Some recent contributions to 50 years of EXAFS

Joseph C. Woicik *NIST*

Collaborators:

- Cherno Jaye (SST-1), Conan Weiland (SST-2), Bruce Ravel (BMM), and Daniel Fischer (GL), NIST
- Eric Shirley, Eric Cockayne, and Igor Levin, NIST
- Abdul Rumaiz and Milinda Abeykoon, BNL
- Joshua Kas and John Rehr, U. of Washington
- Special Mention: A. Broadbent (BNL) & FMB Oxford

NIST - NSLS-II Beamlines a National User Facility at Brookhaven National Laboratory

NIST X-ray Spectroscopy Beamlines Soft (R) and Tender (L) Hard X-ray (R, rear in back) And some of the Synchrotron Science Group of 12

- **Reaching full operations in Nov. 2019**, the NIST X-ray beamlines at NSLS-II, probe the structural, chemical, and electronic properties of an unprecedented range of materials.
- Focus on manufacturing relevant environments and collaboration mechanisms that support industrial research and technology transfer.
- CRADAs for collaboration and regular access.
- NIST personnel, stationed at the NSLS-II, supports both NIST priority programs as well as the broader scientific community through the NSLS-II General User Program.

SST-1: 85 eV – 2175 eV *SST-2*: 1985 eV – 6500 eV *BMM*: 4000 eV – 23.5 keV

Topics:

- Ti 1s and Ti 2p photoelectron satellite structure of SrTiO₃ and TiO₂.
- The "dark" $M_{4.5}$ edges of Au and Pt and the "Zeeman-Auger" effect.
- Lattice vibrations and the d-level chemistry of CuBr.

1			5.5050	0.1517	10.4007	10.0000	12.0010
${}^{3}F_{4}$	29 ² S _{1/2}	30 ¹ S ₀	31 ² P ^o _{1/2}	32 ³ P ₀	33 ⁴ S [°] _{3/2}	34 ³ P ₂	35 ² P _{3/2}
	Cu	Zn	Ga	Ge	As	Se	Br
	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine
4 2	63.546 [Ar]3d ¹⁰ 4s	65.38 [Ar]3d ¹⁰ 4s ²	69.723	72.630	74.921595	78.971 [Ar13d ¹⁰ 4s ² 4p ⁴	79.904" [Ar]3d ¹⁰ 4s ² 40 ⁵
3	7.7264	9.3942	5.9993	7.8994	9.7886	9.7524	11.8138
1-	4	10 1-	10 2-0		P4 A - A	1-0 1-	FO 2-0

Developments:

- Core-hole spectral function.
- Orbital blocking and use of core-hole memory.
- Lattice vibrations and near-edge structure.

Additional Topics

On the nature of S₀² and a quote from Ed.

- AND –

The need for LRO theory of NEXAFS.

Topics:

- Ti 1s and Ti 2p photoelectron satellite structure of SrTiO₃ and TiO₂.
- The "dark" $M_{4.5}$ edges of Au and Pt and the "Zeeman-Auger" effect.
- Lattice vibrations and the d-level chemistry of CuBr.

1			5.5050	0.1517	10.4007	10.0000	12.0010
${}^{3}F_{4}$	29 ² S _{1/2}	30 ¹ S ₀	31 ² P ^o _{1/2}	32 ³ P ₀	33 ⁴ S [°] _{3/2}	34 ³ P ₂	35 ² P _{3/2}
	Cu	Zn	Ga	Ge	As	Se	Br
	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine
4 2	63.546 [Ar]3d ¹⁰ 4s	65.38 [Ar]3d ¹⁰ 4s ²	69.723	72.630	74.921595	78.971 [Ar13d ¹⁰ 4s ² 4p ⁴	79.904" [Ar]3d ¹⁰ 4s ² 40 ⁵
3	7.7264	9.3942	5.9993	7.8994	9.7886	9.7524	11.8138
1-	4	10 1-	10 2-0		P4 A - A	1-0 1-	FO 2-0

Ab initio RT-TDDFT cumulant core hole Green's function TiO₂

J.J. Kas et al., *Phys. Rev. B* **91**, 121112(R) (2015).

