1. Nuclear Theory/RIKEN Seminar

    "Universal Transverse Momentum Dependent Fragmentation"

    Presented by Duff Neill, LANL

    Friday, March 17, 2017, 2 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Heikki Mantysaari

    Fragmentation is the earliest and perhaps most interesting QCD jet observable, since it directly deals with the parton-hadron duality at the end of the QCD cascade. The most basic fragmentation observables all enjoy the property of being universal, in the sense that a sufficiently energetic parton that initiates the cascade factorizes from the rest of the event, so that the underlying soft structure of the event to a good approximation does not change the fragmentation spectrum. With the luminosities and resolution of modern detectors, we can begin to study the fragmentation process in three dimensions: both the energy spectrum and the transverse fluctuations to the collinear direction of initiating hard parton. However, when one wants to study the transverse fluctuations, one becomes very sensitive to the underlying jet definition, in particular, how the collinear direction is defined. Intuitive definitions of the jet direction, like the total momentum of the jet constituents, are inherently sensitive to soft processes, and can spoil the universality of the spectrum. I will discuss how a simple change in the jet definition removes this soft sensitivity, and allows one to study the intrinsic three dimensional structure of collinear splittings, which should be process independent.