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ABSTRACT

This review summarizes current understanding of the
mechanisms that underlie the response of photosynthesis
and stomatal conductance to elevated carbon dioxide con-
centration ([CO:]), and examines how downstream pro-
cesses and environmental constraints modulate these two
fundamental responses. The results from free-air CO,
enrichment (FACE) experiments were summarized via
meta-analysis to quantify the mean responses of stomatal
and photosynthetic parameters to elevated [CO.]. Eleva-
tion of [CO:] in FACE experiments reduced stomatal con-
ductance by 22%, yet, this reduction was not associated
with a similar change in stomatal density. Elevated [CO;]
stimulated light-saturated photosynthesis (A,) in C; plants
grown in FACE by an average of 31%. However, the
magnitude of the increase in A, varied with functional
group and environment. Functional groups with ribulose-
1,5-bisphosphate carboxylase/oxygenase (Rubisco)-limited
photosynthesis at elevated [CO-] had greater potential for
increases in A, than those where photosynthesis became
ribulose-1,5-bisphosphate  (RubP)-limited at elevated
[COs:]. Both nitrogen supply and sink capacity modulated
the response of photosynthesis to elevated [CO;] through
their impact on the acclimation of carboxylation capacity.
Increased understanding of the molecular and biochemical
mechanisms by which plants respond to elevated [CO:],
and the feedback of environmental factors upon them, will
improve our ability to predict ecosystem responses to rising
[CO.] and increase our potential to adapt crops and
managed ecosystems to future atmospheric [CO-].

Key-words: acclimation; elevated carbon dioxide; free-air
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INTRODUCTION

Plants sense and respond to rising carbon dioxide concen-
tration ([CO,]) through increased photosynthesis (A) and
reduced stomatal conductance (g;). All other effects of
elevated [CO;] on plants and ecosystems are derived from
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these two fundamental responses (Long et al. 2004). The
effect of elevated [CO,] on A is well characterized, yet the
photosynthetic stimulation observed in CO, enrichment
experiments does not always match theoretical expecta-
tions (Long er al. 2004; Nowak, Ellsworth & Smith 2004;
Ainsworth & Long 2005; Rogers, Ainsworth & Kammann
2006a). Similarly, while g, at elevated [CO,] is typically
reduced, the effect is variable and subject to environmental
feedback (Ellsworth 1999; Medlyn et al. 2001; Gunderson
et al. 2002; Wullschleger, Tschaplinski & Norby 2002; Naum-
burg et al. 2003; Bunce 2004; Herrick, Maherali & Thomas
2004; Marchi et al. 2004; Morgan et al. 2004; Nowak et al.
2004; Leakey et al. 2006a).

Most of our fundamental understanding of plant
responses to elevated [CO,] has come from experiments in
controlled environments, greenhouses and open-top cham-
bers. However, because these exposure techniques can alter
the environment surrounding the plants (Arp 1991; Long
etal. 2004, 2006b; Ainsworth & Long 2005; Rogers &
Ainsworth 2006), we have restricted the quantitative
aspects of this review to results from free-air CO; enrich-
ment (FACE) experiments, where plants are grown at
elevated [CO,] in the field under fully open-air conditions.
Here, we outline current understanding of the response of
A and g to elevated [CO,], evaluate results from FACE
experiments and examine the environmental constraints
that impact the primary responses of plants to elevated
[CO,].

RESPONSE OF STOMATAL CONDUCTANCE TO
ELEVATED [CO.]

Molecular, biochemical and physiological
mechanisms of CO, sensing and response

CO; sensing is an intrinsic property of guard cells, which are
thought to respond to the intercellular [CO,] (ci) rather
than [CO,] at the leaf surface (Mott 1988). Guard cell
metabolism and signalling have been recently reviewed
(Assmann 1999; Hetherington 2001; Hetherington & Wood-
ward 2003; Vavasseur & Raghavendra 2005),so we will only
summarize the topic here. Ion and organic solute concen-
trations mediate the turgor pressure in the guard cells that
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determines stomatal aperture. Stomatal closure requires
the guard cell membrane potential to be depolarized, i.e.
made less negative (Assmann 1999). Electrophysiological
studies showed that elevated [CO,] increases the activity of
outward rectifying K* channels, decreases the activity of
inward rectifying K* channels, enhances S type anion
channel activities, stimulates CI” release from guard cells
and increases guard cell Ca®* concentration (Webb et al.
1996; Brearley, Venis & Blatt 1997; Hanstein & Felle 2002;
Raschke, Shabahang & Wolf 2003). These changes collec-
tively depolarize the membrane potential of guard cells and
cause stomatal closure (Assmann 1993). Therefore, greater
depolarization at elevated [CO,] will result in a reduced
stomatal aperture.

