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OUTLINE

What is the weak-coupling prediction for the pairing state?
What is the effect of hybridization (spin-orbit coupling)?
Can neutron scattering distinguish different pairing states?

cf. M. Khodas’ talk yesterday
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investigations confirmed the presence of the
√

5×
√

5 va-
cancy superstructure, compatible with results obtained
before by other techniques reviewed in Section II, such
as the single-crystal x-ray diffraction studies (28) of sev-
eral alkali metal iron selenides. Other neutron diffraction
studies of CsyFe2−xSe2, AxFe2−ySe2 (A = Rb, K), and
RbyFe1.6+xSe2 also arrived to the conclusion that there is
a
√

5×
√

5 iron-vacancy superstructure in the insulating
state of these materials (43–45).

More importantly, the authors of Ref. 42 reported a
novel and exotic magnetic order in this compound, that
is stable in the Fe-vacancies environment. This magnetic
order contains 2×2 iron superblocks, with the four iron
moments ferromagnetically aligned. These superblocks
display an antiferromagnetic order between them, thus
this state will be referred to as “block-AFM” state in the
rest of the review. The individual magnetic moments are
3.31 µB/Fe, the largest observed in the Fe-based super-
conductors family of materials. These neutron results,
particularly the large magnetic moments, once again
challenge the previously prevailing view that these com-
pounds are electronically weakly coupled and that Fermi
Surface nesting explains their behavior. While it may oc-
cur that pnictides and selenides have different strengths
of the Hubbard U coupling, thus explaining their dif-
ferent properties, it could also occur that the prevailing
view of the pnictides as weak or intermediate U materi-
als is not correct. More work is needed to clarify these
matters. Adding to the discrepancy with the weak cou-
pling picture, an unprecedented high Néel temperature of
TN = 559 K was reported for these iron-vacancy ordered
compounds. The magnetic ordering temperature is 20 K
smaller than the order-disorder transition temperature
for the iron vacancies.

Single-crystal neutron diffraction studies (46) of
A2Fe4Se5, with A = Rb, Cs, (Tl,Rb), and (Tl,K), found
the same iron vacancy order and the same magnetic or-
der involving block antiferromagnetism as observed in
K2Fe4Se5. The order-disorder transition occurs at TS =
500-578 K, and the antiferromagnetic transition at TN =
471-559 K with an ordered magnetic moment ∼3.3µB/Fe
at low temperatures. The work presented in Ref. (46)
showed that all alkali intercalated 245 iron selenides share
a common crystalline and magnetic structure, which are
very different from other Fe-based superconductors such
as the pnictides.

Recent neutron diffraction studies of TlFe1.6Se2 (47;
48) have unveiled the possibility of spin arrangements
that may deviate from the block-AFM order, results com-
patible with theoretical calculations (49–51) where sev-
eral spin states where found to be close in energy to the
block-AFM state (see Section VII below for details).

Moreover, x-rays (52) and neutron (45) diffraction
studies of the superconducting state also provided evi-
dence for phase separation between the above mentioned
regular distribution of iron vacancies and another state
with a

√
2×

√
2 superstructure, similarly as reported in

other investigations reviewed below in Section VII (the-

FIG. 8 (Color online) In-plane crystal and magnetic structure
of K0.8Fe1.6Se2, reproduced from Ref. 42. The open squares
are the iron vacancies and the red dark circles with the “+”
or “-” denote the occupied iron sites with the orientation of
their spins. The green open circles correspond to Se, while
the K atoms are in yellow as small open circles.

ory). The important issue of phase separation will be
discussed in detail in Section V below in this review.

B. Inelastic neutron scattering

Inelastic neutron scattering studies showed that
the spin waves of the insulating antiferromagnet
Rb0.89Fe1.58Se2, with the block-AFM order and Néel
temperatures of ∼500 K, can be accurately de-
scribed by a local moment Heisenberg model with iron
nearest-neighbors (NN), next-NN (NNN), and next-
NNN (NNNN) interactions (53), as reviewed recently in
Ref. 41. These results are contrary to the case of the iron
pnictides, i.e. with As instead of Se, where the itinerant
character of the electrons is needed to understand their
spin wave properties, as explained in Ref. 53. The spin-
wave spectra have also been addressed using ab-initio
linear response in Ref. 54. A fitting analysis of the neu-
trons spin-wave spectra shows that in these materials and
others the effective NNN Heisenberg couplings (i.e. the
coupling along the diagonal of an elementary plaquette
made of irons) are all of similar value, while the effec-
tive NN couplings (i.e. at the shortest Fe-Fe distance)
vary more from material to material even changing signs,
suggesting that the effective NNN coupling is very rele-
vant to understand the common properties of the many
iron-based superconductors (53). In fact, a robust real
(as opposed to effective) NNN superexchange coupling
comparable or larger in strength to the real NN superex-
change is known to be crucial for the stability of the

KFe2Se2 — Qualitatively Different?

ARPES
- No hole pockets, only electron pockets around M
- Simple spin-fluctuation arguments for s± don’t 

work

Neutron scattering
- 245 Fe vacancy phase
- Insulating 2 x 2 block AF state 

with µ=3.31µB/Fe and TN = 559 K

STM, etc.
- Evidence for phase separation

between SC and AF phases

are displayed in Figs. 2(c) and 2(d), respectively. From the
EDCs and theMDCs, we estimate the bottom of the band at
60 meV. Taking into account this value, a simple parabolic
fit allows us to estimate a Fermi velocity of 0:52 eV !A and
an electron mass of 3:5m0. In addition to the electron band
at the M point, the data indicate the presence of a holelike
band feature topping at M around 130 meV below EF.

In contrast to the M point, we do not see any band
crossing the Fermi level at the " point. This is well illus-
trated by the ARPES intensity plot shown in Fig. 3(a).
Instead, both the corresponding EDCs and second deriva-
tive intensity plot shown in Figs. 3(b) and 3(c), respec-
tively, indicate a holelike band topping 90 meV below EF.
Interestingly, this value corresponds to a binding energy
higher than the bottom of the electronlike band at the M
point, indicating an indirect band gap of 30 meV in the
band structure. We speculate that this band gap might be
related to the presence of an insulating phase at lower
electron doping [18]. To check whether the top of the
holelike band at the " point can cross EF at a different kz
value, we contrast the He I! (21.218 eV) data with data
recorded with the He II! (40.814 eV) line [Fig. 3(d)],
which are associated to a different kz. The data are quite
similar, except for a slight shift of the top of the band
towards higher binding energies. We also plot in Fig. 3(e)
the data obtained with the He II! line at the second folded

BZ center "0 (", "), for which kz also varies. Once
more, the holelike band does not cross the Fermi

level. Using the conversion equation kz ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½ðh#$$$ EBÞcos2%þ V0'

p
=@, where the effective

work function $ is 4.4 eV and the inner potential V0 is
estimated to be about 15 eV in pnictides [23], we estimate
the kz values to be about 3.2, 4.1, and 3.7 (4"=c) for
Figs. 3(c)–3(e), respectively [24].
The ARPES intensity map integrated in the (20 meV

energy range is given in Fig. 4(a). The high intensity
regions define the Fermi surface. As explained above,
while one electron FS pocket is detected at the M point,
there is no FS pocket observed at the BZ center. Although
our experimental resolution does not allow us to resolve
two electronlike FS pockets at the M point, all band
calculations [2,25–27] as well as previous ARPES mea-
surements on similar iron-based superconductors [5,6]
suggest that there should be two. As a first approximation,
it is thus a reasonable assumption to consider that there are
indeed two electronlike FS pockets at M and that they are
almost degenerate. The size of one electronlike FS pocket
is estimated at 5.5% of the folded BZ. Assuming a double

hν = 40.814 eV
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FIG. 3 (color online). (a) ARPES intensity plot recorded with
the He I! resonance line (h# ¼ 21:218 eV) along a cut passing
through " [kz ¼ 3:2 (4"=c)]. (b) EDCs along the cut shown in
(a). (c) Second derivative intensity plot of the cut shown in (a).
(d) and (e) correspond to second energy derivative intensity plot
recorded with the He II! resonance line (h# ¼ 40:814 eV)
along a cut passing through " [kz ¼ 4:1 (4"=c)] and "0 (", ")
[kz ¼ 3:7 (4"=c)], respectively.
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FIG. 4 (color online). (a) ARPES intensity mapping recorded
with h# ¼ 21:218 eV photons and integrated within (20 meV
with respect to EF. (b) Schematic diagram summarizing the
electronic band structure of K0:8Fe1:7Se2 and illustrating the
(", ") scattering processes.
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Itinerant - weak coupling -  RPA approach
Models and pairing calculations
- DFT bandstructure calculation for 

KFe2Se2

- 5- and 10-orbital tight-binding fits
- Use RPA to calculate χ(q), pairing 

interaction Γ(k,k’) and superconducting 
gap Δ∆(k)
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FIG. 1. (Color online) The 5-orbital fit to the LDA band structure
with colors indicating the majority orbital character (red (dark
gray) = dxz; green (light gray) = dyz; blue (black) = dxy ; orange (dim
gray) = dx2−y2 ; and magenta (gray) = d3z2−r2 ). The points indicate the
ten-orbital Wannier fit to the full DFT band structure. The splitting of
the dxz/dyz and the dxy bands at ! has been enlarged to remove the
hole pockets.

model similar to the one found for the isostructural
BaFe2As2.16

Considering the recent ARPES results on K0.8Fe1.7Se2
reported by Qian et al.,2 we have artificially enhanced the
splitting between the two dxz/dyz bands and the two dxy bands
at the ! point of the backfolded Brillouin zone by changing
the nearest-neighbor hopping tx(dxz,dxz) by −0.064 eV and
tx(dxy,dxy) by 0.072 eV, respectively. This allows us to push
the hole pockets below the Fermi level without changing the
orbital character of the respective bands (see Fig. 1). The effect
of a simultaneous downward shift of the hole bands together
with an upward shift of the electron bands, which we have
imposed artificially on the electronic structure, may be related
to the downward renormalization of the pocket sizes due to
interband interactions, as discussed in Ref. 17. We have also
adjusted the chemical potential to account for the reduced
electron doping of KxFe2−ySe2 with x = 0.8 and y = 0.3 (0.1
electrons per Fe) compared to the parent compound with x = 1
and y = 0 (0.5 electrons per Fe). In Fig. 2, the Fermi surface for
µ = EF − 0.25 is shown with a color encoding of the majority
orbital character. Note that the square Fermi surface pockets
found here allow for the possibility of nesting at vectors away
from (π,π ).

To determine the pairing symmetry arising from a spin-
fluctuation exchange picture, we define the following scatter-
ing vertex !(k,k′) in the singlet channel:

!ij (k,k′) = Re
∑

#1#2#3#4

a#2,∗
νi

(k)a#3,∗
νi

(−k)

×[!#1#2#3#4 (k,k′,ω = 0)]a#1
νj

(k′)a#4
νj

(−k′). (2)

Here the momenta k and k′ are restricted to the electron pockets
k ∈ Ci and k′ ∈ Cj , where i and j label either the β1 or the β2
Fermi surface, and al

ν(k) are the orbital-band matrix elements.
The orbital vertex functions !#1#2#3#4 represent the particle-

0 π

0

π

kx

k y

β2

β1

FIG. 2. (Color online) The Fermi surface with β1 and β2 sheets
of the 5-orbital tight-binding fit with µ = EF − 0.25. The colors
(symbols) represent the major orbital character of the Fermi surface
(red (solid circles) = dxz, blue (diamonds) = dxy and green (open
circles) = dyz).

particle scattering of electrons in orbitals #1,#4 into #2,#3 and
are given by

!#1#2#3#4 (k,k′,ω)=
[

3
2
Ū sχRPA

1 (k−k′,ω)Ū s + 1
2
Ū s

− 1
2
Ū cχRPA

0 (k−k′,ω)Ū c + 1
2
Ū c

]

#1#2#3#4

.

(3)

The interaction matrices Ū s and Ū c in orbital space are built
from linear combinations of the interaction parameters. Their
explicit form can be found, e.g., in Ref. 12. Here χRPA

1 and
χRPA

0 denote the spin-fluctuation contribution and the orbital-
fluctuation contribution to the RPA susceptibility, respectively.

