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different types of irradiation – we need point defects
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n =

- maximum energy transfer to Fe
upon head – on collision
A. C. Damask and G. J. Dienes, "Point Defects in Metals" (1963)
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YBCO

580 MeV Sn



electron irradiation. Dose is measured in C/cm2

(we omit cm2 and just write C) 19

18

1.60217733 10 C

1C 6.2415 10 electrons

e  

 

Knockout cross-section assuming 25 eV threshold energy
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It would be nice to calculate 
actual threshold energies for 
different ions and the 
resulting magnetic state of 
defects.
I can re-calculate the cross-
sections if I knew the 
thresholds. 
Now I assumed 25 eV
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cross - section for producing primary 
knock-outs by electron irradiation
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Fe knock – out – different compounds

3 September 2013 Riverhead, NY, 2 - 5 September 2013 5

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

50

100

 BaFe
2
As

2

 CaFe
2
As

2

 SrFe
2
As

2

 FeSe
0.5

Te
0.5


 (

b
a

rn
)

electron energy (MeV)

Fe (E
d
 = 25 eV)



different threshold energies
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Ba(Fe1-xRux)2As2

May 2012
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Ba(Fe1-xRux)2As2: in situ measurements of (T)
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Ba(Fe1-xRux)2As2: take out and measure
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after initial annealing defects stay
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Tc decreases,  increases, - not isotropic s++!
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the main question:
how to calculate the scattering rate?

Spherical cow (AG + Drude) model:
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using penetration depth is the best choice as it 
avoids the question of the effective mass
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summary of Tc suppression data (using g )
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Kontani, PRL 103, 

177001  (2009)

A. A. Abrikosov and L. P. Gor'kov, Zh. Eksp. Teor. Fiz. 39,1781 (1960). [Sov. Phys. JETP 12, 1243 (1961)].

L. A. Openov, Phys. Rev. B 58, 9468 (1998) ; V. G. Kogan, Phys. Rev. B 80, 214532 (2009).
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Y. Nakajima et al., PRB 82, 220504  (2010)



Generalized Abrikosov – Gor’kov theory
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Classical Abrikosov – Gor’kov:
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Generalized AG – arbitrary FS and gap. Both magnetic and non – magnetic scattering: 

A. A. Abrikosov and L. P. Gor'kov, Zh. Eksp. Teor. Fiz. 39,1781 (1960). [Sov. Phys. JETP 12, 1243 (1961)].

L. A. Openov, Phys. Rev. B 58, 9468 (1998) ; V. G. Kogan, Phys. Rev. B 80, 214532 (2009).
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Still the scattering potential strength and two – band effects are not considered

 

 
2 2

3

 

 
1

N
,

(2 ) 0
FS

X
X d


    

F

F

F

k
k

v
- angular part of the order parameter



even in this simple picture dtc/dg varies
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arbitrary strength, interband scattering
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D. V. Efremov et al., PRB 84, 180512  (2011)
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so, if we include gap anisotropy, it may explain the observed rates of Tc suppression



and with a realistic change of resistivity
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u v 

Inter to Intra – band 
scattering ratio

Y. Wang et al, PRB 87, 094504 (2013)

isotropic s±

nodal s±



evolution of the order parameter
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fitting the data with s±
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s± is definitely compatible with the experiment
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but we need more measurements to restrict the phase space



using full resistivity,  not 
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Optimally doped (Ba0.6K0.4)Fe2As2

April 2013
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(Ba0.6K0.4)Fe2As2 - definitely not s++ !
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Underdoped (Tc0 = 17 K), (Ba0.8K0.2)Fe2As2

April 2013
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resistivity vs T during irradiation and in between runs
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determination of TS and Tc

0 30 60 90
0

50

100

150

200

90 95 100 105 110

1

2

3

2.36 C/cm
2

 


 (



 c
m

)

T (K)

0.8 C/cm
2

pristine

1.3 C/cm
2

take derivative

(Ba
0.8

K
0.2

)Fe
2
As

2
, T

c0
 = 17 K

data - R. Prozorov 22 April 2013

3.08 C/cm
2

93.5
d
R

/d
T

T (K)

101.598.5

97.5

95

3 September 2013 Riverhead, NY, 2 - 5 September 2013 25



variation of Ts and Tc with induced residual resistivity
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Disorder suppresses itinerant magnetism
R. M. Fernandes, M. G. Vavilov, and A. V. Chubukov, PRB 85, 140512 (2012)

… but why the rate of suppression is 
the same for TN and Tc?



what energy scales are at play?
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compare Hall coefficient vs T
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compare Hall coefficient vs T with higher – Tc samples
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R(T) after annealing (slow excursion to 400 K and back)
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R(T) and RH(T) after annealing
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R(T,H) after annealing
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Hc2 (determined at 50% of the transition)
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Hc2: effect of annealing
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constant slope of Hc2?
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observations, conclusions, questions

• Observed suppression of Tc is compatible with s± pairing
• complete violation of Matthiessen's rule

• Highly temperature – dependent Hall 
(thermally activated carriers over the bands?)

• RH(T) does not change (much) with irradiation
• RH(T) decreases approaching optimal doping

• Huge change in both Tc and Ts after irradiation – by the same amount
• both transitions remain sharp after irradiation

• dHc2(T)/dT does not change
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