EXAFS-50 Symposium

Machine Learning Methods

(for XAS data interpretation)

Department of Interface Science

Fritz-Haber Institute of the Max Planck Society, Berlin

Janis Timoshenko, janis@fhi-berlin.mpg.de - Department of Interface Science, Fritz Haber Institute

Why do we need advanced XAS analysis?

1: Materials are disordered

J. Phys. Chem. C 124 (2020)

ACS Nano 9 (2015)

Chem. Rev. 121 (2021)

2: There is relevant information beyond the first FT peak

Wu et al Nat. Catal. 2 (2019)

Varnell, Timoshenko et al. Nat. Commun. 7 (2016)

2: There is relevant information beyond the first FT peak

A. Kuzmin and J. Chaboy, IUCrJ 1 (2014) 571-589.

EXAFS fitting beyond the 1^{st/2nd} coordination shell is very difficult

Reality:

3: Working materials are heterogeneous

3: Working materials are heterogeneous

- Multishell EXAFS analysis of heterogeneous materials by conventional methods is practically impossible
- Methods like RMC and MD are also typically not suitable for such materials

Timoshenko, Frenkel et al, J. Phys. Chem. Lett. 8 5091 (2017)

Martini, Timoshenko, et al, J. Am. Chem. Soc. 145 (2023)

- Local structure of nanomaterials very different from bulk
- Interactions with support, ligands and adsorbates
- New species appear as intermediate states, with no stable analogues
- Different absorbing sites (e.g., core sites and surface sites in a particle) have distinct XANES spectra

Machine learning for XAS analysis

Machine learning

Unsupervised ML:

- Clustering
 - (e.g., spatially resolved XAS)
- Dimensionality reduction
 - PCA
 - MCR-ALS

Supervised classification:

• Fingerprinting

Supervised regression:

Quantitative structural analysis

Clustering

Duan, Sci. Rep. 6 (2016) Timoshenko & Frenkel, ACS Catal.9 (2018) Nd L₃-edge EXAFS for permanent magnet material, Nd₂Fe₁₄B

Classification and automatic spectra recognition

Zheng et al Npj Computational Materials 4 (2018)

Kiyohara et al Sci. Rep. 8 (2018)

Tetef, Govind, Seidler, Phys. Chem. Chem. Phys. 23 (2021)

Neural networks

Machine learning for analysis of XAS data

Large set of theoretical spectra to establish relation between XAS features and NP structure

Timoshenko et al, J. Phys. Chem. Lett. 8 (2017) Timoshenko et al., ACS Catal. 9 (2019)

Machine learning for EXAFS analysis

MD-EXAFS for metals and oxides

Challenge: disorder effects need to be included in the training data set

For this purpose we can rely on molecular dynamics simulations

Validation of NN accuracy with RMC method

Timoshenko, Jeon, Roldan Cuenya Chem. Sci., 2020, 11, 3727-3736

• ca. 300 MD models

ca. 13 000 EXAFS spectra, further linearly combined to construct ca. 40000 training examples

Example 1: Co_xFe_{3-x}O₄ catalysts for Oxygen Evolution Reaction

- Unsupervised ML: Principal Component Analysis
- Supervised regression: Neural Networks for EXAFS analysis

QXAFS measurements for Co_xFe_{3-x}O₄ catalysts

QXAFS data with 1s per spectrum!

- Spherical Co_xFe_{3-x}O₄ NPs, size decreases with increasing Co content from 9 nm to 3 nm
- OER activity increases with Co content up to *x* = 2.25, decreases for more Co-rich catalysts

Saddeler, Haase, Timoshenko, Roldan Cuenya, Shulz et al, J. Mater. Chem. 9 (2021) Timoshenko, Haase, Roldan Cuenya, J. Am. Chem. Soc. 145 (2023)

Interpretation of XANES: Principal Component Analysis (Co K-edge)

Data-driven analysis: only 4 spectroscopically distinct Co species:

- PC-1: Co oxidation from
 Co²⁺ to Co³⁺ state
- PC-2: tetrahedrally coordinated Co²⁺ species
- PC-3: octahedrally coordinated Co²⁺ species