The symmetry function g(k) of the pairing state can then
be found by solving an eigenvalue problem of the form

−
∑

j

∮

Cj

dk′
‖

2πvF (k′
‖)

!ij (k,k′)g(k′) = λg(k), (4)

where the eigenfunction g(k) corresponding to the largest
eigenvalue λ gives the leading pair instability of the system.

In the following, we parametrize the superconducting gap
in low-order harmonics and calculate the susceptibility in the
symmetry-broken state as18,19

χ0
rstu(q) = −1

2

∑

k,µν

M
µν
rstu(k,q)

×{Gµ(k + q)Gν(k) + Fµ(−k − q)F ν(k)}, (5)

where the generalized momenta q = (q,ωm) and k = (k,ωn)
comprise both the momenta and the Matsubara frequencies.
The normal and anomalous Green’s functions are given as

Gµ(k) = iωn + ξν(k)
ω2

n + E2
ν (k)

,Fµ(k) = *(k)
ω2

n + E2
ν (k)

. (6)

Here the matrix elements connecting band and orbital space
determine

M
µν
rstu(k,q) = ar,∗

µ (k + q)as
ν(k)at,∗

ν (k)au
µ(k + q) (7)

and the quasiparticle energies for a band ν are given as
Eν(k) =

√
ξ 2
ν (k) + *2(k). The inelastic neutron intensity is
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RPA Theory I
Microscopic Hamiltonian — Multi-orbital Hubbard-Hund model

H = H0 + U
�

i ,�

ni��ni�� + U �
�

i ,��<�

ni�ni�� + J
�

i ,��<�,���

c†
i��c†

i����ci���ci��� + J �
�

i ,�� �=�

c†
il�c

†
i��ci���ci���

Multi-orbital tight-
binding model obtained 
from fitting LDA 
bandstructure

Intra- and inter-orbital 
Coulomb interactions

Hund’s rule coupling Pair-hopping term

— Spin rotation invariant 
     parameters: U = U’+J+J’
— Typical values: 
     U ~ 1 eV, U’ ~ 0.5 eV, J = J’ ~ 0.25 eV 



Spin Fluctuation Theory of Pairing — 
Random phase approximation

Spin/Charge Susceptibility + +

+ + ...
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Berk, Schrieffer 1966
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... RPA Theory
Pairing of electrons in Bloch states

Pairing strength for SC gap

Gap equation from stationarity
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dk�
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Neutron resonance within RPA

Neutron Resonance
- Spin susceptibility in superconducting state

- BCS coherence factor

- Resonance in χ”(q,ω) at q when 

            

at

Bulut & Scalapino ’93
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FIG. 4. (Color online) (a) The difference of the calculated imag-
inary parts of the dynamic spin susceptibility for the SC and normal
states, taken at the resonance energy, χ ′′

SC(Q,ωres) − χ ′′
n (Q,ωres). The

calculation was done within RPA from the tight-binding band model
of AxFe2Se2,28 which was rigidly shifted to match the experimental
peak positions. An isotropic Gaussian broadening with a standard
deviation of 0.02 r.l.u. has been applied to mimic the experimental
resolution. (b) The resulting FS in the (H K 0) plane corresponds
to the doping level of 0.18 electrons/Fe. The black arrows are the
in-plane nesting vectors responsible for the resonance peaks observed
in our present study.

with an independent estimate of 0.15 electrons/Fe from recent
NMR measurements on the same compound.22 To enable
direct comparison between the theory and experiment, we
have calculated the imaginary part of the dynamical spin
susceptibility at the resonance energy, χ ′′(Q,ωres), both for
the SC and the normal states, as described in Ref. 28.
For the calculation in the SC state, we have assumed a
dx2−y2 gap #(k) = #0(cos kx − cos ky).36 The color map in
Fig. 4(a) shows the respective difference of the two quan-
tities, χ ′′

SC(Q,ωres) − χ ′′
n (Q,ωres), within the (H K 0) plane,

isotropically broadened by a Gaussian resolution function
with a standard deviation of 0.02 r.l.u. Comparison with the
experimentally measured resonant intensity map in Fig. 2(b)
reveals good agreement between the two Q-space patterns, as
both the orientation and the aspect ratio of the elliptical peaks
is well captured by the calculation. The origin of these peaks

can be traced back to the nesting of electronlike Fermi pockets,
as indicated in Fig. 4(b) by black arrows.

To conclude, the fact that the complicated pattern of
resonant intensity in Q-space can be successfully reproduced
by our calculation strongly supports the itinerant origin of the
observed magnetic response. The signal shows no signatures of
the

√
5 ×

√
5 reconstruction, indicating that it originates in the

metallic phase of the sample without iron-vacancy ordering,
as suggested recently.13,14,37 This distinguishes the observed
signal from the previously reported spin-wave excitations
in this class of compounds38 that stem from the magnetic
superstructure Bragg positions in the insulating vacancy-
ordered phase and are insensitive to the SC transition. The
incommensurability of the resonance peak, as well as its
variation with the out-of-plane momentum component and
with energy, further indicates that it is not pinned to a particular
position in Q-space, but is arbitrarily determined by the level
of electron doping, in line with the assumptions of Ref. 28.

Furthermore, we note that iron-pnictide compounds gen-
erally exhibit a tendency toward a 2D behavior of spin
fluctuations with an increase of the doping level or Tc.34,39

For example, optimally doped Ba1−xKxFe2As2, which has the
highest known critical temperature among all 122-compounds,
shows almost no dispersion of the resonant energy, h̄ωres, along
the c direction.35 Our data on RbxFe2−ySe2 with a comparable
transition temperature are fully consistent with this trend.
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FIG. 5. (Color online) The imaginary part of the RPA-BCS
dynamic spin susceptibility versus ω for q = (π,0.625π ) (a) and
q = (π,π ) (b) for the normal (red circles), d-wave (blue squares)
and s-wave (green diamonds) states. The interaction parameters were
chosen as Ū = 0.96 and J̄ = Ū/4.

To calculate the neutron response, we parametrize the
superconducting gap as #(k) = #0g(k) with

g(k) = (cos kx − cos ky) + 1.62(cos 2kx − cos 2ky). (10)

This fit is shown as the solid line in the inset of Fig. 4. In
Fig. 5, we show the imaginary part of the RPA enhanced
susceptibility in the d-wave state for a momentum transfer of
q = (π,0.625π ) in (a) and q = (π,π ) in (b) in the 1 Fe–unit-
cell Brillouin zone. Here the low-energy spectral weight is
suppressed upon the opening of the superconducting gap and
is transferred to higher energies. The pronounced resonance
peak around ω = 2# appears only for a relative sign change
of the gap on the two electron pockets such that the coherence
factor 1 − #(k)#(k + q)/[E(k)E(k + q)] does not vanish.

There are proposals that an s-wave gap may arise from
the orbital term in Eq. (3) when local Fe phonon modes are
included.20,21 In Fig. 5, we have added results for an isotropic
s-wave gap taken equal to the average magnitude of the
d-wave gap for comparison. While an s-wave gap could well
have anisotropic structure, we expect that the difference in
χ ′′(q,w) between a B1g and an A1g gap will be significant. In
particular if the orbital fluctuations are dominant, the response
in the magnetic scattering channel will be further suppressed
compared to the d-wave response illustrated in Fig. 5.

IV. CONCLUSIONS

We have argued, based on an RPA treatment of a generalized
multiorbital Hubbard model, that the absence of the %-centered
hole pocket in the KFe2Se2 superconducting materials should
lead directly to a strong d-wave pairing instability without
nodes on the remaining M-centered electron pockets. The
appearance of d-wave pairing in this family of unconventional
superconductors in the limit when only one type of pocket is
present would be strong support for pairing by spin fluctuations
in these systems. It appears to us that the measurement of a
peak in the inelastic neutron-scattering spectrum near (π,π )
would be the easiest way to test this prediction.

Since the inelastic neutron scattering is mostly sensitive
to the Fe lattice, it is possible to distinguish with this
technique between the low q and the q = (π,π ) scattering
in the unfolded 1 Fe–unit-cell Brillouin zone,22 although both
signals would be backfolded on the % point in the 2 Fe unit
cell relevant, e.g., for the interpretation of the angle-resolved
photoemission results. Therefore, the proposed experiment can
provide a direct measurement of the q vector dominating the
repulsive interaction and eventually leading to a sign change of
the superconducting gap on Fermi surface regions connected
by q.

In recent unpublished work, Wang et al. used a fRG
approach and also concluded that the leading pairing instability
of a KxFe2−ySe2 model occurs in the dx2−y2 channel.23 Mazin24

and Saito et al. 25 further discussed the effects of I4/mmm
symmetry mentioned here which induce d-wave nodes in the
122 structure.
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experiments
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FIG. 2. (Color online) Left column: χ (q,ω = 0) for (top to bottom) dopings x = 0.15, 0.09, 0.05, 0.0 electrons. Next two columns: The
leading and next leading eigenfunction gk at the same dopings. Red and blue colors indicate positive and negative values, while the symbol
size reflects the magnitude. For the interaction parameters that we have taken, the d-wave and extended s± states are nearly degenerate for a
range of dopings between x = 0.1 and 0.0 with a change from d to s± pairing occurring between x = 0.05 and 0.0.

close to each other and where small changes can lead to an
evolution of one state into another or to even the formation
of an xs + id state. Thus it represents an interesting testing

ground to explore the neutron scattering resonances. Results
for momentum transfers q1 = (π,0.16π ) and q2 = (π,0.7π ),
corresponding to the peaks in the dynamical susceptibility of

094514-4

when moving to a higher BZ along the out-of-plane direc-
tion than in-plane, indicating that the magnetic moment is
oriented predominantly along the L direction in this sys-
tem. This is consistent with the reported spin configuration
in the magnetically ordered phase, in which spins are
alternatively pointing up and down along the c axis [25].
Figure 2(c) shows inelastic magnetic intensity in the vi-
cinity of the AFM ordering wave vector Q ¼
ð1:3 0:1 0:5ÞFe1 at 11.5 meV, measured at a low tempera-

ture, T ¼ 1:5 K. The intense spin-wave peak is consistent
with recent time-of-flight INS measurements on an insu-
lating Rb2þ!Fe4Se5 compound [26].

Now we turn to the INS measurements across Tc near a
few candidate Q vectors, where the magnetic resonant
mode could be expected. Figures 3(a) and 3(b) display
raw energy-scan spectra recorded above and below Tc at
Q ¼ ð0:5 0:3125 0:5ÞFe1 , where the resonance has been

theoretically predicted [12], and at ð0:5 0 0:5ÞFe1 , where
it is usually found in other Fe-based superconductors [7,8].
In the absence of any resonant enhancement, the intensity
is expected to be higher in the normal state due to the
influence of the Bose factor at low energies. Already in the
raw data, one can see that this is the case for all data points
except a narrow energy region around 14 meV at Q ¼
ð0:5 0:3125 0:5ÞFe1 .

To emphasize this effect and to eliminate the energy-
dependent background, we plot temperature differences of
the same data sets in Figs. 3(c) and 3(d). Also shown
are the difference spectra for Q ¼ ð0:5 0:5 0:5ÞFe1 ,
ð0:5 0:25 0:5ÞFe1 , and ð0:5 0 0ÞFe1 . As seen in Fig. 3(c), a

prominent peak (shaded region) is found at "!res %
14 meV for Q ¼ ð0:5 0:3125 0:5ÞFe1 and Q ¼
ð0:5 0:25 0:5ÞFe1 , which we attribute to the magnetic reso-

nant mode. However, no such peak is observed at Q ¼
ð0:5 0:5 0:5ÞFe1 , in contrast to some alternative predictions

based on the d-wave pairing symmetry [13]. Figure 3(d)
also demonstrates the absence of any resonant mode at
Q ¼ ð0:5 0 0:5ÞFe1 and ð0:5 0 0ÞFe1 , where it is usually

found in iron pnictides [7,8]. At these wave vectors, the
data simply follow the solid line, which is the Bose-factor
difference between 1.5 and 35 K.

