Brookhaven Lab employs 2,550 employees who include scientists, engineers, technicians, and support staff. In addition, the Laboratory annually hosts more than 5,000 visiting scientists and students from universities, industries, and government agencies, who often stay in apartments and dormitories onsite or in nearby communities.

BNL strengthens Long Island's position as a center of innovation in energy, materials sciences, nanotechnology, and other fields crucial to the growth of New York State's economy. With a budget of more than \$657 million in 2018, the Laboratory had a significant economic impact on New York State. Supporting local and state businesses whenever possible, BNL spent more than \$171 million in 2018 on goods and services, \$26 million of that with Long Island companies.

1.6 GEOLOGY AND HYDROLOGY

BNL is situated on the western rim of the shallow Peconic River watershed. The marshy areas in the northern and eastern sections of the site are part of the headwaters of the Peconic River. Depending on the height of the water table relative to the base of the riverbed, the Peconic River both recharges to and receives water from the underlying Upper Glacial aquifer. In times of sustained drought, the river water recharges to the groundwater; with normal to above-normal precipitation, the river receives water from the aquifer. The terrain of the BNL site is gently rolling, with elevations varying between 44 and 120 feet above mean sea level. Depth to groundwater from the land surface ranges from five feet near the Peconic River to approximately 80 feet in the higher elevations of the central and western portions of the site. Studies of Long Island hydrology and geology near the Laboratory indicate that the uppermost Pleistocene deposits, composed of highly permeable glacial sands and gravel, are between 120 and 250 feet thick (Warren et al., 1968; Scorca et al., 1999). Water penetrates these deposits readily and there is little direct runoff into surface streams unless precipitation is intense. The sandy deposits store large quantities of water in the Upper Glacial aquifer. On average, approximately half of the annual precipitation is lost to the atmosphere through evapotranspiration, and the other half percolates through the soil to recharge the groundwater (Franke & McClymonds, 1972; Aronson & Seaburn, 1974).

The Long Island Regional Planning Board and Suffolk County have identified the Laboratory site as overlying a deep-flow recharge zone for Long Island groundwater (Koppelman, 1978). Precipitation and surface water that recharge within this zone have the potential to replenish the Magothy and Lloyd aquifer systems lying below the Upper Glacial aquifer. It has been estimated that up to two-fifths of the recharge from rainfall moves into the deeper aquifers. The extent to which groundwater on site contributes to deep-flow recharge has been confirmed using an extensive network of shallow and deep wells installed at BNL and surrounding areas (Geraghty & Miller, 1996). This groundwater system is the primary source of drinking water for both on- and off-site private and public supply wells and has been designated a sole source aguifer system by the U.S. Environmental Protection Agency.

The Laboratory's five in-service drinking water wells draw up to 1,000 gallons per minute, or approximately 1.34 million gallons of water per day, from the aquifer to supply drinking water, process cooling water, or fire protection. This water is treated to remove contaminants and is then returned to the aquifer by way of recharge basins or injection wells. In 2018, approximately 413 million gallons of water were pumped for use on site.

Groundwater flow directions across the BNL site are influenced by natural drainage systems: eastward along the Peconic River, southeast toward the Forge River, and south toward the Carmans River (Figure 1-3). Pumping from on-site supply wells affects the direction and speed of groundwater flow, especially in the central, developed areas of the site. The main groundwater divide on Long Island is aligned generally east-west and lies approximately one-half mile north of the Laboratory. Groundwater north of the divide flows northward and ultimately discharges to the Long Island Sound. Groundwater south of the divide flows east and south, discharging to the Peconic River, Peconic Bay, south shore streams, Great South Bay, and Atlantic Ocean. The regional groundwater flow system is discussed in greater detail in Stratigraphy and Hydrologic Conditions at the Brookhaven National Laboratory and Vicinity, Suffolk County, New York, 1994-97 (Scorca et al., 1999). In most areas at BNL, the horizontal

velocity of groundwater is approximately 0.75 to 1.2 feet per day (Geraghty & Miller, 1996). In general, this means that groundwater travels for approximately 20 to 22 years as it moves from the central, developed area of the site to the Laboratory's southern boundary.

