1. Condensed-Matter Physics & Materials Science Seminar

    "Suppression of weak ferromagnetism in ultrathin iridates by interfacial engineering of octahedral rotations"

    Presented by Yuefeng Nie, Nanjing University, China

    Thursday, September 28, 2017, 1:30 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Weiguo Yin

    Layered iridates, Srn+1IrnO3n+1, have drawn great attention since they share remarkable similarities with high-Tc cuprates, including layered crystalline structure, (pseudo) spin ½ states, antiferromagnetic (AFM) Mott insulating ground state, Fermi arcs, and V shape energy gap, etc. Nonetheless, direct evidences of superconductivity such as zero resistivity and Meissner effect are still lacking up to date. The strong spin-orbit coupling and IrO6 octahedral rotations in 5d iridates result in a canted AFM ground state with weak ferromagnetic moments in each IrO2 plane. Here, we propose to suppress the weak ferromagnetism by suppressing the octahedral rotations in iridates, which may facilitate the Cooper pairing. Using a combination of reactive molecular beam epitaxy (MBE), in situ angleresolved photoemission spectroscopy (ARPES) and first principle calculations, we investigate the evolution of octahedral rotations, electronic structure and magnetic ordering in ultra-thin SrIrO3 films grown on (001) SrTiO3 substrate. Our experimental results and theoretical calculations show that octahedral rotations and weak ferromagnetic moments are fully suppressed in 1 and 2 unit cell thick SrIrO3 films through interfacial clamping effects. If time allows, I will also present our recent work on the new understanding of RHEED oscillations in the growth of oxides and the chemically specific termination control of oxide interfaces via layerby- layer mean inner potential engineering.