The precise signal transduction pathways that function
upstream of the ion channel activities are not as well known
(Assmann 1999; Schroeder et al. 2001), but it has been
argued that a stand-alone, CO,-specific signalling pathway
in guard cells is unlikely and that guard cell signalling is
more likely organized as a network (Hetherington & Wood-
ward 2003). There are multiple potential messengers in the
stomatal [CO,] response, including cytosolic free calcium
concentration ([Ca?']), apoplastic and cytoplasmic pH
gradients, ion channels and membrane potential, chloro-
plastic zeaxanthin levels, photosynthetically derived ATP
and protein phosphorylation/dephosphorylation (Assmann
1999; Hetherington & Woodward 2003; Vavasseur &
Raghavendra 2005; Hashimoto eral. 2006; Messinger,
Buckley & Mott 2006; Young ef al. 2006). Many of these
same signals overlap with stomatal responses to abscisic
acid and light, supporting the hypothesis that multiple
[CO,]-sensing mechanisms are employed by guard cells
(Hetherington & Woodward 2003; Roelfsema et al. 2006).
Further, guard cells have both photosynthetic electron
transport-dependent and independent mechanisms of
response to [CO,] (Messinger et al. 2006), and calcium-
sensitive and -insensitive phases of the response to [CO,]
(Young et al. 2006). The first Arabidopsis mutants with
impaired guard cell responses to [CO,] have recently been
identified (Hashimoto et al. 2006; Young et al. 2006). The
gca2 mutant has impaired reactive oxygen species activa-
tion of guard cell Ca*-permeable channels and is insensi-
tive to high [CO,] (Pei et al. 2000). The mutant lacks the
normal decrease in guard cell cytosolic Ca** transients upon
transition to high [CO,], and is thought to lack priming of
Ca” sensors necessary for stomatal closure at elevated
[CO,] (Young et al. 2006). A second set of guard cell CO»-
sensing mutants was identified by thermography and impli-
cates HTI protein kinase as another key molecular
regulator of stomatal movements in response to [CO;]
(Hashimoto ez al. 2006). This evidence collectively supports
the hypothesis that multiple components govern stomatal
responses to environmental stimuli and that guard cell sig-
nalling is organized as a complex network (Hetherington &
Woodward 2003). The recent discovery of two different
members of the R2ZR3-MYB transcription factor family that
regulate stomatal opening in response to light, and stomatal
closure in response to darkness (Cominelli ef al. 2005; Liang
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etal. 2005), suggests that gene expression may be yet
another level of regulation (Gray 2005).

Whether or not photosynthetic processes or metabolites
play a direct role in guard cell responses to [CO,] is still
controversial (Messinger et al. 2006); however, there is com-
pelling evidence that the Calvin cycle and photosynthetic
electron transport operate in guard cell chloroplasts at
similar rates to those in mesophyll cells (Cardon & Berry
1992; Lawson et al. 2002, 2003; Zeiger et al. 2002). Further,
both C; and C,4 species show a consistent and similar
decrease in g; at elevated [CO,] (Ainsworth & Long 2005),
and guard cell photosynthetic efficiency of both C; and C,
species is sensitive to [O,] (Lawson et al. 2003). Two hypoth-
eses link guard cell photosynthesis with stomatal responses
to [COy]. The first hypothesizes that variation in the con-
centration of zeaxanthin plays a role in the signal transduc-
tion of CO; signals in guard cells (Zhu eral. 1998). The
second hypothesis suggests that photosynthetically derived
ATP is shuttled from guard cell chloroplasts to the cytosol,
where it drives proton pumping and cation uptake at the
plasmalemma (Tominaga, Kinoshita & Shimazaki 2001;
Buckley, Mott & Farquhar 2003). Buckley et al. (2003) pro-
posed that the guard cell osmotic gradient is proportional to
the cytosolic guard cell [ATP], which increases with higher
light and decreases with higher [CO,]. Both of these hypo-
theses depend on the balance between photosynthetic
electron transport and Calvin cycle activity in the guard
cells (Messinger et al. 2006). These hypotheses are contro-
versial because studies with antisense plants with sup-
pressed ribulose-1,5-bisphosphate carboxylase/oxygenase
(Rubisco) expression showed little difference in stomatal
function to wild-type plants, and the correlation between
photosynthesis and stomatal conductance breaks down.
Therefore, the antisense studies suggest that neither meso-
phyll nor guard cell photosynthesis is involved in the [CO;]
response (Stitt etral. 1991; von Caemmerer et al. 2004).
Further, albino Vicia faba guard cells that completely lack
chlorophyll fluorescence still have a CO, response (Roelf-
sema et al. 2006). Thus, the role of photosynthesis in the CO,
response of guard cells is uncertain.

In the short term, stomatal aperture generally decreases
in response to high [CO,], as described earlier. In the long
term, decreases in gs can be caused by changes in stomatal
density or stomatal index (the percentage of epidermal cells
that are guard cells), as well as stomatal aperture. The HIC
(high carbon dioxide) gene encodes a putative 3-keto acyl
coenzyme A synthase, which is a negative regulator of sto-
matal development (Gray et al. 2000). While many plants
decrease stomatal initiation at high [CO,] (Woodward &
Kelly 1995), mutant hic plants increase stomatal density up
to 42% in response to high [CO,], presumably due to a
disruption in the signal transduction pathway responsible
for controlling stomatal patterning (Gray et al. 2000). There
is also evidence that stomatal development in response to
[CO;] is controlled by long-distance signals from mature
leaves (Lake et al. 2001). High or low [CO;] is detected in
mature leaves and signalled to immature leaves, whose sto-
matal development is altered accordingly (Lake et al. 2001).
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Further work with Arabidopsis mutants indicates that
abscisic acid, ethylene and jasmonic acid may be involved in
the long-distance signalling process, and controls for abaxial
and adaxial stomatal responses are independent (Lake,
Woodward & Quick 2002).