1.7 CLIMATE

Meteorological Services (MET Services) at BNL has been recording on-site weather data since August 1948. MET Services is responsible for the maintenance, calibration, data collection, and data archiving for the weather instrumentation network at BNL. Measurements include wind speed, wind direction, temperature, rainfall, barometric pressure, and relative humidity. The Laboratory is broadly influenced by continental and maritime weather systems. Locally, the Long Island Sound, Atlantic Ocean, and associated bays influence wind directions and humidity and provide a moderating influence on extreme summer and winter temperatures.

The prevailing ground-level winds at BNL are from the southwest during the summer, from the northwest during the winter, and about equally from those two directions during the spring and fall (Nagle 1975, 1978). Figure 1-4 shows the 2018 annual wind rose for BNL, which depicts the annual frequency distribution of wind speed and direction, measured at an on-site meteorological tower at heights of 33 feet (10 meters) and 300 feet (85 meters) above land surface.

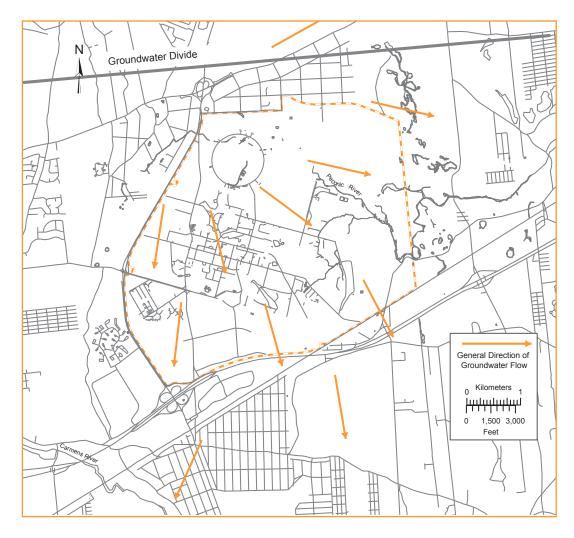


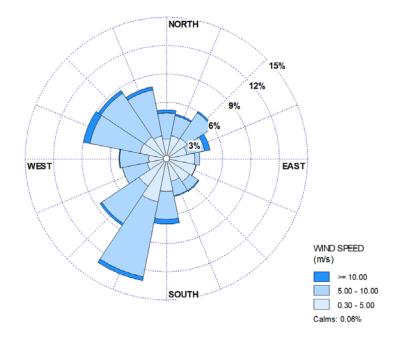
Figure 1-3. BNL Groundwater Flow Map.

The average yearly temperature for this area of Long Island was 51.73 °F. The coolest month of the year, January, had a monthly average temperature of 28.7 °F while the warmest month of the year, August, had a monthly average temperature of 74.3 °F. Figures 1-5 and 1-6 show the 2018 monthly mean temperatures and the historical annual mean temperatures, respectively. The total annual precipitation in 2018 was 68.53 inches. Figures 1-7 and 1-8 show the 2018 monthly and the 69-year annual precipitation data. The yearly total snowfall for 2018 was 52.4 inches, well above the 33.0 inches average yearly snowfall for this area of Long Island.

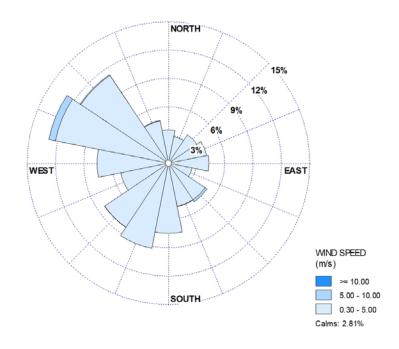
1.8 NATURAL RESOURCES

The Laboratory is located in the oak and chestnut forest region of the Coastal Plain and constitutes about five percent of the 100,000-acre New York State-designated region on Long Island known as the Central Pine Barrens. The section of the Peconic River running through BNL is designated as "scenic" under the New York State Wild, Scenic, and Recreational River System Act of 1972. Due to the general topography and porous soil, the land is very well drained and there is little surface runoff or open standing water. However, depressions form numerous small, pocket wetlands with standing water on a seasonal basis (vernal pools), and there are six regulated wet-lands on site. Thus, a mosaic of wet and dry areas correlates with variations in topography and depth to the water table.

Vegetation on site is in various stages of succession, which reflects a history of disturbances to the area. For example, when Camp Upton was constructed in 1917, the site was entirely cleared of its native pines and oaks. Although portions of the site were replanted in the 1930s, portions were cleared again in 1940 when Camp Upton was reactivated by the U.S. Army. Other past disturbances include fire, local flooding, and draining. Current operations minimize disturbances to the undeveloped areas of the site.