Configuration interaction cluster model "analysis"

$$\begin{split} |d^{n}\rangle, \\ |d^{n+1}\underline{L}\rangle &= \frac{1}{\sqrt{10-n}} \sum_{\mu} d^{\dagger}_{\mu} p_{\mu} |d^{n}\rangle, \\ |d^{n+2}\underline{L}^{2}\rangle &= \sqrt{\frac{2}{(10-n)(9-n)}} \sum_{\substack{\mu,\mu'\\\mu\neq\mu'}} d^{\dagger}_{\mu} d^{\dagger}_{\mu}, p_{\mu} p_{\mu'} |d^{n}\rangle, \end{split}$$

- *U*: On-site *d*-*d* Coulomb repulsion energy
- Δ : Charge-transfer energy
- T: Ligand *p*-metal *d* hybridization energy

A.E. Bocquet et al., Phys. Rev. B 53, 1161 (1996).

Ti 2*p* photoemission core line SrTiO₃

• Likely most studied core line after Si 2p

Ti 1s and 2p photoemission core lines SrTiO₃

Ti 1s photoelectron satellite structure of SrTiO₃ and TiO₂

Excitation Charge Density SrTiO₃

• e_g excitation higher energy and larger cross section than t_{2g} excitation ...

Core Hole Spectral Function: L_{2.3} XAS

Core Hole Spectral Function: L_{2.3} XAS

Photon Energy (eV)

Core Hole Spectral Function: L_{2.3} XAS

Topics:

 \checkmark Ti 1s and Ti 2p photoelectron satellite structure of SrTiO₃ and TiO₂.

- The "dark" M_{4.5} edges of Au and Pt and the "Zeeman-Auger" effect.
- Lattice vibrations and the d-level chemistry of CuBr.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1			5.5050	0.1317	10.4007	10.0000	12.0010
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	${}^{3}F_{4}$	29 ² S _{1/2}	30 ¹ S ₀	31 ² P ^o _{1/2}	32 ³ P ₀	33 ⁴ S _{3/2}	34 ³ P ₂	35 ² P ^o _{3/2}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	Cu	Zn	Ga	Ge	As	Se	Br
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine
7.7264 9.3942 5.9993 7.8994 9.7886 9.7524 11.8138 1 47 2 40 2 50 2<	s ²	[Ar]3d ¹⁰ 4s	[Ar]3d ¹⁰ 4s ²	[Ar]3d ¹⁰ 4s ² 4p	[Ar]3d ¹⁰ 4s ² 4p ²	[Ar]3d ¹⁰ 4s ² 4p ³	[Ar]3d ¹⁰ 4s ² 4p ⁴	[Ar]3d ¹⁰ 4s ² 4p ⁵
	1	7.7264	9.3942	5.9993	7.8994	9.7886	9.7524	11.8138
	1-	4-7 2-	40 1-	2-0	FA 2-	F4 /	F0 , 1-	FO 2-0
					$\overline{\mathbf{U}}$			

Au and Pt M₅ "Dark" Edges

• "Dark" versus "White" line ...

Dark Au and Pt M_{4,5} Edges

• Identification of E_f from appearance of near-zero Auger intensity at resonance ...

Why Dark? Centrifugal Barrier in QM

- $H\Psi = E\Psi$
- V(r) = V(r) ($V(r) = -Ze^2/r$)
- $\Psi(r,\theta,\phi) = R_{nl}(r) Y_{lm}(\theta,\phi)$

$$V_{eff}(r) = V(r) + I(I+1)/2m_e r^2$$

• Repulsive potential: States with larger angular momentum (/) extend further from the nucleus ...

Centrifugal Barrier: Au N and O core lines

 $V_{eff} = V(r) + I(I+1)/2m_e r^2$

- E = E_{n,l} due to screening for multi-electron atom; i.e., nuclear penetration is greater for states with smaller angular momentum.
- Not in single-electron atom:
 E = *E_n*.
- S.O.S. also function of *I*.