To verify whether the observed redistribution of spectral
weight at low temperatures is related to the SC transition,
we have measured the temperature dependence of the
resonance intensity at Q ¼ ð0:5 0:3125 0:5ÞFe1 , which is

shown in Fig. 3(e). Indeed, an order-parameter-like in-
crease of intensity below Tc is found, which is accepted
as the hallmark of the magnetic resonant mode.

To pin down the exact location of the resonance in Q
space, we have measured momentum scans along the BZ
boundary at both temperatures. Their difference is pre-
sented in Fig. 3(f) and suggests a maximum at the com-
mensurate nesting wave vector Qres ¼ ð0:5 0:25 0:5ÞFe1
shown by the star symbols in Fig. 2(a), close to the

predicted resonance position, Q ¼ ð0:5 0:3125 0:5ÞFe1
[12]. Yet, the disagreement is small compared to the Q
width of the peak, which explains the similar INS response
at both Q vectors, as seen from Fig. 3(c). Because the

FIG. 3 (color online). (a),(b) Raw energy scans measured in
the SC (1.5 K) and normal (35 K) states at Q ¼
ð0:5 0:3125 0:5ÞFe1 and ð0:5 0 0:5ÞFe1 , respectively. The inset in

(a) shows the zoomed-in part of the resonant peak in the
raw data. (c) Intensity difference between the SC state and
the normal state at three Q vectors: ð0:5 0:25 0:5ÞFe1 ,
ð0:5 0:3125 0:5ÞFe1 , and ð0:5 0:5 0:5ÞFe1 . While there is no posi-
tive intensity at (0.5 0.5 0.5), a clear resonance peak (shaded
region) is observed around 14 meV both at ð0:5 0:25 0:5ÞFe1 and
ð0:5 0:3125 0:5ÞFe1 . (d) The same plot as in (c) but for Q ¼
ð0:5 0 0:5ÞFe1 and ð0:5 0 0ÞFe1 , where the magnetic resonant
mode has been found in other Fe-based superconductors but is
absent here. The base line in (c),(d) is the difference of the Bose
factors. (e) Temperature dependence of the raw INS intensity at
14 meV and Q ¼ ð0:5 0:3125 0:5ÞFe1 that demonstrates an

order-parameter-like behavior with an onset at Tc. (f) Intensity
difference of momentum scans along the BZ boundary, measured
below and above Tc, with a maximum at the commensurate wave
vector Qres ¼ ð0:5 0:25 0:5ÞFe1 . The solid line is a Gaussian fit

with a linear background. Different symbols represent identical
momentum scans measured in different experiments, rescaled
to the (002) nuclear Bragg peak intensity. The position of
the resonant mode predicted by Maier et al. [12] is shown by
the arrow.
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FIG. 2. (Color online) (a) Color map of the reciprocal space,
showing intensity difference between the SC and normal states at
E = 15 meV, measured by the FlatCone detector. (b) The same map
as in (a), rebinned on a 81 × 81 grid, symmetrized with respect to
the mirror planes and smoothed using a Gaussian filter with 1 pixel
standard deviation. (c) Longitudinal cuts (along the short axis of the
ellipse) through the data in (a) at all four resonance positions. The
intensity was integrated within a window of 0.28 r.l.u. in the direction
perpendicular to the cut. (d) The same in the transverse direction (long
axis of the ellipse). The intensity was integrated within a window of
0.12 r.l.u. in the direction perpendicular to the cut. The widths of the
integration windows are given by the horizontal and vertical bars in
panel (a), respectively.

anisotropic widths of the transverse and longitudinal profiles
are observed in the intensity difference. The peak in the
longitudinal direction for both resonances near ( 3

4
1
2 0) and

( 1
2

3
4 0) in Fig. 3(a) is found at an incommensurate position of

H = 0.78 or K = 0.78, respectively, as marked by the arrow.
This is also consistent with the FlatCone data in Fig. 3(c),
where the peak intensity is offset to the right from H = 3

4 .
An elliptical in-plane shape of the resonance has also been

observed in BaFe2−xCoxAs2
25,34 and in Ba1−xKxFe2As2

35

at the BZ boundary, so that both axes of the ellipse are
aligned along the natural mirror planes of the reciprocal space.
In RbxFe2−ySe2, however, the ellipse could be asymmetric,
because H = 3

4 is not a natural high-symmetry plane. Indeed,
the shape in Fig. 3(c) suggests a slight bending of the ellipse
toward ( 1

2
1
2 0). In the colormap in Fig. 3(c), we also observe

weak streaks of intensity reaching toward ( 1
2

1
4 0) and ( 3

4
1
2 0),

barely above the statistical noise level, which could form parts
of a ring connecting all four resonance positions. Nevertheless,
the peak profile measured parallel to the longitudinal direction
and offset by 0.08 r.l.u. from the center of the ellipse [Fig. 3(d)]
does not show any notable shift of the peak center beyond
statistical uncertainty. This indicates a nearly symmetric
(noncurved) shape of the resonance peak in the vicinity of
its maximum.

Finally, we turn to the in-plane dispersion of the resonance,
which could be studied due to the broad distribution of the
resonant intensity in energy, as can be seen in Fig. 1(e).
Figure 3(e) presents longitudinal momentum scans of the
resonant intensity at 12, 15, and 18 meV. Here, the peak
center shifts from H = (0.764 ± 0.002) r.l.u. at 12 meV to
H = (0.782 ± 0.003) r.l.u. at 15 meV, although we do not
resolve a further shift upon changing the energy to 18 meV.
Moreover, comparison of the peak position at L = −0.5
[Fig. 1(a)], centered at H = 0.244 ± 0.002, and at L = 0
[Fig. 3(a)], where it is shifted to a position equivalent to
H = 0.218 ± 0.003, also suggests a small (∼10%) variation
in the peak position along the c axis.

To verify the origin of the observed spectrum of spin excita-
tions in RbxFe2−ySe2, we will now compare our experimental
observations with the results of band structure calculations.
For this purpose, we employ the tight-binding model that
was introduced in Ref. 28 to describe the electronic structure
of an electron-doped AxFe2Se2. The chemical potential has
been adjusted by a rigid-band shift of the bands to match
the positions of the magnetic resonant peaks in the calculated
susceptibility with the experimental data. This resulted in a
doping level of ∼0.18 electrons/Fe, in reasonable agreement

FIG. 3. (Color online) TAS-mode data. (a) Longitudinal momen-
tum scans through the center of the ellipse at Q1 = ( 3

4
1
2 0) (triangles)

and Q2 = ( 1
2

3
4 0) (squares and diamonds) as indicated in sketch (c)

at E = 15 meV. The intensity in the SC and in the normal states (top)
is shown together with their difference (bottom). (b) The same for
transverse momentum scans at Q2 = ( 3

4
1
2 0). (c) A fragment of the

FlatCone map from Fig. 2 that illustrates the directions of the scans
shown in this figure. Panels (d) and (e) show only the difference
in intensity between SC and normal states. (d) Momentum scan
at E = 15 meV parallel to the longitudinal direction at K = 0.42,
offset from the center of the ellipse. (e) Momentum scans at different
energies along the short axis of the ellipse. The plot at E = 15 meV is
an average of the two profiles in panel (a) at both resonance positions.
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122 symmetry and d-wave gap nodes
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Symmetry analysis of possible superconducting states in KxFe ySe2 superconductors
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A newly discovered family of Fe-based superconductors is isostructural with the so-called 122 family of
Fe pnictides but has a qualitatively different doping state. Early experiments indicate that superconductivity is
nodeless, yet prerequisites for the s± nodeless state (generally believed to be realized in Fe superconductors)
are missing. It is tempting to assign a d-wave symmetry to the new materials, and it does seem, at first glance,
that such a state may be nodeless. Yet a more careful analysis shows that it is not possible, given the particular
122 crystallography. If indeed superconductivity in this system is nodeless, the possible choice of admissible
symmetries is severely limited: it is either a conventional single-sign s+ state or another s± state, different from
the one believed to be present in other Fe-based superconductors.

DOI: 10.1103/PhysRevB.84.024529 PACS number(s): 74.20.Pq, 74.25.Jb, 74.70.Xa

Recent reports of superconductivity at Tc in excess of
35 K1 in iron based superconductors (FeBS) isostructural with
BaFe2As2 (the so-called 122 structure), but with Se instead of
As, have triggered a new surge of interest among the physics
community. These materials are believed by many to open a
new page in Fe-based superconductivity (see Ref. 2 for a brief
review). Indeed, the stoichiometric composition, AFe2Se2,
where A is an alkali metal, corresponds to a formal doping
of 0.5 electron off the standard for FeBS parent compound
(LaFeAsO, BaFe2As2, or FeSe) valence state of iron, Fe2+.
Such a large doping in other materials, such as Ba(Fe,Co)2As2,
leads to complete suppression of superconductivity, which has
been generally ascribed3,4 to disappearance of the hole pockets
of the Fermi surface and formal violation of the quasinesting
condition for the s± superconductivity.

Indeed all band structure calculations show5 that in
AFe2Se2 the hole bands are well under the Fermi surface
(for the reported experimental crystal structure of KFe2Se2,
about 60 meV), and this is confirmed by preliminary ARPES
results.6–8 This has led to various speculations9–11, in particular
that in this subfamily it is not the familiar s± superconductivity
that is realized, but a d-wave superconductivity6,9,10 of the sort
discussed in an early paper by Kuroki et al.12 Unfortunately,
these speculations are entirely based on the “unfolded”
Brillouin zone (BZ) description of the electronic structure,
a simplified model that neglects the symmetry lowering due to
the As or Se atoms and the fact that in the real unit cell there are
two Fe ions, not one. Furthermore, they implicitly assume that
spin susceptibility corresponding to the “checkerboard” wave
vector, Q = (π̄,π̄ ), is substantially enhanced, despite the fact
that this vector corresponds to an electron-electron interband
transition that is much less efficient in enhancing susceptibility
than electron-hole transitions (here and below, we use an over
bar when we work in the unfolded BZ). This assumption is
supported by model calculations based on an on-site Hubbard
Hamiltonian,9 but applicability of this Hamiltonian to FeBS
(including pnictides) is still an open question.

In this paper, we critically address these two assumptions
and show that the latter assumption is supported by first
principles calculations, but the former assumption is actually
very misleading. We present a general symmetry analysis of
possible superconducting symmetries supported by the Fermi

surface topology existing in AFe2Se2. This analysis is not
limited by a specific density functional calculation but is based
on the general crystallographic considerations appropriate
for this crystal structure. It appears that it is impossible to
fold down a nodeless d-wave state so as to avoid formation
of line nodes. Thus, emerging experimental evidence from
ARPES,6–8 specific heat,13 NMR,14 and optics15 that super-
conductivity in AFe2Se2 is nodeless is a strong argument
against a d wave. A conventional s state is also unlikely
based on the proximity to magnetism and actual observation
of a coexistence of superconductivity and magnetism. We
emphasize that the symmetry of the folded Fermi surfaces
does allow for a nodeless state, which, however, has an overall
s symmetry and can also be called s±, as it is strongly sign
changing. Unlike the s± advocated for the “old” FeBS, it is not
driven by (π̄,0) spin fluctuations and cannot be derived from
considering an unfolded BZ Fermi surface.

The unfolded Fermi surface topology in materials with
the 122 structure is controlled by two factors: ellipticity of
individual electron pockets and their kz dispersion (Fig. 1). The
ellipticity in the unfolded zone is determined by the relative
position of the xy and xz/yz levels of Fe and the relative
dispersion of the bands derived from them. Indeed,16 the point
on the Fermi surface located between "̄ and X̄ has a purely xy
character, while that between "̄ and M̄ has a pure yz character.
At the X̄ point the xy state is slightly below the yz state but
has a stronger dispersion; therefore, depending on the system
parameters and the Fermi level, the corresponding point of
the Fermi surface may be more removed from X̄, or less.
In the 1111 compounds, the first to have been investigated,
the dispersion of the xy band is not high enough to reverse the
natural trend, so the Fermi surface remains elongated in the
"̄X̄ (1,0) direction.