Timoshenko, Haase, Roldan Cuenya, J. Am. Chem. Soc. 145 (2023)

Interpretation of XANES: Principal Component Analysis (Fe K-edge)

Timoshenko, Haase, Roldan Cuenya, J. Am. Chem. Soc. 145 (2023)

Much less variation in Fe K-edge XAS

All XANES spectra resemble γ-Fe₂O₃

Only 3 spectroscopically distinct Fe species:

- Fe-PC-1 tracks change from octehadrally coordinated Fe to tetrahedrally coordinated
- Fe-PC-2 tracks further Fe oxidation

Subtle, but systematic increase in Fe oxidation for Co-rich samples: importance of Fe for OER!

Co-poor sample is OER inactive, and no change in Fe or Co oxidation state there

EXAFS data

Timoshenko, Haase, Roldan Cuenya, J. Am. Chem. Soc. 145 (2023

Interpretation of EXAFS by supervised machine learning

Artificial neural network approach allows «inversion» of EXAFS spectra and extraction of RDFs

Neural networks for analysis EXAFS data in heterogeneous mixtures

Timoshenko, Haase, Roldan Cuenya, J. Am. Chem. Soc. 145 (2023)

<u>Area under the 1st peak</u> - concentrations of tetrahedrally and octahedrally coordinated species

Evolution of local structure in Co_x Fe_{3-x}O_4

- Activation: irreversible transformation from rocksalt-like to spinel-like Co species
- OER: formation of octahedral Co³⁺ species
- Distant coordination shells: formation of layered CoOOH-like structures in pure CoO_x, and of more compact
 3D arrangements of Co³⁺O₆ octahedra in Co_xFe_{3-x}O₄
- Fe K-edge EXAFS: incorporation of Fe into rocksalt-like Co-rich structures

Timoshenko, Haase, Roldan Cuenya, J. Am. Chem. Soc. 145 (2023)

Summary: evolution of local structure and chemical state in Co_xFe_{3-x}O₄

- Strongly heterogeneous, segregated structure that evolves under reaction conditions
- Evolution of all structures under activation and OER
- Interplay between Fe and Co species in Co-rich bimetallic structures (unique active species)

Timoshenko, Haase, Roldan Cuenya, J. Am. Chem. Soc. 145 (2023)

Example 2: Ni single atoms for electrocatalytic CO₂ reduction

- Unsupervised ML: multivariate curve resolution
- Inverse supervised ML for XANES analysis

Transition metal nitrogen co-doped carbon catalysts

M-N-C catalysts for CO₂RR: promising catalytic properties, but the active species/active states are not clear

- Active species transiently present under working conditions (operando methods needed)
- Activity associated with disordered, ultradispersed phases (no good XRD)
- Many species coexisting, co-contributing to spectroscopic data

Unsupervised machine learning: principal components

Collected Ni K-edge XANES spectra – mixtures of contributions of different species.

Spectral decomposition problem:

- What are the spectra for pure species?
- What are these species? •
- How their concentrations change with time? •

Not an unambiguos decomposition: additional constraints needed!

Unsupervised machine learning: principal components

PCA: constraint – spectral components are linearly independent

Unsupervised machine learning: principal components

Martini, Roldan et al, J. Am. Chem. Soc. 145 (2023)

Spectra for pure species: some linear combinations of principal components with unknown weights

 $\vec{s}_{1} = t_{11}\vec{p}_{1} + t_{12}\vec{p}_{2} + t_{13}\vec{p}_{3}$ $\vec{s}_{2} = t_{21}\vec{p}_{1} + t_{22}\vec{p}_{2} + t_{23}\vec{p}_{3}$ $\vec{s}_{3} = t_{31}\vec{p}_{1} + t_{32}\vec{p}_{2} + t_{32}\vec{p}_{3}$

 $\vec{s}_{1} = t_{11}\vec{p}_{1} + t_{12}\vec{p}_{2} + t_{13}\vec{p}_{3}$ $\vec{s}_{2} = t_{21}\vec{p}_{1} + t_{22}\vec{p}_{2} + t_{23}\vec{p}_{3}$ $\vec{s}_{3} = t_{31}\vec{p}_{1} + t_{32}\vec{p}_{2} + t_{32}\vec{p}_{3}$