The response of gs to elevated [CO.] in FACE

While studies of individual guard cells and Arabidopsis
mutants are critical in furthering our understanding of the
molecular mechanisms of stomatal response to [CO,], it is
equally important to investigate how plants in the field
respond to the elevated [CO,] that is anticipated for this
century. One of the most consistent responses of plants to
elevated atmospheric [CO,] is a decrease in gs (reviewed in
Wand et al. 1999; Medlyn et al. 2001; Wullschleger et al.
2002; Long etal. 2004; Ainsworth & Long 2005). We
updated our database of FACE studies previously used to
determine the mean response of g to an elevated [CO,]| of
ca. 567 umol mol™ (Supplementary Appendix S1; Long
et al. 2004; Ainsworth & Long 2005). Averaged across all
plant species grown at elevated [CO,] in FACE experi-
ments, gs was reduced by 22% (Fig. 1). There was significant
variability among functional groups in how g, responded to
elevated [CO;] (Fig. 1). On average, trees, shrubs and forbs
showed a lower percentage decrease in g compared to Cs
and Cy grasses and herbaceous crops, similar to the trend
reported previously for herbaceous and woody species
(Saxe, Ellsworth & Heath 1998; Nowak eral. 2004).
However, the results from our analysis show a significant
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Figure 1. Meta-analysis of the response of stomatal
conductance (g;) to elevated [CO,] in free-air CO, enrichment
experiments. The ambient and elevated [CO,] for all studies
averaged 366 and 567 umol mol™, respectively. The grey bar
represents the overall mean and 95% confidence interval (CI) of
all measurements. The symbol represents the mean response

(£ 95% CI) of C; and C, species, and different functional groups.
There was significant between group heterogeneity (Qg) for
different functional groups (Qg =30.03, P < 0.01). The degrees of
freedom for each measurement are shown in parenthesis. A list
of primary references used in this analysis is provided in
Supplementary Appendix S1.
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Figure 2. Histogram of observations from free-air CO,
enrichment experiments of the change in stomatal density at
elevated [CO,]. The ambient and elevated [CO,] for all studies
averaged 363 and 571 umol mol™, respectively. The mean
response calculated by meta-analysis (* 95% confidence
interval) is indicated above the histogram. A list of primary
references used in this analysis is provided in Supplementary
Appendix S2.

decrease in g, for all groups. In contrast, the review of Saxe
et al. (1998) did not find significant decreases in g, in trees,
particular woody coniferous trees. There are exceptions to
the general rule that g; declines at elevated [CO,], even in
FACE experiments. In particular, Pinus taeda guard cells
appear to be insensitive to elevated [CO,] (Ellsworth 1999).

Growth at elevated [CO;] reduces stomatal density in a
wide variety of species and in many Arabidopsis thaliana
ecotypes (Woodward, Lake & Quick 2002; Hetherington &
Woodward 2003). However, in FACE experiments, the
decrease in g at elevated [CO,] does not appear to be
caused by a significant change in stomatal density (Estiarte
et al. 1994; Bryant, Taylor & Frehner 1998; Reid et al. 2003;
Marchi et al. 2004; Tricker et al. 2005). We conducted a
meta-analysis of stomatal density responses to elevated
[CO;] and found that the average 5% decrease in density
was not statistically significant (Fig. 2). The frequency his-
togram of changes in stomatal density shows relatively few
reports of large decreases in stomatal density, while the
majority of studies report changes between —10 and +10%
(Fig. 2). Tricker et al. (2005) found that stomatal density of
Poplar x euramericana decreased in the first 2 years of
exposure to elevated [CO,], but in later years of the experi-
ment, there was no difference in stomatal density in leaves
grown at ambient versus elevated [CO,]. Further, Reid et al.
(2003) report that stomatal density tended to be higher at
elevated [CO,] in FACE experiments, although the result
was not statistically significant. While there have only been
27 reports of the response of stomatal density to elevated
[CO;] in FACE studies, there is a little evidence for a sig-
nificant decrease in stomatal density (Fig. 2). Therefore, it is
likely that changes in stomatal aperture rather than density
determine the response of g, to elevated [COy].
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Acclimation of g to elevated [CO;]

The response of g, to elevated [CO,] is a critical parameter
for larger scale models of canopy, ecosystem and landscape
water flux. Many of these models use the Ball, Woodrow &
Berry (1987) model of stomatal conductance solved simul-
taneously with the Farquhar, von Caemmerer & Berry
(1980) model of photosynthesis (and their derivatives), to
provide predictions of intact leaf or canopy photosynthesis
and transpiration (e.g. Foley eral. 1996). The Ball et al
(1987) model predicts gs on the basis of a linear, empirical
relationship:

EETEON
where A is the net rate of photosynthesis; 4 is the atmo-
spheric relative humidity; [CO,] is the atmospheric [CO;] at
the leaf surface; g, is the y-axis intercept and m is the slope.
Acclimation of g to growth at elevated [CO,] would alter
the sensitivity of gs to [CO.], A, and/or ki, and therefore alter
the constants in the equation, g, and m. If g, independently
acclimates to elevated [CO,], then photosynthetic and sto-
matal models would require re-parameterization at each
growth [CO,] of interest, significantly complicating the
models.

Medlyn et al. (2001) investigated the acclimation of g to
elevated [CO,] in six tree species, and found that in all but
one case, there was no change in g, or m with growth [CO,].
Only in water-stressed Phillyrea angustifolia was acclima-
tion of g, detected (Medlyn et al. 2001). Further, Gunderson
etal. (2002) investigated the sensitivity of stomata to
elevated [CO,] over 3 years in a FACE experiment with
Liquidambar styraciflua and found no evidence for altered
sensitivity to vapour pressure deficit. Acclimation of g to
elevated [CO,] has been tested in herbaceous species in two
FACE studies. In Lolium perenne grown at 600 ymol mol™,
there was no evidence of independent acclimation of gs to
elevated [CO;] (Nijs efal. 1997). Likewise, there was no
evidence for stomatal acclimation in terms of sensitivity to
A, h and [COs] in Glycine max grown at 550 umol mol™!
(Leakey et al. 2006a). While the Ball eral. (1987) model
predicts that g, would be reduced in leaves that significantly
down-regulated A in response to elevated [CO;], there is
little evidence from FACE that g, independently acclimates
to elevated [CO,].