For both xy and xz/yz bands the hopping mainly proceeds
via As (Se) p orbitals. The xy states mainly hop through
the pz orbital (see Ref. 17 for more detailed discussions),
and xz (yz) via py (px) orbitals. If there is a considerable
interlayer hopping between the p orbitals, whether direct (11
family) or assisted (122 family), the ellipticity becomes kz

dependent. For instance, in FeSe there is noticeable overlap
between the Se pz orbitals, so that they form a dispersive band
with the maximum at kz = 0 and the minimum at kz = π/c.
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FIG. 1. A cartoon showing a generic 3D Fermi surface for
an AFe2Se2 material in the unfolded (one Fe/cell) Brillouin
zone. Different colors show the signs of the order parameter
in a nodeless d−wave state, allowed in the unfolded zone. The
Γ point is in the center (no Fermi surface pockets around Γ),
and the electron pockets are around the X̄, Ȳ points.

ellipticity becomes kz−dependent. For instance, in FeSe
there is noticeable overlap between the Se pz orbitals,
so that they form a dispersive band with the maximum
at kz = 0 and the minimum at kz = π/c. Obviously,
hybridization is stronger when the pz states are higher,
therefore the Fermi surface ellipticity is completely sup-
pressed in the kz=0 plane, while rather strong in the
kz = π/c plane, which leads to formation of the char-
acteristic “bellies” in the Fermi surface of FeSe. On the
other hand, px,y orbitals in FeSe do not overlap in the
neighboring layers, so the xz and yz bands have very
little kz dispersion, so that the inner barrels of the elec-
tronic pockets in this compound are practically 2D.
In 122, the interlayer hopping proceeds mainly via the

Ba (K) sites, and thus the kz dispersion is comparable
(but opposite in sign!) for the xy and xz/yz bands. As a
result, when going from the kz = 0 plane to the kz = π/c
plane the longer axis of the Fermi pocket shrinks, and the
shorter expands, so that the ellipticity actually changes
sign.
Importantly, the symmetry operation that folds down

the single-Fe Brillouin zone when the unit cell is dou-
bled according to the As (Se) site symmetry is different
in the 11 and 1111 structures, as compared to the 122
structure. In the former case, the operation in question
is the translation by (π̄, π̄, 0), without any shift in the
kz direction, in the latter by (π̄, π̄, π̄). Thus the folded
Fermi surface in 11 and in 1111 has full fourfold symme-
try, while that in the 122 has such symmetry only for one
particular kz, namely kz = π/2c. Furthermore, in 122 the
folded bands are not degenerate along the MX (now the
labels are without the bars, that is, corresponding to the
folded BZ), as they were in 11/1111. Finally, there is a

FIG. 2. A cartoon showing a folded 3D Fermi surface for
an AFe2Se2 material, assuming a finite ellipticity, but zero
kz dispersion. Different colors show the signs of the order
parameter in a d−wave state. Wherever the two colors meet,
turning on hybridization due to the Se potential creates nodes
in the order parameter.

considerable (at least on the scale of the superconducting
gap) hybridization when the folded bands cross (except
for kz = 0).
Now we are ready to analyze possible superconducting

symmetries in the actual AFe2Se2 materials. We shall not
adhere strictly to the calculated band structure and the
Fermi surfaces, but rather consider several possibilities
allowed by symmetry. Let us start first from a d−wave
state in the unfolded BZ, as derived in Refs.8,9,11. In
Fig. 1 we show by the two colors the signs of the order
parameter. Obviously in the unfolded BZ such a state
has no nodes.
Let us now assume that the kz dispersion is negligible,

while the ellipticity remains finite. After folding, but be-
fore turning on the hybridization, we have the picture
shown in Fig. 2. The border between the red and the
blue colored regions now becomes a nodal line17. In this
case, we have four such lines for each pair of electron
pockets. One can think of an effective “thickness” of
the nodal lines, meaning the distance in the momentum
space over which the sign of the order parameter changes.
This is defined by the ratio of the hybridization gap at
the point where the bands cross and their typical energy
separation. Analysis of the first principle calculations for
both As and Se based 122 compounds indicates that this
width is varying between zero (unless spin-orbit interac-
tion is taken into account) and a number of the order of
1. Thus, the effect of the nodal lines on thermodynami-
cal properties is comparable to that in one-band d−wave
superconductors such as cuprates and therefore should
be easily detectable.
Let us now gradually turn on the kz dispersion. Noth-

ing changes for kz = π/2c, that is, there are four equidis-

d-wave in unfolded zone develops nodes after folding



Possible gap structures 

is symmetric with respect to c ↔ f and hence is an s-wave. We also see that, in terms

of original fermions, the pairing condensate is now the inter-pocket one – it is made out

of fermions belonging to different pockets. What happened with the d-wave solution? At

large κ we have c†↑c
†
↓ − f †

↑f
†
↓ = −(a†↑b

†
↓ + b†↑a

†
↓). Hence, in terms of a and b operators, d-wave

pairing now becomes inter-pocket pairing. We see therefore that intra-pocket pairing in

terms of one set of fermions corresponds to inter-pocket pairing in terms of the other set.

Since the pairing symmetry changes from a d-wave to an s-wave between small and large κ,

and because within the original set the former is an intra-pocket pairing and the latter is

an inter-pocket pairing, one must include the two pairings on on equal footing in order to

describe the transformation from d- to s-wave symmetry.

+

−−

+

+

−

(a) (b)

FIG. 2: The structure of superconducting gap at small and large κ, which is the ratio of the

hybridization and the degree of ellipticity of the electron pockets. At the smallest κ (panel a), the

gap has different sign on the original FS pockets and is d-wave because it is antisymmetric with

respect to rotation by 90◦. At large κ (panel b), the gap again changes sign, but now between

hybridized FS pockets. This gap is symmetric with respect to 90◦ rotation and is therefore an

s-wave.

It is natural to analyze the pairing in terms of new a and b fermions because the Hamil-

tonian, Eq. (1), is then quadratic at all values of κ. We introduce intra– and inter–band

pair creation operators,

J†
± =

1

2

(

a†a† ± b†b†
)

, J̃†
± =

1

2

(

a†b† ± b†a†
)

. (8)
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materials, i.e., hybridized fermions belong to different
planes separated by kz ¼ ! [15,27]. To simplify the pre-
sentation, we first consider hybridization for a simple
tetragonal structure, for which hybridized fermions have
the same kz and then extend the analysis to body-centered
tetragonal structure.

Let cyk be a creation operator for electrons at (0, !), and
fyk ¼ cykþQ is a creation operator of electrons at (!, 0). The

quadratic part of the Hamiltonian H ¼ H2 þHint is

H2 ¼
X

k

"ckc
y
kck þ

X

k

"fkf
y
kfk þ

X

k

#½cykfk þ fykck$; (1)

where the first two terms describe fermion dispersion, and
the last term describes the hybridization. The two elliptical

FSs are defined by "cðfÞk ¼ "F. We approximate fermion
excitations near these FSs by "ck ¼ vFð$Þ½k' kFð$Þ$,
"fk ¼ vFð$þ !=2Þ½k' kFð$þ !=2Þ$, where $ is the
angle along each of the FSs counted from the x-axis. By
virtue of tetragonal symmetry, vFð$Þ ¼ vFð1þ a cos2$Þ
and kFð$Þ ¼ kFð1þ b cos2$Þ. The anisotropy of the
Fermi velocity does not play a major role in our analysis,
but the eccentricity of the FS (the parameter b) is overly
relevant. Both b and #=ðvFkFÞ are small for AFe2Se2
(Ref. [15]), but their ratio % ¼ #=ðvFkFjbjÞ can be arbi-
trary. We set # to be constant. In general, # depends on $
because of (i) off-plane positioning of Se atoms with
respect to Fe atoms, and (ii) orbital structure of hopping
integrals between Fe and Se. We verified that the depen-
dence coming from (i) is irrelevant for our analysis, while
the dependence from (ii) changes numbers but does not
modify our phase diagram, Fig. 1.

The interaction Hamiltonian involves direct,
momentum-conserving, 4-fermion interactions, and inter-
actions with excess momentum Q. There are four direct
interactions allowed by symmetry,

H1 ¼
u1
2

Z
dxðcy&fy&0f&0c& þ fy&c

y
&0c&0f&Þ

H2 ¼
u2
2

Z
dxðcy&fy&0c&0f& þ fy&c

y
&0f&0c&Þ

H3 ¼
u3
2

Z
dxðcy&cy&0f&0f& þ fy&f

y
&0c&0c&Þ

H4 ¼
u4
2

Z
dxðcy&cy&0c&0c& þ fy&f

y
&0f&0f&Þ: (2)

H1 and H2 are interband density-density and exchange
interactions, H4 is the intraband density-density interaction,
and H3 describes the umklapp pair-hopping processes. For
circular pockets, the couplings ui are related as there are
only three combinations invariant under Oð2Þ rotational
symmetry in (c, f) space and SUð2Þ spin symmetry—n2,
S2, and ~n2, where n ¼ cy'c' þ fy'f' is the total charge
density, S ¼ ð1=2Þðcy'c( þ fy'f(Þ&'( is the total spin,

and ~n ¼ cy'f' ' fy'c'. Hence H ¼ Un2=2þ J0~n2=2þ
2JS2, and the interactions ui are u1 ¼ U' J, u2 ¼ '2J '
J0, u3 ¼ J0, u4 ¼ U' 3J. Then 'u ¼ u4 ' u3 ¼
u1 þ u2 ¼ U' 3J ' J0. For weak ellipticity, u1 þ u2 and
u4 ' u3 do not have to be identical, but remain close and we
will keep them equal for simplicity. We will need u to be
positive for superconductivity. This is the case when Hund
interaction is the dominant one. If u is negative, the system
likely develops a magnetic order instead of superconductiv-
ity. The interaction with excess momentum Q is

HQ ¼ w1

Z
dxðcy&f& þ fy&c&Þðcy&0c&0 þ fy&0f&0Þ: (3)

Other interactions withQ vanish without time-reversal sym-
metry breaking.
The quadratic Hamiltonian can be diagonalized

by unitary transformation to new operators ak ¼
ck cos)k þ fk sin)k, bk ¼ 'ck sin)k þ fk cos)k with

sin2)k ¼ #=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#2 þ ð"ck ' "fkÞ2=4

q
, cos2)k ¼ ð"ck ' "fkÞ=

ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#2 þ ð"ck ' "fkÞ2=4

q
Þ. In terms of new operators,

H2 ¼
X

k

Ea
ka

y
kak þ

X

k

Eb
kb

y
kbk; (4)

with

Ea;b
k ¼ 1

2
ð"ck þ "fkÞ ( ½#2 þ ð"ck ' "fkÞ2=4$1=2: (5)

In our notations, ð"ckþ"fkÞ=2)"FþvFðk'kFÞ¼"Fþ*,

and ð"ck'"fkÞ=2)vFkFbcos2$, such that Ea;b
k '"F¼*(

#ð1þcos22$=%2Þ1=2, cos22) ¼ cos22$=ð%2 þ cos22$Þ,
and sin22) ¼ %2=ð%2 þ cos22$Þ.

FIG. 1 (color online). The phase diagram in (%, T) plane for
Fe-based superconductors with only electron pockets (% is the
ratio of the hybridization and the degree of ellipticity of the
electron pockets). The sþ id phase with broken time-reversal
symmetry is shown by the dark (gray) shaded area. The two
neighboring superconducting phases at %< ð>Þ%* have
dðsÞ-wave symmetry, respectively. In the d0 region the excitation
spectrum is fully gapped even though the symmetry is d wave.
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predicts that the two electron-pockets in K
x

Fe
y

Se2 are strongly hybridized, over most

of the Fermi surface the calculations predict similar bonding-antibonding splitting and

a possibility of a strictly-nodeless sign-changing s-wave superconductivity [290]. The

three di↵erent types of states are summarized in figure 29.

Figure 29. This cartoon shows three proposed pairing states for K
x

Fe2�y

Se2 in the
2-Fe Brillouin zone. As suggested by the first principles calculations, a finite gap
between the inner and the outer Fermi surface sheets is introduced. (a) d-wave state,
including small parts of the Fermi surface where the gap is small; (b) the “incipient”
s± state, with hole bands in proximity of the Fermi level, but not crossing it; (c) the
“bonding-antibonding” s± state. Note that (a) and (c), but not (b), can give rise to a
spin resonance at (⇡,⇡) (in the unfolded Brillouin zone).