Constraints:

- Concentrations of all species adds to 1
- Spectra non-negative, normalized, with limited maximal intensity

Areas of feasible solutions

 $\vec{s}_{1} = t_{11}\vec{p}_{1} + t_{12}\vec{p}_{2} + t_{13}\vec{p}_{3}$ $\vec{s}_{2} = t_{21}\vec{p}_{1} + t_{22}\vec{p}_{2} + t_{23}\vec{p}_{3}$ $\vec{s}_{3} = t_{31}\vec{p}_{1} + t_{32}\vec{p}_{2} + t_{32}\vec{p}_{3}$

Constraints:

- Concentrations of all species adds to 1
- Spectra non-negative, normalized, with limited maximal intensity
- + Concentrations are between 0 and 1

 $\vec{s}_{1} = t_{11}\vec{p}_{1} + t_{12}\vec{p}_{2} + t_{13}\vec{p}_{3}$ $\vec{s}_{2} = t_{21}\vec{p}_{1} + t_{22}\vec{p}_{2} + t_{23}\vec{p}_{3}$ $\vec{s}_{3} = t_{31}\vec{p}_{1} + t_{32}\vec{p}_{2} + t_{32}\vec{p}_{3}$

Constraints:

- Concentrations of all species adds to 1
- Spectra non-negative, normalized, with limited maximal intensity
- + Concentrations are between 0 and 1
- + 1st and last spectra correspond to pure species

Martini, Roldan et al, J. Am. Chem. Soc. 145 (2023)

It is not sufficient to show one solution to problem – one needs to show ALL solutions consistent with the model!

Obtained spectra for pure species, and their concentration profiles.

• What are these species? \rightarrow XANES fitting

... but direct XANES fitting is computationally too expensive!

Martini, Roldan et al, J. Am. Chem. Soc. 145 (2023)

Direct ML approach for single atom catalysts

Xiang, Frenkel et al, Phys. Chem. Chem. Phys., 24 (2022)

Martini, Timoshenko, et al, J. Am. Chem. Soc. 145 (2023)

Inverse ML approach: analysis of XANES data for Ni single atom catalysts

Martini, Timoshenko, et al, J. Am. Chem. Soc. 145 (2023)

machine learning **Jnsupervised**

Structure descriptors of

- (nano)crystalline material
- Disordered materials
- Mixtures

Theoretical XAS data for training

Experimental XANES/EXAFS data

Accounts for

Supervised

Machine learning

- multiple-scattering effects
- contributions of further coordination shells
- thermal and static disorder of the system

Structure descriptors of

- (nano)crystalline material
- Disordered materials
- Mixtures

Theoretical XAS data for training

Experimental

XANES/EXAFS data

Accounts for

Supervised

- multiple-scattering effects
- contributions of further coordination shells
- thermal and static disorder of the system

Additonal advantages:

- Analysis can be done quickly (within seconds)
- Large data sets can be analyzed
- Insight from theory is helping in the analysis of experimental data (additional constraints)

Structure descriptors of

- (nano)crystalline material
- Disordered materials
- Mixtures

multiple-scattering effects

Supervised

- contributions of further coordination shells
- thermal and static disorder of the system
- Supervised ML is bad at extrapolation: structure too different from those used for training → meaningless result

Experimental

XANES/EXAFS data

Additonal advantages:

- Analysis can be done quickly (within seconds)
- Large data sets can be analyzed
- Insight from theory is helping in the analysis of experimental data (additional constraints)

Acknowledgements

Key collaborators:

Institute of Solid State Physics, University of Latvia :

Alexei Kuzmin, Inga Jonane-Pudza, Arturs Cintins, Andris Anspoks, Juris Purans

Stony Brook University/ Brookhaven National Lab:

Prof. Anatoly I. Frenkel, Nick Marcella, Yang Liu

Fritz-Haber Institue of Max-Planck Society:

Prof. Beatriz Roldan Cuenya, Hyo Sang Jeon, Felix T. Haase

Thank you for your attention!