More than 350 plant, 30 mammal, 131 bird, 13 amphibian, 12 reptile, and 10 fish species have been identified on site, some of which are New York State threatened, endangered, exploitably vulnerable, and species of special concern. To eliminate or minimize any negative effects that BNL operations might cause to these species, precautions are in place to protect habitats and natural resources at the Laboratory.

In November 2000, DOE established the Upton Ecological and Research Reserve at BNL. The 530-acre Upton Reserve (ten percent of the Laboratory's property) is on the eastern portion of the site, in the Core Preservation Area of the Central Pine Barrens. The Upton Reserve creates a unique ecosystem of forests and wetlands that provides habitats for plants, mammals, birds, reptiles, and amphibians. From 2000 to 2004, funding provided by DOE under an Inter-Agency Agreement between DOE and the U.S. Fish & Wildlife Services was used to conduct resource management programs for the conservation, enhancement, and restoration of wildlife and habitat in the reserve. In 2005, management was transitioned to the Foundation for Ecological Research in the Northeast. Management of the Upton Reserve falls within the scope of BNL's Natural Resource Management Plan, and the area will continue to be managed for its key ecological values and as an area for ecological research (BNL 2016).


Additional information regarding the Upton Reserve and the Laboratory's natural resources can be found in Chapter 6 of this report.

1.9 CULTURAL RESOURCES

The Laboratory is responsible for ensuring compliance with historic preservation requirements. BNL's Cultural Resource Management Plan was developed to identify, assess, and document the Laboratory's historic and cultural resources (BNL 2013). These resources include World War I trenches; Civilian Conservation Corps features; World War II buildings; and historic structures, programs, and discoveries associated with highenergy physics, research reactors, and other science conducted at BNL. The Laboratory currently has four facilities classified as eligible for listing on the National Register of Historic Places: the BGRR complex, the HFBR complex, the 1960s-era apartments, and the World War I training trenches associated with Camp Upton. Further information can be found in Chapter 6.

Wind Rose for Jan. 1 to Dec. 31, 2018 taken at the 85m height

Wind Rose for Jan. 1 to Dec. 31, 2018 taken at the 10m height

Explanation: Wind direction was measured at heights of 10 (bottom) and 85 (top) meters above the ground. The readings were plotted on the charts to indicate how often wind came from each direction. The concentric circles represent multi-percentage increases in the frequency. For example, at 10 meters above the ground, wind was from due south seven percent of the time. The predominant wind direction in 2018 was from the northwest at the 10-m level and from the southwest at the 85-m level.

Figure 1-4. BNL Wind Rose (2018).

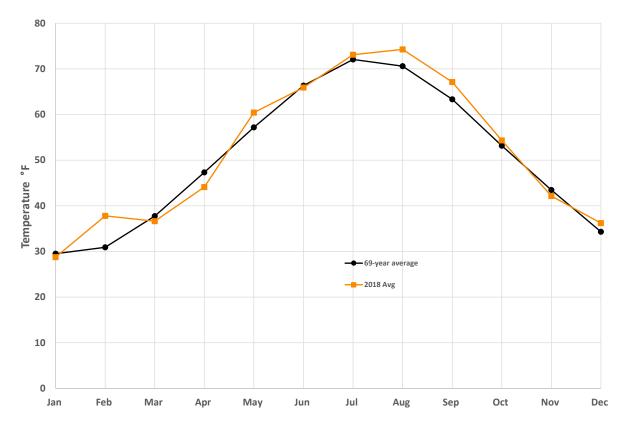


Figure 1-5. BNL 2018 Monthly Mean Temperature versus 69-Year Monthly Average.

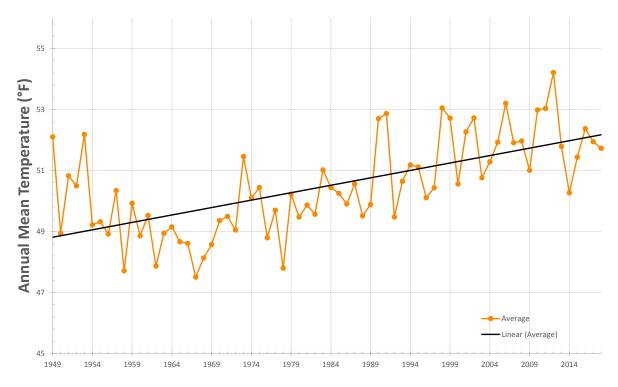


Figure 1-6. BNL 2018 Annual Mean Temperature Trend (69 Years).