One of the latest experimental developments relevant to the the order parameter

in K
x

Fe
y

Se2 is a recent inelastic neutron scattering measurement [277]. In agreement

with ARPES-measured band structure, these authors did not find any peak around the

(⇡, 0) wave vector, indicating the absence of the conventional electron–hole nesting. In

agreement with theoretical expectation [274], there is not much scattering at exactly

(⇡, ⇡), even though this is the vector of nearly exact electron–electron nesting. The

reason is that the real part of the noninteracting spin-susceptibility is large when the

Fermi velocities of the initial and the final states are opposite, and the real part controls

the Stoner enhancement of the full susceptibility. Thus, a peak in susceptibility is

expected when the FSs displaced by the given momentum just touch; if the radius of

the electronic FSs in K
x

Fe
y

Se2 is k
F

, then a peak in the neutron scattering is expected

near Q = (⇡/a, ⇡/a)�(k
F

, k
F

). Actual calculations [274] show that due to the somewhat

squarish shape of the FS the peak appears to be asymmetric and located at (⇡, 0.625⇡)

(for 0.1e doping). Experimentally, a peak is observed at (⇡, ⇡/2), not far from this

predicted position, and found to be resonantly enhanced below T
c

. The latter fact

indicates that this wave vector connects two points on the FS, and these points have

order parameters of the opposite signs, consistent, in principle, with the “quasi-nodeless”

d-wave or with the bonding-antibonding s±, but not with the “incipient s±”.

A second look, however, reveals that this straightforward interpretation may be too

naive. Indeed, the FS suggested by ARPES has by far too small electron pockets to

provide any states removed from each other by (⇡, ⇡/2). One either needs to assume

“Unfolded” Mazin s± stateTaken from 
Hirschfeld, Korshunov & Mazin,  Rep. Prog. Phys. 74, 124508 (2011)

quasi-nodeless d incipient s± bonding — antibonding s±

Fang et al., 2011 Mazin 2011, Khodas & 
Chubukov 2011

Fang et al., Maier et al., 
Saito et al., 2011
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FIG. 1. (Color online) Details of the bandstructure of the tight-
binding model for KxFe2�ySe2 where a shift of the chemical poten-
tial has been applied to obtain a filling of n= 6.12 (underdoped case).
The orbital character is indicated by the colors red: dxz, green dyz,
blue dxy, yellow dx2�y2 , purple d3z2�r2 and the value of the largest
orbital weight is proportional to the radius of the dots. The dotted
line represents the Fermi level for filling n = 6.12 while the dash-
dotted (red) line is the Fermi level for filling n = 6.25 (overdoped
case).

fluctuation interaction.
This paper is organized as follows. In Sec. II we introduce

a 3D ten-orbital Hubbard-Hund model which will be used to
describe the 2-Fe per unit cell A-122 materials. The band
structure and the Fermi surfaces for two representative band
fillings are described, and we briefly review the fluctuation-
exchange approximation to the pairing vertex and the lin-
earized gap equation. We discuss how the 3D 10 Fe-orbital
tight-binding Hamiltonian adopted can capture certain sym-
metry effects which are missing in the 2D descriptions. We
next present in Sec. III our results for the pairing vertices
and gap functions, and show that for the given nonrelativis-
tic DFT-based tight-binding bands, the leading states are al-
ways dx2�y2 states with quasi-nodes not enforced by d-wave
symmetry. Other d-wave states and bonding-antibonding s±-
wave states are the next leading pairing instabilities, but are
strongly suppressed in this treatment. In Sec. IV, we consider
physical effects, including spin-orbit coupling, neglected in
the “standard” approach that can hybridize the electron pock-
ets significantly and tend to stabilize the bonding-antibonding
s±-state. We find however that, within a physical reasonable
parameter range, the dx2�y2 pairing channel remains stable. In
Sec. V we finally present our conclusions.

� � � � � � � �

� � � � � � � � � � � � � � �

The nonrelativistic electronic structure for KxFe2�ySe2 has
been obtained using the WIEN2k15 package in conjunc-
tion with the WIEN2Wannier addon and the Wannier90 pro-

gram. After the projection onto Wannier orbitals, the nearest-
neighbor hoppings tx(dxz,dxz) and tx(dxy,dxy) and the symme-
try related hoppings (in the 1 Fe description) were reduced
by d t = 0.0625eV to approximately match the features of the
Fermi surface seen by ARPES experiments5,16. Details of the
band structure described by the Hamiltonian

H0 = Â
s

Â
i j

Ầ̀
0
t``

0
i j c†

i`s c j`0s , (1)

where t``
0

i j are the hoppings connecting sites i and j for orbitals
` and `0, are shown Fig. 1 for energies close to the Fermi level.

Within the approximation to the electronic pairing vertex
described below, the electronic structure enters the pairing
strength eigenvalue problem Eq. (11) only through the Fermi
surface. Due to the sample preparation issues alluded to
above, several possible dopings have been reported for super-
conducting samples. In this investigation, we consider two
doping levels, (see Fig. 1), which represent different ends
of the superconducting range in order to illustrate the effect
of doping on the pairing. Although there is no clear empir-
ical relationship between Tc and doping in this material, we
will refer to the doping with n = 6.12 electrons as “under-
doped”; it is close to the critical doping where the G-centered
hole pocket disappears17, and corresponds nominally18 to the
alloy K0.8Fe1.7Se2. We also consider an “overdoped” filling
n = 6.25, which corresponds to K0.85Fe1.8Se2.

The Fermi surfaces derived from our tight-binding model
shown in Fig. 2 exhibit two significant differences between
the two dopings: in the underdoped case, electron-like pockets
centered at the Z-point (labeled by k1,k2) are negligibly small,
suggesting that 2D calculations performed previously6,7 may
be accurate, with the exception of features attributable to
the peculiar 122 crystal symmetry9. In the overdoped case
n = 6.25, on the other hand, these Z-centered pockets make
a significant contribution to the Fermi level density of states.
Note that the orbital weight on the football-shaped Z-pockets
is mainly dxz and dyz, whereas near the poles along G-Z and
Z �R it is dxy, see Fig. 1 and 2. In addition, the dispersion
of the hybridized bands that lead to the M-centered electron-
like pockets makes the orbital weight of the inner and outer
pockets (labeled by d

in,out
1 ,d in,out

2 ) look quite different be-
tween the two doping levels: while in the underdoped case
the outer electron-like pocket is mainly dxy in character (apart
from some spots close to the hybridization lines) and the in-
ner pocket shows vertical stripes of dxz or dyz character, in the
electron doped case the hybridization of the sheets occurs on
a horizontal line leading to spots of orbital weight of all three
orbitals on the inner and outer sheets.

3

a) b)

FIG. 2. (Color online) Orbital character of the Fermi surface shown in k-space (set the lattice constants a = c = 1) plotted in the conventional
(2-Fe) reciprocal unit cell of KFe2Se2 for filling n1 = 6.12 a) and n2 = 6.25 b), red: dxz, green dyz, blue dxy visualized with the summed-color
method where the absolute value of the overlap is mapped to the RGB value of the color on the surface. Note that the inner electron pockets
have been shifted artificially by 2p in the kx direction to make them visible; the shift vector is indicated by a black arrow.

B. Spin fluctuation pairing

The local interactions are included via the 10-orbital
Hubbard-Hund Hamiltionan

H = H0 +Ū Â
i,`

ni`"ni`#+Ū 0
0

Â
i,`0<`

ni`ni`0

+ J̄
0

Â
i,`0<`

Â
s ,s 0

c†
i`s c†

i`0s 0ci`s 0ci`0s (2)

+ J̄0
0

Â
i,`0 6=`

c†
i`"c†

i`#ci`0#ci`0"

where the interaction parameters Ū , Ū 0, J̄, J̄0 are given in
the notation of Kuroki et al.19. Here, ` is an orbital in-
dex with ` 2 (1, . . . ,10) corresponding to the Fe-orbitals
(dxz,dyz,dxy,dx2�y2 ,d3z2�r2) on the first and second iron atom
in the elementary cell. Note that the Â0 only gives a contribu-
tion when the indices ` and `0 label an orbital on the same iron
atom. The corresponding Fermi surface together with the or-
bital character for the two doping levels with fillings n1 = 6.12
and n2 = 6.25 are shown in Fig. 2. Given the Green’s func-
tions in our model with the eigenenergies x

n

(k) measured
from the Fermi level

Gn(k) =
1

iwn �x

n

(k)
, (3)

where we introduced the 4-momenta via k = (k,wn), we now
calculate the susceptibility in the normal state as

c

0
`1`2`3`4

(q) =� Â
k,µn

Mµn

`1`2`3`4
(k,q)Gµ(k+q)Gn(k). (4)

Here the matrix elements relating band and orbital space,
a`

n

(k) = hd`|nki combine to the tensor

Mµn

`1`2`3`4
(k,q) = a`4

n

(k)a`2,⇤
n

(k)a`1
µ

(k+q)a`3,⇤
µ

(k+q). (5)

Taking into account the interactions cited in Eq. (3) in a ran-
dom phase approximation (RPA) framework, we define the
spin- (cRPA

1 ) and orbital-fluctuation (cRPA
0 ) parts of the RPA

susceptibility for q = (q,wn = 0)

c

RPA
1`1`2`3`4

(q) =
n

c

0(q)
⇥

1�Ūs
c

0(q)
⇤�1

o

`1`2`3`4
, (6a)

c

RPA
0`1`2`3`4

(q) =
n

c

0(q)
⇥

1+Ūc
c

0(q)
⇤�1

o

`1`2`3`4
. (6b)

These susceptibilities will be evaluated at low temperatures
where they have saturated and no longer change.The spin sus-
ceptibility at w = 0 is then given by the sum

c(q) = 1
2 Ầ

1`2

c

RPA
`1`1`2`2

(q) . (7)

The interaction matrices Ūs and Ūc in orbital space consist
of linear combinations of the interaction parameters, and their
forms are given e.g. in Ref. 20.

Next, we define the scattering vertex in the singlet channel

Gi j(k,k0) = Re Â
`1`2`3`4

a`1,⇤
ni (k)a`4,⇤

ni (�k) (8)

⇥
⇥

G`1`2`3`4(k,k
0)
⇤

a`2
n j(k

0)a`3
n j(�k0) ,

where k and k0 are quasiparticle momenta restricted to the
pockets k 2 Ci and k0 2 Cj, where i and j correspond to the
band index of the Fermi surface sheets. The vertex function in
orbital space G`1`2`3`4 describes the particle-particle scattering
of electrons in orbitals `2,`3 into `1,`4. In RPA it is given
by21:

G`1`2`3`4(k,k
0) =



3
2

Ūs
c

RPA
1 (k�k0)Ūs

+
1
2

Ūs � 1
2

Ūc
c

RPA
0 (k�k0)Ūc +

1
2

Ūc
�

`1`2`3`4

. (9)
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FIG. 1. (Color online) Details of the bandstructure of the tight-
binding model for KxFe2�ySe2 where a shift of the chemical poten-
tial has been applied to obtain a filling of n= 6.12 (underdoped case).
The orbital character is indicated by the colors red: dxz, green dyz,
blue dxy, yellow dx2�y2 , purple d3z2�r2 and the value of the largest
orbital weight is proportional to the radius of the dots. The dotted
line represents the Fermi level for filling n = 6.12 while the dash-
dotted (red) line is the Fermi level for filling n = 6.25 (overdoped
case).

fluctuation interaction.
This paper is organized as follows. In Sec. II we introduce

a 3D ten-orbital Hubbard-Hund model which will be used to
describe the 2-Fe per unit cell A-122 materials. The band
structure and the Fermi surfaces for two representative band
fillings are described, and we briefly review the fluctuation-
exchange approximation to the pairing vertex and the lin-
earized gap equation. We discuss how the 3D 10 Fe-orbital
tight-binding Hamiltonian adopted can capture certain sym-
metry effects which are missing in the 2D descriptions. We
next present in Sec. III our results for the pairing vertices
and gap functions, and show that for the given nonrelativis-
tic DFT-based tight-binding bands, the leading states are al-
ways dx2�y2 states with quasi-nodes not enforced by d-wave
symmetry. Other d-wave states and bonding-antibonding s±-
wave states are the next leading pairing instabilities, but are
strongly suppressed in this treatment. In Sec. IV, we consider
physical effects, including spin-orbit coupling, neglected in
the “standard” approach that can hybridize the electron pock-
ets significantly and tend to stabilize the bonding-antibonding
s±-state. We find however that, within a physical reasonable
parameter range, the dx2�y2 pairing channel remains stable. In
Sec. V we finally present our conclusions.