Environmental factors alter the response of g
to elevated [CO,]

While the sensitivity of guard cells to environmental factors
does not appear to acclimate with growth at elevated [CO,],
the magnitude of the effect of elevated [CO,] on g, varies
considerably with environmental factors (Medlyn et al.
2001; Gunderson et al. 2002; Wullschleger et al. 2002; Naum-
burg et al. 2003; Bunce 2004; Herrick er al. 2004; Marchi
et al. 2004; Morgan et al. 2004; Nowak et al. 2004; Leakey
et al. 2006a). There is generally a smaller effect of elevated
[CO,] on g, during dry periods (Gunderson et al. 2002;
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Leakey eral. 2004, 2006a,b), Reductions in g at elevated
[CO,] in L. styraciflua, grown at two FACE sites, were small-
est when vapour pressure deficit was high and therefore
absolute rates of g, were low (Gunderson etal. 2002;
Waullschleger et al. 2002; Herrick et al. 2004). These results
are consistent with those from G. max and Zea mays, grown
in central Illinois (Leakey et al. 2004, 2006a,b) Long dry
periods led to greater soil moisture depletion in ambient
[CO,] compared to elevated [CO,| (Leakey, unpublished
results). Therefore, g was presumably reduced by drought
to a greater extent in ambient [CO,] compared to elevated
[CO,], and the smaller effect of CO, on g during dry
periods has an indirect origin (Leakey et al. 2004, 2006a,b).
While the generality of these results may be limited to more
mesic ecosystems, it is clear that the indirect effects of CO,
on plant and soil water relations contribute to reported
system-level effects of elevated [CO,] (Morgan et al. 2004,
Nowak et al. 2004; Leakey et al. 2006a,b). Combining our
understanding of molecular controls of guard cell responses
to CO, with our understanding of the impact of environ-
mental factors will improve our ability to model and predict
ecosystem-level carbon and water flux.

RESPONSE OF PHOTOSYNTHESIS TO
ELEVATED [CO:]

Rubisco properties and mechanism

Virtually all of the carbon assimilated by autotrophic organ-
isms has passed through the active site of Rubisco, where
ribulose-1,5-bisphosphate (RubP) is combined with CO, to
yield two molecules of 3-phosphoglyceric acid (3PGA). In
addition to its function as a carboxylase, Rubisco also reacts
with oxygen to produce one molecule of 3PGA and one
molecule of 2-phosphoglycollate (2PG) (Cleland et al.
1998). Estimates of the Michaelis-Menten constant (Ky,)
for CO; in the carboxylation reaction of Rubisco in higher
plants range from 8-34 uM (von Caemmerer & Quick
2000). In C; plants, limitations on the diffusion of CO, to the
active site of Rubisco reduce the [CO,| outside the leaf
from the current atmospheric [CO,] of 380 to ca. 190 umol
mol, equivalent to 6.3 uM, at the site of carboxylation (von
Caemmerer & Evans 1991; von Caemmerer & Quick 2000;
Bernacchi et al. 2002). Estimates of the K, for O, in the
oxygenation reaction of Rubisco range from 196 to 810 uM
(von Caemmerer & Quick 2000). The intercellular oxygen
concentration is ca. 263 uM (von Caemmerer & Quick
2000). Therefore, the higher affinity of Rubisco for CO; is
offset by the low concentration of CO, at the active site and
the relatively low affinity for O, is compensated for by the
relatively high [O,] in the stroma. The CO, specificity factor
for Rubisco is the ratio of the specificity for CO, relative to
the specificity for O,. The mean estimate for the CO, speci-
ficity of Rubisco is ca. 90 (range = 60-128, von Caemmerer
& Quick 2000). Because the ratio of the [CO;] : [O;] at the
active site is ca. 0.024, the relative rate of carboxylation to
oxygenation in a Cs leaf at 25 °C is ca. 2.2. Thus, approxi-
mately every third molecule of RubP is consumed in the
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oxygenation reaction. The affinity of Rubisco for CO,, and
the solubility of CO, relative to O,, both decrease with
rising temperature. Therefore as temperature increases, the
relative rate of carboxylation to oxygenation is reduced
even further and the flux of 2PG into photorespiration
increases (Long 1991), e.g. at 35 °C, the relative rate of
carboxylation to oxygenation is ca. 1.4.

The 3PGA produced by the oxygenase reaction enters the
Calvin cycle, but the 2PG enters the non-essential photores-
piratory pathway where 75% of the carbon is recovered and
half of a molecule of CO, is released for every molecule of
2PG metabolized (Spreitzer 1999; Siedow & Day 2000; Long
et al. 2006c). At 25 °C, ca.23% of the carbon fixed by photo-
synthesis is lost due to photorespiration, and if all of the
oxygenation reactions were replaced by carboxylation reac-
tions, CO, uptake would be increased by ca. 53%.

Plants with the C4 pathway avoid photorespiration by a
combination of biochemical and anatomical specializations
that concentrate CO, at the active site of Rubisco (Sage
2004). CO; is fixed as HCOs™ in the outer mesophyll tissue
by phosphoenolpyruvate carboxylase, which lacks an oxy-
genase function and has a high affinity for its substrate. The
C, organic acid is then transferred to the bundle sheath cells
and decarboxylated to release CO,. While exact determina-
tion of the [CO;] in the bundle sheath is not currently
possible (von Caemmerer 2003), recent estimates suggest
that the CO, concentrating mechanism in C, plants raises
the [CO,] at the active site of Rubisco to between 76 and
126 uM;i.e. 12 to 20 times higher than for C; plants (Kiirats
et al. 2002; von Caemmerer & Furbank 2003). At 25 °C, the
estimated CO, loss associated with photorespiration in C,
plants would be less than 2%.

