1. Condensed-Matter Physics & Materials Science Seminar

    "Singular density fluctuations in the strange metal phase of Bi2Sr2CaCu2O8+x observed with momentum-resolved EELS (M-EELS)"

    Presented by Peter Abbamonte, University of Illinois at Urbana Champaign

    Friday, January 12, 2018, 11 am
    ISB Bldg. 734, Conf. Room 201 (upstairs)

    Hosted by: Peter D. Johnson

    High-temperature superconductivity arises out of an anomalous normal state commonly referred to as a "bad" or "strange" metal, since it lacks the usual signatures of electron quasiparticles. In ordinary metals, such quasiparticles manifest as propagating collective modes encoded in the dynamic charge susceptibility ??(q,?), which describes the response of the system to applied fields. However, the analogous collective modes of a strange metal are currently unknown. Here, we present the first measurement of ??(q,?) for a prototypical strange metal, Bi2.1Sr1.9CaCu2O8+x (BSCCO), using momentum-resolved inelastic electron scattering (M-EELS). We discover a surprising energy- and momentum-independent continuum of fluctuations extending up to 1 eV, at odds with the dispersive plasmons expected in normal metals. This spectrum is found to be temperature-independent across the superconducting phase transition at optimal doping. Tuning the composition to overdoping, where a crossover to Fermi liquid behavior is expected, this momentum-independent continuum is found to persist, though a 0.5 eV gap-like feature now emerges at low temperature. Our results indicate that the phenomenon underlying the strange metal is a singular form a charge dynamics of a new kind, that does not fit into any known picture of quantum critical scaling.