II. MODEL

A. Band structure

The nonrelativistic electronic structure for KxFe2�ySe2 has
been obtained using the WIEN2k15 package in conjunc-
tion with the WIEN2Wannier addon and the Wannier90 pro-

gram. After the projection onto Wannier orbitals, the nearest-
neighbor hoppings tx(dxz,dxz) and tx(dxy,dxy) and the symme-
try related hoppings (in the 1 Fe description) were reduced
by d t = 0.0625eV to approximately match the features of the
Fermi surface seen by ARPES experiments5,16. Details of the
band structure described by the Hamiltonian

H0 = Â
s

Â
i j

Ầ̀
0
t``

0
i j c†

i`s c j`0s , (1)

where t``
0

i j are the hoppings connecting sites i and j for orbitals
` and `0, are shown Fig. 1 for energies close to the Fermi level.

Within the approximation to the electronic pairing vertex
described below, the electronic structure enters the pairing
strength eigenvalue problem Eq. (11) only through the Fermi
surface. Due to the sample preparation issues alluded to
above, several possible dopings have been reported for super-
conducting samples. In this investigation, we consider two
doping levels, (see Fig. 1), which represent different ends
of the superconducting range in order to illustrate the effect
of doping on the pairing. Although there is no clear empir-
ical relationship between Tc and doping in this material, we
will refer to the doping with n = 6.12 electrons as “under-
doped”; it is close to the critical doping where the G-centered
hole pocket disappears17, and corresponds nominally18 to the
alloy K0.8Fe1.7Se2. We also consider an “overdoped” filling
n = 6.25, which corresponds to K0.85Fe1.8Se2.

The Fermi surfaces derived from our tight-binding model
shown in Fig. 2 exhibit two significant differences between
the two dopings: in the underdoped case, electron-like pockets
centered at the Z-point (labeled by k1,k2) are negligibly small,
suggesting that 2D calculations performed previously6,7 may
be accurate, with the exception of features attributable to
the peculiar 122 crystal symmetry9. In the overdoped case
n = 6.25, on the other hand, these Z-centered pockets make
a significant contribution to the Fermi level density of states.
Note that the orbital weight on the football-shaped Z-pockets
is mainly dxz and dyz, whereas near the poles along G-Z and
Z �R it is dxy, see Fig. 1 and 2. In addition, the dispersion
of the hybridized bands that lead to the M-centered electron-
like pockets makes the orbital weight of the inner and outer
pockets (labeled by d

in,out
1 ,d in,out

2 ) look quite different be-
tween the two doping levels: while in the underdoped case
the outer electron-like pocket is mainly dxy in character (apart
from some spots close to the hybridization lines) and the in-
ner pocket shows vertical stripes of dxz or dyz character, in the
electron doped case the hybridization of the sheets occurs on
a horizontal line leading to spots of orbital weight of all three
orbitals on the inner and outer sheets.

Wannier TB fit of non-relativistic 
WIEN2k bandstructure

Kreisel, Wang, Maier, Hirschfeld & Scalapino, arXiv:1308.5683

x = 0.25 electrons/Fe
K0.85Fe1.7Se2

x = 0.12 electrons/Fe
K0.8Fe1.7Se2



Leading gap structures:                    

x=0.12

x=0.20
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d) e) f)
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FIG. 4. (Color online) Gap functions in the 2-Fe Brillouin zone for the leading instabilities obtained using rotational invariant interaction
parameters with U = 0.88 eV and J = U/4. Top row for the underdoped case (n = 6.12), middle row for the overdoped case (n = 6.25). In
both cases the gap function for the leading eigenvalue is a dx2�y2 wave which is followed by another d-wave state with dxy symmetry and an
s-wave state. Note that the gap function has been normalized such that N = 1 in Eq. (13). Bottom row: cuts at fixed kz for the overdoped case
to show accidental nodes in the leading dx2�y2 -wave gap on the d -pockets along high symmetry directions and in the other cases just along
lines parallel to the coordinate axes.

ing to a peak structure in the RPA susceptibility at an incom-
mensurate wave vector q ⇡ p(1.65,0.35,qz) for n = 6.12 and
q ⇡ p(1.6,0.4,qz) for n = 6.25. These are both close to the
wave vector determined in early 2D calculations7, as well as
to the wave vector of the neutron resonance peak in RbFe2Se2
determined by Inosov et al.30,31. In the underdoped case the
system is closer to the spin-density wave instability than in
the overdoped case. The latter also has a slightly smaller bare
susceptibility c0(q = 0), reflecting a lower density of states at
the Fermi level.

We now calculate the spin-singlet pair vertex by sym-
metrizing the opposite-spin pairing vertex Gi j(k,k0) !
1/2[Gi j(k,k0)+Gi j(k,�k0)] using Eq. (9). The leading eigen-
functions obtained by solving Eq. (10) are then presented for
the two doping cases in Fig. 4. One notices first that the order
of the leading pairing channels is the same in both cases. A
dx2�y2 state is the clear dominant pairing instability; while the
3D gap functions are complicated, the gaps on the d1 pock-

ets are seen to transform into minus those on the d2 pock-
ets under p/2 rotations of the system about the G� Z axis.
The same behavior is observed for the 2nd leading pair state
in both cases, which is however easily identifiable as a dxy
state by the symmetry-enforced vertical nodal lines along the
(0,0,kz)� (p,p,kz) directions. The third leading pair state
is of s-wave symmetry, as verified by inspection of the be-
havior of the d�pockets under p/2 rotations, and by con-
firming that the Z-centered k pocket has no nodes. In addi-
tion, one sees that the sign of the gap on the inner d is op-
posite to that of the gap on the outer d pocket, so that from
a symmetry point of view this state is indeed of the bonding-
antibonding s± type. However, we note that its structure is
considerably more complicated than the simple 2D models,
and that this gap displays strong anisotropy over the electron
pockets. In the underdoped case, deep vertical minima are ob-
served, while in the overdoped case loop nodes are formed.
While Ref. 29 includes some discussion of the momentum

x=0.25

dx2�y2

dxy xs

dx2-y2 ; λ=1.9 dxy; λ=0.59 xs±; λ=0.23

dx2-y2; λ=0.54 dxy; λ=0.11 xs±; λ=0.062

>              leading, with xs bonding-
antibonding subdominant
dx2�y2
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FIG. 4: Angular dependence of gap amplitudes of the first leading eigenvalue (dx2
−y2-wave) along several

constant kz-cuts including kz = −2π,−π, 0, π. The angle is measured counterclockwise from −kx direction
along the central axis of each pocket.
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FIG. 11: Angular dependence of gap amplitudes of the first leading eigenvalue (dx2
−y2-wave) along sev-

eral constant kz-cuts including kz = −max(2π, kmax
z,κ

),−0.6 max(2π, kmax
z,κ

), 0, 0.6 max(2π, kmax
z,κ

). U =
0.88 eV, J = 0.25U are used in the spin-fluctuation calculation. The angle is measured counterclockwise
from −kx direction along the central axis of each pocket.
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— Nodes on Z-pocket - inconsistent 
    with ARPES?

— “Nodal thickness” infinitely 
    small M. Xu et al., PRB 2012
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FIG. 6. (Color online) Comparison of the partial contributions to
the eigenvalue li j from scattering between the different pockets for
the three leading gapfunctions at n = 6.12 (a) and n = 6.25 (b).
l

k,k , l

k,d and then l

d1,out;d1,out , l

d1,out;d2,out ,ld1,out;d1,in,l
d1,in;d1,in,

l

d1,out;d2,in

tween contributions of first or second d pocket, (for example
l

d1,in;d1;out and l

d1,in;d2;out ) are the result of the fact that the
susceptibility and therefore also the pairing vertex is periodic
in the 1-Fe Brillouin zone. We note that, as expected, the
d � d pair scattering processes dominate, but some interest-
ing subtleties are also seen. As the system is underdoped, the
processes connecting the outer pockets, both intra- and inter-
band are the only ones which make a significant contribution,
whereas for the overdoped cases all processes within and be-
tween both d -pockets contribute roughly equally. Generally
the d-wave state has larger l because it not only gains pair-
ing strength from processes connecting inner to outer pockets,
but also from processes connecting inner to inner and outer to
outer pockets, for which the s-wave state has negative contri-
butions.

IV. EFFECT OF BAND HYBRIDIZATION

Within our approach presented until now, we have adopted
the results of a tight-binding Wannier downfolding of nonrel-
ativistic DFT bands for KFe2Se2. For systems in the P4/nmm
symmetry class, high symmetry paths on the boundary of the
tetragonal 2-Fe Brillouin zone are degenerate33. However, for
the 122 crystal structure (space group I4/mmm), these bands
must hybridize and such degeneracies are lifted. As discussed
in the appendix, these band splittings are still extremely small
in this particular 122 system, of order 2meV. This is illus-
trated in Fig. 7a), where this hybridization is essentially in-
visible. Thus when one examines the inner and outer electron
d -pockets around these near-crossing points the change in or-

bital weight is particularly abrupt, as seen in Fig. 2.
Within the context of the fluctuation-exchange approxima-

tion and the treatment of the electronic structure described
in Sec. II, we always find that the leading pair instability is
in the dx2�y2 channel. If one examines the predictions of
the model approach of Khodas and Chubukov, one is led di-
rectly to the conclusion that these results, for a wide range of
dopings and interaction parameters, suggest that the system
is in the small-k , i.e. extremely weak hybridization part of
the phase diagram. As noted by these authors, in the limit
of large hybridization a bonding-antibonding s±-wave state
is favored. One may ask, therefore, if the hybridization has
been treated sufficiently accurately here, or in other words,
can small changes in the accuracy of these bands lead to dra-
matically different results, in particular the stability of the
bonding-antibonding s±-wave state? To answer this question,
we consider the effect of spin-orbit coupling which is ne-
glected in the nonrelativistic treatment previously described,
and was known to enhance the splitting of the electron bands.
To perform the calculation for the pairing in a completely con-
sistent relativistic approximation requires not only the calcu-
lation of the 1-electron states in the presence of the spin orbit
coupling, but also the recalculation of the interaction matrices
in the pseudospin basis in which the 1-electron Hamiltonian
is diagonal. It is therefore beyond the scope of this paper,
and we instead present an approximation based on the correct
relativistic calculation of the band structure, but in which the
eigenstates are projected on the mayor spin component, e.g.
only the spin-up component after a renormalization is used.
The main purpose of this approximation is simply to create
a larger splitting of the d -electron pockets to see if a larger
hybridization might change the order of the pairing symmetry
states. In order to take spin-orbit coupling into account we
add a phenomenological spin-orbit coupling term

HSO = l

3d
Fe Â

i
Â

a=x,y,z
La

i Sa

i , (15)

where the spin-orbit coupling constant l

3d
Fe for Fe 3d-orbitals

can be obtained from the corresponding wavefunctions and
the crystal potential34. The matrices of the components of
the angular momentum operator are now evaluated in the
real basis and lead to a total 20⇥ 20 Hamiltonian in orbital
and spin space. The eigenenergies are then exactly the ones
one would use in a full calculation due to the Kramers dou-
blets; however the set of eigenstates projected onto the ma-
jority spin subspace does not exactly describe the real quan-
tum state. The band energies obtained from Eq. (15) using
a single spin-orbit coupling constant l

3d
Fe = 0.05 eV match

the DFT bands with spin-orbit coupling quite well, as can be
seen in Fig. 7, where details of bands from a relativistic (self-
consistent) DFT calculation are compared to the results using
the nonrelativistic band structure with the spin-orbit coupling
term in Eq. (15). Although there are deviations between the
self-consistent DFT calculation (solid lines) and the approxi-
mation (dashed line), the splitting of the bands is quite simi-
lar. In Fig. 8 we present the Fermi surface derived from the
model including spin-orbit coupling which shows stronger hy-
bridization and mixing of orbital weights compared to the one

3

a) b)

FIG. 2. (Color online) Orbital character of the Fermi surface shown in k-space (set the lattice constants a = c = 1) plotted in the conventional
(2-Fe) reciprocal unit cell of KFe2Se2 for filling n1 = 6.12 a) and n2 = 6.25 b), red: dxz, green dyz, blue dxy visualized with the summed-color
method where the absolute value of the overlap is mapped to the RGB value of the color on the surface. Note that the inner electron pockets
have been shifted artificially by 2p in the kx direction to make them visible; the shift vector is indicated by a black arrow.