The ke of Rubisco isolated from higher plants ranges
from 2.5 to 5.4 s7! (Tcherkez, Farquhar & Andrews 2006).
For comparison, the turnover number for carbonic anhy-
drase is ca. 10° s! (Heldt 2005). Therefore, despite eliminat-
ing photorespiration, C, plants are still forced to invest
10-15% of their leaf nitrogen in Rubisco to compensate for
its miserable catalytic activity. Because C; plants lack a
CO;-concentrating mechanism, they have lower N use effi-
ciency than C, plants and invest even greater amounts of N
in Rubisco. In C; plants, up to 25% of leaf N can be invested
in Rubisco resulting in a stromal Rubisco concentration
that can be several fold greater than that of its substrate,
CO; (Sage, Pearcy & Seemann 1987; Heldt 2005).

By the end of the century, the [CO;] at the active site of
Rubisco in C; plants will have risen from 6.3 to 15 uM
(based on the IPPC 1S92a emission scenario that predicts
an atmospheric [CO,] of 750 umol mol™ by 2100, Albritton
et al. 2001). This will increase the rate and efficiency of
photosynthesis in C; plants for two reasons. Firstly, Rubisco
is substrate limited at current [CO,], therefore rising [CO,]
will increase the rate of the carboxylation reaction. Sec-
ondly, an increased [CO,] will competitively inhibit the oxy-
genation reaction of Rubisco and subsequently reduce the
CO; loss and energy costs associated with the flux of 2PG
through the photorespiratory pathway (Long et al. 2004).
Rising [CO,] is not predicted to directly impact C4 plants

because they avoid photorespiration and are CO,-saturated
at current [CO,]. Therefore, as the [CO,] rises, the competi-
tive advantage conferred by C, metabolism will be progres-
sively reduced (Sage 2004).

Molecular control of Rubisco activity
and content

To function, Rubisco must be activated through reversible
carbamylation of a lycine residue and binding of Mg**
(Cleland et al. 1998). Activation of Rubisco is dependent on
the catalytic chaperone, Rubisco activase, which promotes
the ATP-dependent dissociation of inhibitory sugar phos-
phates, thereby promoting carbamylation. Regulation of
ATP-dependent Rubisco activase activity is not fully under-
stood, but the sensitivity of the activase to the ATP:ADP
ratio is clear and there is evidence for the involvement of
redox regulation of Rubisco activase in some species (Portis
2003). Rubisco is usually fully active and carbamylated at
current [CO,] under steady-state high light conditions (von
Caemmerer & Quick 2000; Portis 2003). As [CO,] increases,
carbon fixation increases; there is an increasing demand for
ATP (required for RubP regeneration), and control of pho-
tosynthesis shifts from being limited by Rubisco to being
limited by the capacity for RubP regeneration (Long &
Drake 1992; von Caemmerer & Quick 2000). Reductions in
the ATP:ADP ratio in the chloroplast then lead to a reduc-
tion in activase activity. The resulting reduction in Rubisco
activation state would then match the capacity for carboxy-
lation with the capacity for RubP regeneration (von Caem-
merer & Quick 2000; Portis 2003; Cen & Sage 2005). Such
reductions in Rubisco activation state have been observed at
elevated [CO,] (Sage, Sharkey & Seemann 1988; Cen & Sage
2005). However, these responses may be more important for
the short-term regulation of photosynthesis, rather than
acclimation to rising [CO,] where reductions in Rubisco
activity are well correlated with reductions in Rubisco
content (Rolland-Bamford eral. 1991; Drake, Gonzalez-
Meler & Long 1997; Moore et al. 1999; Stitt & Krapp 1999).

Regulation of Rubisco content involves a number of
mechanisms that act on transcriptional, post-transcriptional,
translational and post-translational events. These mecha-
nisms have been reviewed in depth elsewhere (Moore et al.
1999; Stitt & Krapp 1999; Smeekens 2000; Rolland, Moore &
Sheen 2002; Long et al. 2004). Succinctly, when the supply of
photosynthate from chloroplasts exceeds the capacity for
export and utilization by sink tissue, the imbalance in supply
and demand is sensed in mesophyll cells by a mechanism that
possibly involves hexokinase acting as a flux sensor. The
response mechanism initiated by the sugar signal varies
among species but appears to target the small subunit of
Rubisco through transcriptional or translational control or
by interfering with the assembly of the holoenzyme (Long
et al. 2004). These mechanisms are distinct from non-specific
reductions in Rubisco content that can occur when leaf N
content is reduced (Makino et al. 1997;Sicher & Bunce 1997,
Curtis et al. 2000; Ellsworth et al. 2004).
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How does photosynthesis respond to and
acclimate to elevated [CO_]?

There is no doubt that growth at elevated [CO,] stimulates
A in GC; plants (Drake et al. 1997; Norby et al. 1999; Nowak
et al. 2004; Ainsworth & Long 2005). We conducted a meta-
analysis of the response of Ay, to growth at elevated [CO,]
in FACE experiments based on an updated version of the
dataset used by Ainsworth & Long (2005) (Supplementary
Appendix S3; Fig. 3). As predicted from the kinetic proper-
ties of Rubisco, there was a significant and marked increase
in Aqy, but there were significant differences between func-
tional groups of the C; species (Fig. 3). Trees showed the
largest response to elevated [CO,] and shrubs and legumes
showed the smallest stimulation (Fig. 3). There was a sur-
prising and significant increase in Ag in C4 crops (see
further discussion). In C; plants, the maximum carboxyla-
tion rate (Vemax) and the maximum rate of electron trans-
port (Jmax) Were also significantly reduced at elevated [CO].
The reduction in Vema, Was approximately double the reduc-
tion in Jumax (Figs 4 & 5), and the reduction in Ve Was
smallest in trees and greatest in shrubs, grasses and crops.