DFT Density of States

- *d* photoelectron can go out either as a *p* wave or an *f* wave ...
- $6p \rightarrow 5f$ crossover in unoccupied states occurs $\approx 15 \text{ eV}$ above E_f ...
- $(2/+1)_f / (2/+1)_p = 7/3$
- "Dark" because of small p density of states at E_f ...

Photon Energy Dependence of Au and Pt M₅N_{6,7}N_{6,7} Auger

• Anomalous (discrete) Auger behavior, especially for "non-interacting" systems ...

Dipole Selection Rules and Orbital Blocking

- < ψ_f | ε · r | ψ_i >
 ε // z
- $\boldsymbol{\epsilon} \cdot \boldsymbol{r} \alpha Y_{1.0}(\boldsymbol{\theta}, \boldsymbol{\phi})$

 $M_{4,5} = 3d$

Zeeman Diagram for M_{4,5} edge XAS

j_z dependence of Auger basis functions for $M_{4.5}$ core holes

•
$$j_z = l_z + s_z$$

Photon Energy Dependence of Au and Pt M₅N_{6,7}N_{6,7} Auger

• Core hole retains memory of how it was created throughout its Auger decay ...

Au and Pt $M_4N_{6,7}N_{6,7}$ Auger

• Effect of different initial core-hole j_z states ...

Ag L_3 XAS and L_3 - $M_{4,5}M_{4,5}$ Auger Decay

E.L. Shirley, C. Weiland, and J.C. Woicik, *J. Vac. Sci. Technol. A* **40**, 023410 (2022):

"Commemorating the Career of David Arthur Shirley."

Partial DOS: Use of Core Hole Memory

- Complete *experimental* decomposition of L₃ *dipole* excitation ...
- Achievable because of matrix elements of combined process ...

Topics:

 \checkmark Ti 1s and Ti 2p photoelectron satellite structure of SrTiO₃ and TiO₂.

✓ The "dark" $M_{4.5}$ edges of Au and Pt and the "Zeeman-Auger" effect.

• Lattice vibrations and the d-level chemistry of CuBr.

1			5.5050	0.1317	10.4007	10.0000	12.0010
${}^{3}F_{4}$	29 ² S _{1/2}	30 ¹ S ₀	31 ² P ^o _{1/2}	32 ³ P ₀	33 ⁴ S [°] _{3/2}	34 ³ P ₂	35 ² P _{3/2}
2	Cu	Zn	Ga	Ge	As	Se	Br
	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine
4	63.546	65.38	69.723	72.630	74.921595	78.971	79.904*
5	[Ar]3d 4s	[Ar]3d 4s	[Ar]3d 4s 4p	[Ar]3d 4s 4p	[Ar]3d 4s 4p	[Ar]3d 4s 4p	[Ar]3d 4s 4p
)	7.7264	9.3942	5.9993	7.8994	9.7886	9.7524	11.8138
1 -	4 - 2 -	40 1-	40 2-0	FA 1-	F4 4-0	FO 1-	FO 2-0
				\cup			

Temperature dependent NEXAFS: Ge (0)

$$\chi(k) = S_0^2 \sum_i N_i \left(\frac{|f_i(k)|}{kR_i^2} \right) \sin[2kR_i + \psi_i(k)]$$

$$\times e^{-2R_i/\lambda(k) - 2\sigma_i^2 k^2} \quad \sigma^2 = \text{Debye-Waller factor}$$

Temperature dependent NEXAFS: GaAs (0.310)

Temperature dependent NEXAFS: ZnSe (0.679)

Temperature dependent NEXAFS: CuBr (0.735)

EXAFS RDF of CuBr (FT of EXAFS data: BMM)

- Unlike XRD, PDF, etc., EXAFS scattering is chemically specific to either the Cu or Br sublattices.
- Anomalous amplitude of Cu-Cu second-neighbor distribution even at 8 K where zero-point motion dominates.