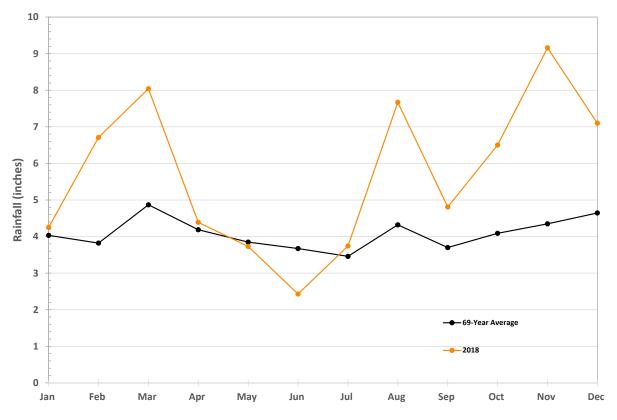


Figure 1-7. BNL 2018 Monthly Precipitation versus 69-Year Monthly Average.

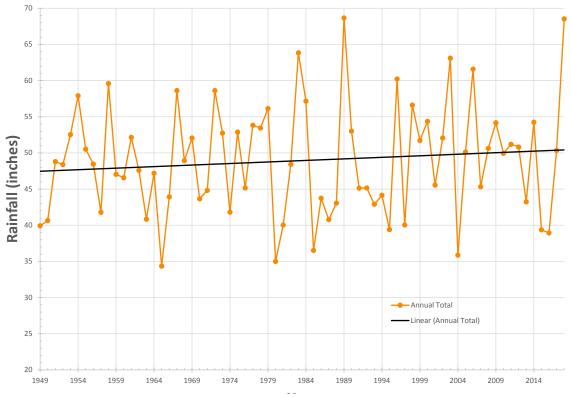


Figure 1-8. BNL 2018 Annual Precipitation Trend (69 Years).

CHAPTER 1: INTRODUCTION

REFERENCES AND BIBLIOGRAPHY

Aronson, D.A. and Seaburn, G.E. 1974. Appraisal of the operating efficiency of recharge basins on Long Island, NY in 1969. USGS Water Supply Paper 2001-D.

BNL. 2013. Cultural Resource Management Plan for Brookhaven National Laboratory. BNL-73839-2005. Brookhaven National Laboratory, Upton, NY.

BNL. 2016. Natural Resource Management Plan for Brookhaven National Laboratory. BNL-112669-2016. Brookhaven National Laboratory, Upton, NY.

DOE Order 231.1B. 2011. Environment, Safety and Health Reporting. U.S. Department of Energy, Washington, DC. June 27, 2011.

Franke, O.L. and McClymonds, P. 1972. Summary of the hydrogeologic situation on Long Island, NY, as a guide to water management alternatives. USGS Professional Paper 627-F.

Geraghty and Miller, Inc. 1996. Regional Groundwater Model, Brookhaven National Laboratory, Upton, New York. A Report to Brookhaven National Laboratory. November 1996.

Koppelman, L.E. 1978. The Long Island Comprehensive Waste Treatment Management Plan (Long Island 208 Study), Vol. I and II. Long Island Regional Planning Board, Hauppauge, NY. July 1978. Nagle, C.M. 1975. Climatology of Brookhaven National Laboratory: 1949–1973. BNL-50466. Brookhaven National Laboratory, Upton, NY. November 1975.

Nagle, C.M. 1978. Climatology of Brookhaven National Laboratory: 1974–1977. BNL-50857. Brookhaven National Laboratory, Upton, NY. May 1978.

NYCRR. Title 27. Wild, Scenic, and Recreational River Systems Act. Article 15 and subsequent updates. New York State Department of Environmental Conservation, Albany, NY.

Scorca, M.P., W.R. Dorsch, and D.E. Paquette. 1999. Stratigraphy and Hydrologic Conditions at the Brookhaven National Laboratory and Vicinity, Suffolk County, New York, 1994–97. U.S. Geological Survey Water Resources Investigations Report 99-4086. 55 pp.

Warren, M.A., W. deLaguna, and N.J. Lusczynski.1968. Hydrology of Brookhaven National Laboratory and Vicinity, Suffolk County, New York. U.S. Geological Survey Bulletin, 1156-C.