The response of C4 plants to elevated [CO,] has been
summarized by previous meta-analyses that report an
increase in C4 photosynthesis at elevated [CO,] (Wand et al.
1999; Ainsworth & Long 2005). A number of possible expla-
nations for this observed response have been discussed
in depth elsewhere (Ghannoum et al. 2000; Leakey et al.
2006b). However, evidence is building to support the
hypothesis that the stimulation of C, photosynthesis at
elevated [CO,] is an indirect effect resulting from the

T I T T T T T
Legume : —e— (39)
C,4 crop : —e— (18)

C,4 grass I—o-i—i (11)
Cs crop I —e—i (51)

Cs grass : —e— (62)

Shrub : L ® 1 (19)
Tree i —e— (191)

10 20 30 40 50 60
% Change at elevated [CO3]

-10

Figure 3. The response of light-saturated CO, uptake (Asy) in
plants grown at elevated [CO,] using free-air CO, enrichment
technology for different functional groups (legume, C4 crop, C4
grass, C; crop, C; grass, shrub and tree). The ambient and
elevated [CO,] for all studies averaged 366 and 567 umol mol™,
respectively. The grey bar represents the overall mean and 95%
confidence interval (CI) of all measurements. There was
significant between group heterogeneity (Qg) between functional
groups (Qg =194, P <0.001). Symbols show mean response

(% 95% CI) with the degrees of freedom for each functional
group given in parentheses. A list of primary references used in
this analysis is provided in Supplementary Appendix S3.
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Figure 4. The response of the maximum carboxylation rate
(Vemax) in C5 plants grown at elevated [CO,] using free-air CO,
enrichment technology for different functional groups (legume,
crop, grass, shrub and tree). The ambient and elevated [CO,] for
all studies averaged 365 and 567 umol mol™, respectively. The
grey bar represents the overall mean and 95% confidence
interval (CI) of all measurements. There was significant between
group heterogeneity (Qg) between functional groups (Qg = 56,
P <0.001). Symbols show mean response (= 95% CI) with the
degrees of freedom for each functional group given in
parentheses. A list of primary references used in this analysis is
provided in Supplementary Appendix S4.

interaction of water stress with reduced g, at elevated [CO,]
(Samarakoon & Gifford 1996; Seneweera, Ghannoum &
Conroy 1998; Ghannoum et al. 2000). Results from FACE
experiments provide additional support for this conclusion.
Increases in A in sorghum and maize were associated with
improved water status or were limited to periods of low
rainfall where drought stress was likely ameliorated at
elevated [CO;] (Conley et al. 2001; Wall et al. 2001; Leakey
et al. 2004; Kimball 2006). Further, in a year with no water
stress, Leakey et al. (2006b) found no increase in A, in vivo
or in vitro photosynthetic enzyme activities, biomass or
yield. Therefore, it is likely that the mechanism by which A
is stimulated in C, species grown at elevated [CO,] occurs
through the mitigation of drought stress rather than a direct
effect of elevated [CO,] on A.

Explanation of the observed response in
C; plants

Previous reviews of the response of plants to elevated [CO,]
have also noted that the difference in the magnitude of the
stimulation in A at elevated [CO,] and the occurrence of
acclimation appeared to be both growth form and environ-
ment specific (Nowak et al. 2004; Ainsworth & Long 2005).
Using parameters reported in the studies listed in Supple-
mentary Appendices S4 and S5 (Table 1), we reconstructed
a representative A/c; curve for each functional group
(Fig. 6). As [COy] rises, control of Ay by Rubisco (Vemax)
decreases and control by the capacity for RubP regenera-
tion (Jmax) increases (Long & Drake 1992; Long et al
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Table 1. Parameters used to model photosynthesis (A) in Fig. 6

Vemax (umol m™2s7) Jimax (umol m=2 s71) PPFD [CO,] (umol mol™)
Functional group (n)  Current [CO,]  Elevated [CO,]  Current [CO,]  Elevated [CO;]  (umolm™?s™)  Current  Elevated
Crop (24) 81 66 164 140 1085 363 567
Tree (111) 57 55 124 122 1360 367 567
Legume (31) 97 87 201 191 1195 370 555
Grass (97) 68 56 192 175 964 362 596
Shrub (22) 116 102 228 198 1500 364 550

Mean values for maximum carboxylation rate (Vemax), maximum rate of electron transport (Jmax) and PPFD for the five functional groups were
calculated from the studies listed in Supplementary Appendices S4 and S5. When not reported, Jimax was estimated (Jmax =29.1 + 1.64 Vimax)
using the equation provided by Wullschleger (1993). In all cases photosynthetic photon flux density (PPFD) was described as saturating or
close to saturating by the original authors. The atmospheric [CO,] (c,) used to plot the supply function at current [CO,] was calculated as the
[CO;] at the mean year of measurement based on the Intergovernmental Panel on Climate Change (IPCC) estimates (Albritton er al. 2001)
and at elevated [CO,] as the mean target concentration for the represented free-air CO, enrichment installations (Ainsworth & Long 2005).
Alc; curves were modelled based on the equations of Farquhar et al. (1980), the internal [CO,] (c;) was estimated as 0.7c, (Long et al. 2004),
temperature = 25 °C, relative humidity = 90%, and dark respiration (Rq) at 25 °C was assumed to be 1.1 umol m~?s™ (Long 1991).