DFT Calculations of the Cu Energy Landscape

- C.H. Park and D.J. Chadi, *Phys. Rev. Lett.* **76**, 2314 (1996).
- S.R. Bickham *et al.*, *Phys. Rev. Lett.*83, 568 (1999).

- DFT finds CuBr not stable in zincblende structure.
- *s-d vibronic* coupling.
- Jahn-Teller like effect.

T_d Correlation Table

$T_{\rm d}$	Т	$D_{ m 2d}$	$C_{3\mathrm{v}}$	C_{2v}
A_1	А	A_1	A_1	A_1
A_2	А	\mathbf{B}_1	A_2	A_2
E	Е	$A_1 + B_1$	Е	$A_1 + A_2$
T ₁	Т	$A_2 + E$	$A_2 + E$	$A_2 + B_1 + B_2$
T ₂	Т	$B_2 + E$	$A_1 + E$	$A_1 + B_2 + B_1$
Other subg	groups: S_4 , D_2 , C_3 ,	$C_2, C_s.$	×	
				\mathbf{i}

OXFORD Higher Education © Oxford University Press, 2008. All rights reserved. 27

- C_{3v} symmetry splits triply degenerate T_2 set of 3*d* orbitals into doubly degenerate E set and singly degenerate A_1 set.
- A₁ set can bond with A₁ set of *s* orbitals on neighboring Cu atoms when Cu atom goes off-center.

DFT + "U" Calculations of the Cu Energy Landscape

- Cu U = 0 eVHubbard U_{Cu3d} . ۲ U = 2 eVS.-H. Wei, S.B. Zhang, and A. ٠ U = 4 eVEnergy Change (eV) 0.75 - $U: 2(3d^n) \rightarrow 3d^{n+1} + 3d^{n-1}.$ Zunger, Phys. Rev. Lett. 70, 1639 U = 6 eV(1993). U = 8 eVC.H. Park and D.J. Chadi, Phys. *U* = 10 eV ٠ -U "corrects" DFT for electron ۲ Rev. Lett. 76, 2314 (1996). 0.50 feeling its own potential S.R. Bickham et al., Phys. Rev. Lett. 83, 568 (1999). (Hartree and Fock). Z.-H. Wang et al., J. Phys. Chem. ٠ Lett. 13, 11438 (2022). 0.25 CuBr stable for U > 2 eV!۲ 0.00 --0.2 -0.3 -0.1 0.0 0.1 Atomic Coordinate
 - But, how determine *U* and what does *U* do?

1.00 _¬

Ab Initio MD Simulations of RT DW Factors

- Dramatic reduction DW factors with *U*.
- DW factors stabilize for U > 6 eV.
- Surprising result that U, which is known to localize Cu 3d electrons, reduces DW factors!

RT DW factors: Experiment vs. Theory U = 8 eV

• Best agreement *U* = 8 eV ...

• Note different vertical scale ...

DFT Calculation of the Energy Landscape U = 8 eV

- $U_{Cu3d} = 8 \text{ eV}.$
- Cation sublattice ¤'s
 >> anion sublattice ¤'s.
- Softer Cu potentialenergy curve.
- "Hard-sphere" limit encountered for each as they move toward each other.

Energy Landscape CuBr, ZnSe, GaAs, and Ge

- $U_{Cu3d} = 8 \text{ eV}.$
- Cation sublattice ¤'s
 >> anion sublattice ¤'s.
- Softer cation potentialenergy curve.
- "Hard-sphere" limit encountered for each as they move toward each other.
- s-d coupling intrinsic for all cations, but it becomes less important as d-level binding energy increases with Z.

Experimental (EXAFS) and theoretical (MD-DFT) Debye-Waller factors

- Vibrations are an increasing function of ionicity.
- Cation vibrations are always larger than anion vibrations.
- Direct reflection of stronger covalent versus ionic bonding.

Cu K-edge NEXAFS

Br K-edge NEXAFS

Electronic Structure and Chemical Bonding of CuBr: What does "U" do?