B. Spin fluctuation pairing

The local interactions are included via the 10-orbital
Hubbard-Hund Hamiltionan

H = H0 +Ū Â
i,`

ni`"ni`#+Ū 0
0

Â
i,`0<`

ni`ni`0

+ J̄
0

Â
i,`0<`

Â
s ,s 0

c†
i`s c†

i`0s 0ci`s 0ci`0s (2)

+ J̄0
0

Â
i,`0 6=`

c†
i`"c†

i`#ci`0#ci`0"

where the interaction parameters Ū , Ū 0, J̄, J̄0 are given in
the notation of Kuroki et al.19. Here, ` is an orbital in-
dex with ` 2 (1, . . . ,10) corresponding to the Fe-orbitals
(dxz,dyz,dxy,dx2�y2 ,d3z2�r2) on the first and second iron atom
in the elementary cell. Note that the Â0 only gives a contribu-
tion when the indices ` and `0 label an orbital on the same iron
atom. The corresponding Fermi surface together with the or-
bital character for the two doping levels with fillings n1 = 6.12
and n2 = 6.25 are shown in Fig. 2. Given the Green’s func-
tions in our model with the eigenenergies x

n

(k) measured
from the Fermi level

Gn(k) =
1

iwn �x

n

(k)
, (3)

where we introduced the 4-momenta via k = (k,wn), we now
calculate the susceptibility in the normal state as

c

0
`1`2`3`4

(q) =� Â
k,µn

Mµn

`1`2`3`4
(k,q)Gµ(k+q)Gn(k). (4)

Here the matrix elements relating band and orbital space,
a`

n

(k) = hd`|nki combine to the tensor

Mµn

`1`2`3`4
(k,q) = a`4

n

(k)a`2,⇤
n

(k)a`1
µ

(k+q)a`3,⇤
µ

(k+q). (5)

Taking into account the interactions cited in Eq. (3) in a ran-
dom phase approximation (RPA) framework, we define the
spin- (cRPA

1 ) and orbital-fluctuation (cRPA
0 ) parts of the RPA

susceptibility for q = (q,wn = 0)

c

RPA
1`1`2`3`4

(q) =
n

c

0(q)
⇥

1�Ūs
c

0(q)
⇤�1

o

`1`2`3`4
, (6a)

c

RPA
0`1`2`3`4

(q) =
n

c

0(q)
⇥

1+Ūc
c

0(q)
⇤�1

o

`1`2`3`4
. (6b)

These susceptibilities will be evaluated at low temperatures
where they have saturated and no longer change.The spin sus-
ceptibility at w = 0 is then given by the sum

c(q) = 1
2 Ầ

1`2

c

RPA
`1`1`2`2

(q) . (7)

The interaction matrices Ūs and Ūc in orbital space consist
of linear combinations of the interaction parameters, and their
forms are given e.g. in Ref. 20.

Next, we define the scattering vertex in the singlet channel

Gi j(k,k0) = Re Â
`1`2`3`4

a`1,⇤
ni (k)a`4,⇤

ni (�k) (8)

⇥
⇥

G`1`2`3`4(k,k
0)
⇤

a`2
n j(k

0)a`3
n j(�k0) ,

where k and k0 are quasiparticle momenta restricted to the
pockets k 2 Ci and k0 2 Cj, where i and j correspond to the
band index of the Fermi surface sheets. The vertex function in
orbital space G`1`2`3`4 describes the particle-particle scattering
of electrons in orbitals `2,`3 into `1,`4. In RPA it is given
by21:

G`1`2`3`4(k,k
0) =



3
2

Ūs
c

RPA
1 (k�k0)Ūs

+
1
2

Ūs � 1
2

Ūc
c

RPA
0 (k�k0)Ūc +

1
2

Ūc
�

`1`2`3`4

. (9)

out(1)
out(1)

out(1)
out(2)

out(1)
in(1)

out(1)
in(2)

in(1)
in(1)

in(1)
in(2)

> Significant scattering 
between inner pockets 
and between outer 
pockets favors d-wave

Partial contributions to 

4

Within the fluctuation-exchange approach, the pairing
eigenfunction for a given set of parameters corresponds to the
leading eigenvalue of the weighted scattering vertex G(k,k0)
in the singlet channel. Technically, we can calculate the pair-
ing strength22

l

a

for different pairing channels a as eigenval-
ues of the linearized gap equation

� 1
VG

Z

VG
dDk0 G(k,k0)d (xk0)ga

(k0) = l

a

g
a

(k), (10)

where the integral is performed over the D-dimensional Bril-
louin zone with volume VG. In D = 3 this reduces to

� 1
VG

Â
j

Z

FS j
dS0 Gi j(k,k0)

g
a

(k0)

|vF j(k0)| = l

a

g
a

(k), (11)

where vF j(k0) is the Fermi velocity of band j and the in-
tegration is performed over the Fermi surface FS j. In this
formulation, our one electron basis diagonalizes the bilin-
ear band Hamiltonian and the contribution of interband pairs
(k " n ,�k # µ) are neglected for µ 6= n . These processes
are cut-off at low energies by |x

n

(k)� x

µ

(�k)|. The eigen-
function g

a

(k) for the largest eigenvalue then determines the
symmetry and structure of the leading pairing instability and
provides an approximate form for the superconducting gap
D(k) ⇠ g(k) at least close to Tc. The eigenvalue may also
be expressed directly in terms of the eigenfunction and pair
vertex as

l [g(k)] =

� 1
(2p)4N Â

i j

Z

Ci

dkk
vF(k)

Z

Cj

dk0k
vF(k0)

g(k)Gi j(k,k0)g(k0), (12)

where Ci is the Fermi surface corresponding to the band i.

N =
1

(2p)2 Â
i

Z

Ci

dkk
vF(k)

[g(k)]2 (13)

is the normalization that is chosen to be unity within this pa-
per to make the results for the magnitude of the gap function
independent of the number of points on the Fermi surface. We
may also decompose the various contributions to the pairing
according to Fermi pocket by defining a pocket index t by
R

Ci
= Â

ti

R

C
ti

, where ti runs over all distinct Fermi sheets as-
sociated with band i. Then

l = Â
th

l

th

(14)

sums all contributions involving all pair scattering processes
between pocket t and h , but includes all symmetry-equivalent
contributions into a given l

th

.
The Matsubara sum in Eq. (4) is carried out in the usual way

and we evaluate c

0
`1`2`3`4

by integrating over the full Brillouin
zone. To solve Eq. (11), we then use this matrix together with
Ūc and Ūs to construct the pairing vertex Gi j(k,k0). Finally,
the two-dimensional area of the Fermi surface sheets is dis-
cretized using a Delaunay triangulation together with a sim-
plification algorithm that keeps the angle between the surfaces

of neighbored triangles small to transform the integral equa-
tion Eq. (11) into an ordinary matrix equation which is solved
numerically. Typically we chose a k-mesh of 50x50x20 points
for the momentum integration and totally ⇡ 1200 points on all
Fermi surfaces to obtain a reasonable convergence both in the
bare susceptibility and the pairing calculation.

C. Symmetry of pair states

The early treatments of the pairing problem for AFe2Se2
used simplified 2D models with 1 Fe (5 d-orbitals) per unit
cell, in which case the electron pockets are well-separated in
momentum space around the X and Y points of the 1-Fe Bril-
louin zone. The problem of pairing of electrons in the pres-
ence of repulsive interactions is therefore similar to the study
of Agterberg et al.23, where simplified interactions between
and within pockets at high symmetry points were studied. In-
deed, the nodeless d-wave state obtained in these treatments6,7

is analogous to that obtained in 3D in Ref. 23 and arises sim-
ply from the requirement that in the presence of strong re-
pulsive interpocket interactions, the gap function must change
sign; dx2�y2 is favored over dxy because within the 1-Fe unit
cell model the nodal lines in the Brillouin zone correspond-
ing to the latter case are located on the Fermi surface, while
those for the former case are not. There are two essential dif-
ferences in the realistic problem of pairing in Fe-based su-
perconductors with the 122 structure considered here. The
first one is generic to all of the superconductors discovered
thus far and is derived from a proper symmetry analysis of the
single FeAs or FeSe layer; it involves the symmetries of the
electronic Bloch states imposed by the out-of-plane As or Se
atoms24–28, and has been shown to lead to the possibility of
novel pair states not accessible within 1-Fe descriptions of the
electronic structure.

A second complication arises in the materials with 122
crystal structure, which has I4/mmm space group symmetry
rather than the simpler P4/nmm symmetry characteristic of a
single FeAs or FeSe layer, or of a crystal consisting of a stack
of such layers in which the pnictogen or chalcogen atoms dis-
placements are “in phase”. In a system with P4/nmm sym-
metry, the 1-Fe per unit cell Brillouin zone, with one electron
pocket each around the X and Y points may be “folded” ex-
actly, yielding two electron pockets which cross each other at
the M points and the M-A line in the 2-Fe zone2. In a 122
crystal (I4/mmm), these electron bands hybridize at generic
kz values, splitting the Fermi surface pockets into distinct “in-
ner” and “outer” sheets. This splitting has consequences for
the pairing symmetry in these materials, as pointed out by
Mazin9; in particular, the nodeless d-wave state found in the
naive 2D 5-orbital theories must acquire nodes at these points.
As pointed out by Maier et al7, however, these nodes are
not determined by the d-wave symmetry per se, and there-
fore contribute phase space to physical observables which
scales with the hybridization strength, which may be small.
Maier et al. referred to these “narrow” nodes in this limit
as “quasi-nodes”. The hybridization also allows, in princi-
ple, a novel s-wave gap9 which changes signs between the

κ-κ κ-δ

κ-κ κ-δ

out(1)

out(2)

in(1)

in(2)



Effect of band hybridization
Consider spin-orbit coupling on Fe d-orbitals

- Project eigenstates onto majority spin component (and re-normalize)
- Bands calculated with λ = 0.05 eV describes DFT bands with SO well
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FIG. 6. (Color online) Comparison of the partial contributions to
the eigenvalue li j from scattering between the different pockets for
the three leading gapfunctions at n = 6.12 (a) and n = 6.25 (b).
l

k,k , l

k,d and then l

d1,out;d1,out , l

d1,out;d2,out ,ld1,out;d1,in,l
d1,in;d1,in,

l

d1,out;d2,in

tween contributions of first or second d pocket, (for example
l

d1,in;d1;out and l

d1,in;d2;out ) are the result of the fact that the
susceptibility and therefore also the pairing vertex is periodic
in the 1-Fe Brillouin zone. We note that, as expected, the
d � d pair scattering processes dominate, but some interest-
ing subtleties are also seen. As the system is underdoped, the
processes connecting the outer pockets, both intra- and inter-
band are the only ones which make a significant contribution,
whereas for the overdoped cases all processes within and be-
tween both d -pockets contribute roughly equally. Generally
the d-wave state has larger l because it not only gains pair-
ing strength from processes connecting inner to outer pockets,
but also from processes connecting inner to inner and outer to
outer pockets, for which the s-wave state has negative contri-
butions.