2006a). Here we show that the difference in the magnitude
of the stimulation in A observed in response to rising
[CO;] can be explained by knowledge of what process is
limiting A at a given c;. With the exception of grasses, the
Alc; curve at current [CO,] also predicts the likelihood of
acclimation at elevated [CO;] (Fig. 6).

At current [CO,], A is Rubisco limited in all functional
groups, as indicated by the supply function intersecting the
initial slope of the A/c; curve. As expected, no groups have
an excess capacity for carboxylation at current [CO,] (von
Caemmerer & Quick 2000; Rogers & Humphries 2000;

: : I :
|
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|
|
I
Tree | (105) —-———
|
|
|
.
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Figure 5. The response of the maximum rate of electron
transport (Jmax) in C; plants grown at elevated [CO,] using
free-air CO, enrichment technology for different functional
groups (legume, grass, tree). The ambient and elevated [CO,] for
all studies averaged 365 and 567 umol mol™, respectively. The
grey bar represents the overall mean and 95% confidence
interval (CI) of all measurements. There was significant between
group heterogeneity (Qg) between functional groups (Qg = 54,
P <0.001). Symbols show mean response (= 95% CI) with the
degrees of freedom for each functional group given in
parentheses. A list of primary references used in this analysis is
provided in Supplementary Appendix SS5.

Parry et al. 2003). The operating point at elevated [CO,]
indicates that without acclimation (solid line Fig. 6), A in
shrubs, legumes and crops would be limited by the capac-
ity to regenerate RubP and leaves would have an excess
of Rubisco. However, A in trees and grasses would still be
limited by Rubisco at elevated [CO,]. Therefore, trees and
grasses have the largest potential for stimulation at
elevated [CO,] (ca. 50%), because rising [CO,] increases
carboxylation and reduces photorespiration. In contrast,
there is lower potential stimulation of A in shrubs,
legumes and crops (ca. 30%), because as [CO,] rises, A
becomes limited by the capacity for RubP regeneration,
and further increases in A with rising [CO,] would result
only from the repression of photorespiration (Long et al.
2004).

All functional groups acclimated to growth at elevated
[CO,] (Figs 4 & 6), so observed photosynthetic stimulations
in acclimated plants were less than the potential maximum
stimulations indicated by the modelled A/c; response at
current [CO,]. Shrubs and crops showed ca. 18 % reduction
in Venax (Fig. 4) and when grown at elevated [CO,] (dashed
line Fig.6) were at or close to a co-limitation of A by
carboxylation and RubP regeneration. Legumes showed
the same response but Rubisco acclimation was less
pronounced. Drake eral. (1997) hypothesized that the
increased N use efficiency of plants at elevated [CO;],
coupled to the shift in control of A away from Rubisco and
towards RubP regeneration, would enable plants to reduce
Rubisco content at elevated [CO,] and optimize their
investment in photosynthetic machinery. In a recent review
of crop responses to elevated [CO,], Long et al. (2006a)
showed that crops reduced Rubisco activity at elevated
[CO,] to a greater extent than the capacity for RubP regen-
eration. The data summarized here also suggest that plants
are preferentially reducing their carboxylation capacity
relative to RubP regeneration capacity (Figs 3 & 4), and the
reconstructed A/c; curves suggest that shrubs, crops and
legumes are optimizing their resources at elevated [CO;]
(dashed line in Fig. 6).

Journal compilation © 2007 Blackwell Publishing Ltd
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Figure 6. A/c; curves for five functional groups of C; plants
grown at current [CO,] (solid line), and elevated [CO,] (dashed
line) using free-air CO, enrichment technology. The dotted lines
indicate the supply function and the point at which these lines
meet the A/c; curves indicates the operating point at current and
elevated [CO,]. Values for maximum carboxylation rate (Vemax),
maximum rate of electron transport (Jm.x) and photosynthetic
photon flux density (PPFD) were taken from the original studies
and the means were used to model the response of A to ¢;
(Farquhar et al. 1980). The raw values used to fit the A/c; curves
for each [CO,] and functional group are provided in Table 1.

Photosynthesis in trees and grasses was Rubisco limited
at both current and elevated [CO,] reflecting the ca. 36%
lower carboxylation capacity in these groups compared
with shrubs, crops and legumes. Because A is Rubisco
limited in trees and grasses at elevated [CO,], reductions in
Rubisco content will negatively impact carbon acquisition.

Journal compilation © 2007 Blackwell Publishing Ltd

Therefore, in the absence of other limitations, no loss of
Rubisco activity would be predicted. Trees had the smallest
reduction in Ve, consistent with this explanation.
However, on average, grasses showed a marked reduction
in Vemax. Grasses were grown in FACE experiments at dif-
ferent N fertilization regimes and different management
practices, and acclimation was dependent on these environ-
mental factors (see further discussion).

Environmental factors determine the magnitude
of the response of photosynthesis to
elevated [CO,]

Given the large amount of N that plants invest in Rubisco,
and its role as the C fixing enzyme, it not surprising that the
balance between photosynthate utilization and N status
plays a major role in shaping the response of plants to
elevated [CO,].