Cu [Ar] **3***d*¹⁰ **4***s*¹

Br [Ar] 3d¹⁰ 4s² 4p⁵

FIG. 1. Photoemission spectrum from crystalline Ge recorded with photon energy $h\nu = 1900$ eV showing the Ge 3*d* and valence-electron emission. The features at lower kinetic energy are the bulk-plasmon losses of the Ge 3*d* core line.

J.C. Woicik, E.J. Nelson, and P. Pianetta, Phys. Rev. Lett. 84, 773 (2000).

Br⁻ [Ar] 3d¹⁰ 4s² 4p⁶

• Noble-gas *like* outer shells ...

Cu⁺ [Ar] **3***d*¹⁰

Molecular Orbital Diagram T_d Symmetry

 A. Goldmann, J. Tejeda, N.J.
 Shevchik, and M. Cardona, *Phys. Rev. B* 10, 4388 (1994).

- Note Br 4p bonding and Cu 3d anti-bonding states fully occupied ...
- Presence of gap in occupied states ...
- Warrants a further look ...

F.A. Cotton, Chemical Applications of Group Theory, Wiley (1971).

Photoemission Valence Band CuBr

• Note *both* intensity *and* shape variation of bands ...

Hybridization and Bond-Orbital Components in Site-Specific X-Ray Photoelectron Spectra of Rutile TiO₂

J. C. Woicik,¹ E. J. Nelson,¹ Leeor Kronik,² Manish Jain,² James R. Chelikowsky,² D. Heskett,³ L. E. Berman,⁴ and G. S. Herman⁵

Phys. Rev. Lett. 89, 077401 (2002).

$$I(E, h\nu) \propto \sum_{i,l} \rho_{i,l}(E) \sigma_{i,l}(E, h\nu).$$
(1)

Here *E* is the photoelectron binding energy, $h\nu$ is the x-ray photon energy, $\rho_{i,l}(E)$ are individual, angular-momentum *l* resolved, electronic single-particle partial density of states of the *i*th atom of the crystalline-unit cell, and $\sigma_{i,l}(E, h\nu)$ are the angle-integrated, angular-momentum dependent, photoionization cross sections.

FIG. 5. Theoretical partial density of states corrected for individual angular-momentum dependent photoelectron cross sections and the site-specific experimental valence-photoelectron spectrum: (a) Ti; (b) O. The curves have been scaled to equal peak height.

Principal Component Analysis (PCA) of VB

• Direct *experimental observation* of the sharing of electrons in a covalent bond ...

DFT Density of States

DFT + "U" Density of States

- U lowers energy of Cu 3d states therefore increases overlap and hence chemical bonding with Br 4p states.
- Covalency and increased strength of Cu-Br bond directly observed by photoemission and reduction of DW factors!
- Stronger Cu-Br bond overcomes anomalously strong *s*-*d* coupling in DFT ...

Why BSE/DFT-LDA work?

- *U* little effect on unoccupied DOS (XAFS)...
- Increase of bandgap with U also limits effect of *s*-*d* vibronic coupling ...

Additional Topics

On the nature of S₀² and a quote from Ed.

- AND –

The need for LRO theory of NEXAFS.

S 1*s* photoemission MoS₂

S KLL Auger MoS₂

S KLL Auger MoS₂

• Zoom in on low-energy Auger flank...

Decomposition of S KLL Auger peak: S 1s XAS

"The dipole sum rule states that the total absorption must remain the same independent of multielectron effects. The photo-electron can still have EXAFS associated with it, but the EXAFS will be shifted to higher energy." E.A. Stern, B.A. Bunker, and S.M. Heald, Phys. Rev. B **21**, 5521 (1980).

LRO effects on NEXAFS

Woicik ~ 1986

Shirley and Woicik, PCCP (2022)

Chelikowski and Cohen, PRB (1974)

-0 -4 -2

ENERGY |eV

0

2 4 6

-14 -12 -10 -8

Conclusions

 Spectroscopy is a beautiful thing, the deeper you look the more you find...

✓ Congratulations on 50 years!