Nitrogen supply

In plants where photosynthesis becomes RubP limited at
elevated [CO,] (e.g. crops, legumes and shrubs, Fig. 6),
Rubisco will be in excess of requirements. The excess capac-
ity for carboxylation could be reduced through a reduction
in the activation state of Rubisco (Cen & Sage 2005). Alter-
natively, because less Rubisco is required by these plants at
elevated [CO,], redistribution of the excess N invested in
Rubisco could further increase N use efficiency at elevated
[CO,] without negatively impacting potential C acquisition
(Drake et al. 1997; Parry et al. 2003). However, there is only
benefit in reducing the amount of N invested in Rubisco at
elevated [CO,] when the resources invested in it can be
usefully deployed elsewhere (Parry et al. 2003). Therefore
we would expect greater acclimation in low N conditions
than high N conditions. Ainsworth & Long (2005) reported
that stimulation in Ay, at elevated [CO,] was 23% lower in
plants grown with a low N supply. Vemax Was reduced at
elevated [CO,] at both high and low N, but at low N the
reduction was 85% greater. The emerging picture from
FACE studies is that when acclimation occurs at elevated
[CO,], it occurs to a greater extent at low N than at high N.
This is in agreement with summaries of earlier studies con-
ducted in controlled environments and field enclosures
(Drake et al. 1997; Moore et al. 1999; Stitt & Krapp 1999),
and is consistent with current understanding of the mecha-
nism underlying acclimation. When plants are N limited,
sink development is restricted, C supply is in excess of
demand, and the sugar feedback mechanism outlined
earlier can operate to reduce Rubisco content and increase
N use efficiency. As N supply increases, the limitation
imposed by sink capacity decreases and the sugar linked
signal for down-regulating Rubisco content is reduced
(Drake et al. 1997; Rogers et al. 1998; Long et al. 2004).

Sink strength

Defined here as the capacity to utilize photosynthate, sink
strength can be a major constraint on carbon acquisition
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(Stitt 1991). A reduced or insufficient sink capacity may be
the result of many potentially limiting processes, e.g. N
supply (Rogers et al. 1998), genetic constraints (Ainsworth
et al. 2004), temperature (Ainsworth ez al. 2003b) or devel-
opmental changes (Rogers et al. 2004; Bernacchi et al. 2005;
Rogers & Ainsworth 2006). However, the net result is the
same, i.e. the appearance of a carbohydrate-derived signal
that can lead to the subsequent down-regulation (acclima-
tion) of photosynthetic machinery, principally Rubisco
(Stitt & Krapp 1999; Long et al. 2004).

FACE experiments have provided field tests of this
concept and showed that some plants are better able to
cope with excess carbohydrate than others. Davey et al.
(2006) showed that poplar grown at elevated [CO,] had a
large sink capacity. Poplar was able to export >90% of its
photosynthate during the day and had a large capacity for
the temporary storage of overflow photosynthate as starch
(Stitt & Quick 1989; Davey et al. 2006). These two traits
enabled poplar to maintain high photosynthetic rates at
elevated [CO,] and avoid a major source-sink imbalance
that could lead to a reduction in the potential for C acqui-
sition. In contrast, L. perenne can become extremely sink
limited at elevated [CO,] (Rogers & Ainsworth 2006), and
reports of large accumulations of carbohydrate which build
up in grasses over several days and weeks are common
(Fischer et al. 1997; Isopp et al. 2000; Rogers & Ainsworth
2006). The most likely explanation for the sink limitation
observed in L perenne is an insufficient N supply (Fischer
et al. 1997; Rogers et al. 1998). The excess of C and shortage
of N may explain why grasses reduced their Rubisco
content at elevated [CO,], despite the negative impact on
potential carbon gain (Rogers et al. 1998; Ainsworth et al.
2003a; Figs 4 & 6).

Legumes grown at elevated [CO,] have an excess of
Rubisco, and photosynthesis is limited by the capacity for
RubP regeneration (Fig. 6). Therefore, a reduction in car-
boxylation capacity would be expected. However, legumes
can trade photosynthate for reduced forms of N with their
bacterial symbionts (Rogers efal. 2006b). Therefore, the
benefit of an increase in N use efficiency resulting from the
reduction of Rubisco content, and the sugar-derived signal
required for a reduction in carboxylation capacity would
not be expected. It follows that acclimation in legumes
likely occurs through reductions in Rubisco activity rather
than through a loss of Rubisco protein content, and occurs
to maintain the balance between the supply and demand for
the products of the light reactions (see earlier discussion
and Bernacchi et al. 2005; Cen & Sage 2005). Alternatively,
other nutrient limitations may also impact N-fixation and
sink capacity at elevated [CO,] (Almeida efal 2000;
Hungate et al. 2004).

CONCLUSIONS

Rising [CO,] will impact plants and ecosystems through two
processes, reduced g, and increased A. Our understanding
of the mechanism by which Rubisco responds to short-term
increases in [CO,] is well advanced, and our understanding

of the different components of the guard cell-signalling
pathway is advancing. However, the CO,-sensing mecha-
nism in guard cells that is responsible for the short-term
sensitivity of g to elevated [CO,] is still unknown. Results
from FACE studies show that g; is consistently decreased in
both C; and C, species, yet stomatal density does not sig-
nificantly change nor does g acclimate to elevated [CO,]
independently of A. Therefore, the short-term change in
stomatal aperture likely determines most of the long-term
response of g to elevated [CO,].

Results from FACE studies have demonstrated that mag-
nitude of the stimulation of C; photosynthesis by elevated
[CO;] and the potential for photosynthetic acclimation can
be understood by examining the A/c; response. The key to
advancing understanding and being able to predict the
responses of plants and ecosystems to rising [CO,] is an
improved understanding of downstream limitations, such as
an N or micronutrient supply (Hungate er al. 2004; Luo et al.
2004), and other environmental variables that restrict and
modulate the well-characterized primary responses of
elevated [CO;] on g; and A. Future FACE research should
be focused on making mechanistic advances, and ideally
new experiments should include interactions with expected
changes in other environmental variables such as water
supply and temperature, which are known to modulate the
two primary plant responses to elevated [CO,].
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