IV. EFFECT OF BAND HYBRIDIZATION

Within our approach presented until now, we have adopted
the results of a tight-binding Wannier downfolding of nonrel-
ativistic DFT bands for KFe2Se2. For systems in the P4/nmm
symmetry class, high symmetry paths on the boundary of the
tetragonal 2-Fe Brillouin zone are degenerate33. However, for
the 122 crystal structure (space group I4/mmm), these bands
must hybridize and such degeneracies are lifted. As discussed
in the appendix, these band splittings are still extremely small
in this particular 122 system, of order 2meV. This is illus-
trated in Fig. 7a), where this hybridization is essentially in-
visible. Thus when one examines the inner and outer electron
d -pockets around these near-crossing points the change in or-

bital weight is particularly abrupt, as seen in Fig. 2.
Within the context of the fluctuation-exchange approxima-

tion and the treatment of the electronic structure described
in Sec. II, we always find that the leading pair instability is
in the dx2�y2 channel. If one examines the predictions of
the model approach of Khodas and Chubukov, one is led di-
rectly to the conclusion that these results, for a wide range of
dopings and interaction parameters, suggest that the system
is in the small-k , i.e. extremely weak hybridization part of
the phase diagram. As noted by these authors, in the limit
of large hybridization a bonding-antibonding s±-wave state
is favored. One may ask, therefore, if the hybridization has
been treated sufficiently accurately here, or in other words,
can small changes in the accuracy of these bands lead to dra-
matically different results, in particular the stability of the
bonding-antibonding s±-wave state? To answer this question,
we consider the effect of spin-orbit coupling which is ne-
glected in the nonrelativistic treatment previously described,
and was known to enhance the splitting of the electron bands.
To perform the calculation for the pairing in a completely con-
sistent relativistic approximation requires not only the calcu-
lation of the 1-electron states in the presence of the spin orbit
coupling, but also the recalculation of the interaction matrices
in the pseudospin basis in which the 1-electron Hamiltonian
is diagonal. It is therefore beyond the scope of this paper,
and we instead present an approximation based on the correct
relativistic calculation of the band structure, but in which the
eigenstates are projected on the mayor spin component, e.g.
only the spin-up component after a renormalization is used.
The main purpose of this approximation is simply to create
a larger splitting of the d -electron pockets to see if a larger
hybridization might change the order of the pairing symmetry
states. In order to take spin-orbit coupling into account we
add a phenomenological spin-orbit coupling term

HSO = l

3d
Fe Â

i
Â

a=x,y,z
La

i Sa

i , (15)

where the spin-orbit coupling constant l

3d
Fe for Fe 3d-orbitals

can be obtained from the corresponding wavefunctions and
the crystal potential34. The matrices of the components of
the angular momentum operator are now evaluated in the
real basis and lead to a total 20⇥ 20 Hamiltonian in orbital
and spin space. The eigenenergies are then exactly the ones
one would use in a full calculation due to the Kramers dou-
blets; however the set of eigenstates projected onto the ma-
jority spin subspace does not exactly describe the real quan-
tum state. The band energies obtained from Eq. (15) using
a single spin-orbit coupling constant l

3d
Fe = 0.05 eV match

the DFT bands with spin-orbit coupling quite well, as can be
seen in Fig. 7, where details of bands from a relativistic (self-
consistent) DFT calculation are compared to the results using
the nonrelativistic band structure with the spin-orbit coupling
term in Eq. (15). Although there are deviations between the
self-consistent DFT calculation (solid lines) and the approxi-
mation (dashed line), the splitting of the bands is quite simi-
lar. In Fig. 8 we present the Fermi surface derived from the
model including spin-orbit coupling which shows stronger hy-
bridization and mixing of orbital weights compared to the one
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FIG. 7. (Color online) Comparison of bands within different approximations shown along low symmetry cuts: full relativistic DFT including
spin-orbit coupling (solid, red) compared to the tight-binding bands without spin-orbit coupling at kz = 0 (a) and kz = p/c (b) and kz = 2p/c
(c); full relativistic DFT compared to the tight-binding bands with spin-orbit coupling using l

3d
Fe = 0.05eV at kz = 0 (d) and kz = p/c (e) and

kz = 2p/c (f). The insets show details close to the regions where the bands hybridize, the dotted (blue) lines are the chemical potentials at
fillings n = 6.12,6.15,6.20,6.25 and 6.5 (parent compound).
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FIG. 8. (Color online) Fermi surface a) and leading pairing states
including spin-orbit coupling for filling n2 = 6.25 with U = 0.88eV
calculated with the spin-orbit coupling constant l

3d
Fe = 0.05eV b)-

d) together with the partial contributions to the pairing eigenvalue e)
and the relative changes of the partial contributions on switching on
the spin-orbit coupling f).

39 S. Cottenier, Instituut voor Kern- en Stralingsfysica, K.U.Leuven,
Belgium, ISBN 90-807215-1-4(2002)

40 The spin-orbit coupling on the Se-atoms does not significantly in-
fluence the band energies close to the Fermi level. We do not con-
sider it further although Se (Z = 34) in general leads to stronger
relativistic effects than Fe (Z = 26).

VI. SUPPLEMENTARY INFORMATION

A. DFT derived bandstructure of the parent compound
KFe2Se2

All DFT calculations performed in this work are based
on the WIEN2k15 package using the generalized gradient

FIG. 9. (Color online) DFT band structure without spin-orbit cou-
pling a) and with spin-orbit coupling b) and direct comparison of the
two results (dots: with spin-orbit coupling) c). The color codes the
symmetries according to the irreducible representation of the point
group.

approximation (PBE)36 where the structure parameters for
KFe2Se2 (space group I4/mmm at T = 297K) provided in
Ref. 37 were used. The lattice constants are a = 3.9136Å,
c = 14.0367Å and the internal coordinates for the Se atoms
were fixed at zSe = 0.3539.

1. Band structure and Wannier projection without spin-orbit
coupling

Good convergence is obtained for a k-mesh with 3000 k-
points (143) that was checked up to 273 k-points together with
RMT ⇥KMAX of 8.0, the band structure can be seen in Fig. 9
a). For the Wannier projection onto a 10-orbital tight-binding
model the 2⇥ 5 d-orbitals were selected as an initial guess
and an outer energy window of �2.3 . . .3.6eV was selected
in conjunction with an inner window of �0.5 . . .0.3eV to ob-
tain reasonable agreement in the low-energy regime. The sub-
sequent projection on atomic orbitals and the calculation of
maximally localized Wannier functions yield the initial tight-
binding hoppings for the single particle Hamiltonian Eq. (1).
For completeness we show results of the band structure and
the Fermi surface in Figs. 9 a) and 10 a). These compare well
to previous investigations38.
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Summary: Pairing state in KFe2Se2

materials, i.e., hybridized fermions belong to different
planes separated by kz ¼ ! [15,27]. To simplify the pre-
sentation, we first consider hybridization for a simple
tetragonal structure, for which hybridized fermions have
the same kz and then extend the analysis to body-centered
tetragonal structure.

Let cyk be a creation operator for electrons at (0, !), and
fyk ¼ cykþQ is a creation operator of electrons at (!, 0). The

quadratic part of the Hamiltonian H ¼ H2 þHint is

H2 ¼
X

k

"ckc
y
kck þ

X

k

"fkf
y
kfk þ

X

k

#½cykfk þ fykck$; (1)

where the first two terms describe fermion dispersion, and
the last term describes the hybridization. The two elliptical

FSs are defined by "cðfÞk ¼ "F. We approximate fermion
excitations near these FSs by "ck ¼ vFð$Þ½k' kFð$Þ$,
"fk ¼ vFð$þ !=2Þ½k' kFð$þ !=2Þ$, where $ is the
angle along each of the FSs counted from the x-axis. By
virtue of tetragonal symmetry, vFð$Þ ¼ vFð1þ a cos2$Þ
and kFð$Þ ¼ kFð1þ b cos2$Þ. The anisotropy of the
Fermi velocity does not play a major role in our analysis,
but the eccentricity of the FS (the parameter b) is overly
relevant. Both b and #=ðvFkFÞ are small for AFe2Se2
(Ref. [15]), but their ratio % ¼ #=ðvFkFjbjÞ can be arbi-
trary. We set # to be constant. In general, # depends on $
because of (i) off-plane positioning of Se atoms with
respect to Fe atoms, and (ii) orbital structure of hopping
integrals between Fe and Se. We verified that the depen-
dence coming from (i) is irrelevant for our analysis, while
the dependence from (ii) changes numbers but does not
modify our phase diagram, Fig. 1.

The interaction Hamiltonian involves direct,
momentum-conserving, 4-fermion interactions, and inter-
actions with excess momentum Q. There are four direct
interactions allowed by symmetry,

H1 ¼
u1
2

Z
dxðcy&fy&0f&0c& þ fy&c

y
&0c&0f&Þ

H2 ¼
u2
2

Z
dxðcy&fy&0c&0f& þ fy&c

y
&0f&0c&Þ

H3 ¼
u3
2

Z
dxðcy&cy&0f&0f& þ fy&f

y
&0c&0c&Þ

H4 ¼
u4
2

Z
dxðcy&cy&0c&0c& þ fy&f

y
&0f&0f&Þ: (2)

H1 and H2 are interband density-density and exchange
interactions, H4 is the intraband density-density interaction,
and H3 describes the umklapp pair-hopping processes. For
circular pockets, the couplings ui are related as there are
only three combinations invariant under Oð2Þ rotational
symmetry in (c, f) space and SUð2Þ spin symmetry—n2,
S2, and ~n2, where n ¼ cy'c' þ fy'f' is the total charge
density, S ¼ ð1=2Þðcy'c( þ fy'f(Þ&'( is the total spin,

and ~n ¼ cy'f' ' fy'c'. Hence H ¼ Un2=2þ J0~n2=2þ
2JS2, and the interactions ui are u1 ¼ U' J, u2 ¼ '2J '
J0, u3 ¼ J0, u4 ¼ U' 3J. Then 'u ¼ u4 ' u3 ¼
u1 þ u2 ¼ U' 3J ' J0. For weak ellipticity, u1 þ u2 and
u4 ' u3 do not have to be identical, but remain close and we
will keep them equal for simplicity. We will need u to be
positive for superconductivity. This is the case when Hund
interaction is the dominant one. If u is negative, the system
likely develops a magnetic order instead of superconductiv-
ity. The interaction with excess momentum Q is

HQ ¼ w1

Z
dxðcy&f& þ fy&c&Þðcy&0c&0 þ fy&0f&0Þ: (3)

Other interactions withQ vanish without time-reversal sym-
metry breaking.
The quadratic Hamiltonian can be diagonalized

by unitary transformation to new operators ak ¼
ck cos)k þ fk sin)k, bk ¼ 'ck sin)k þ fk cos)k with

sin2)k ¼ #=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#2 þ ð"ck ' "fkÞ2=4

q
, cos2)k ¼ ð"ck ' "fkÞ=

ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#2 þ ð"ck ' "fkÞ2=4

q
Þ. In terms of new operators,

H2 ¼
X

k

Ea
ka

y
kak þ

X

k

Eb
kb

y
kbk; (4)

with

Ea;b
k ¼ 1

2
ð"ck þ "fkÞ ( ½#2 þ ð"ck ' "fkÞ2=4$1=2: (5)

In our notations, ð"ckþ"fkÞ=2)"FþvFðk'kFÞ¼"Fþ*,

and ð"ck'"fkÞ=2)vFkFbcos2$, such that Ea;b
k '"F¼*(

#ð1þcos22$=%2Þ1=2, cos22) ¼ cos22$=ð%2 þ cos22$Þ,
and sin22) ¼ %2=ð%2 þ cos22$Þ.

FIG. 1 (color online). The phase diagram in (%, T) plane for
Fe-based superconductors with only electron pockets (% is the
ratio of the hybridization and the degree of ellipticity of the
electron pockets). The sþ id phase with broken time-reversal
symmetry is shown by the dark (gray) shaded area. The two
neighboring superconducting phases at %< ð>Þ%* have
dðsÞ-wave symmetry, respectively. In the d0 region the excitation
spectrum is fully gapped even though the symmetry is d wave.
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in Fig. 2 b).
The overall properties of the pairing states are mostly un-

affected, but details do change. One sees, for example that
the eigenvalues li are generally suppressed for fixed interac-
tion parameters due to the Fermi surface changes. In addition,
the partial contributions l

th

show similar features as seen in
Fig. 6 b) where the scattering on the d pockets again plays
the dominant role. However, as seen in Fig. 8 f), the partial
contributions of the leading d-wave state are only altered by
a few percent while the l

th

of the s-wave state have changed
significantly. As seen in the figure, the changes due to hy-
bridization stabilize the bonding-antibonding s-wave state via
strengthening of interpocket processes10, which also make the
state more isotropic on the d -pockets. The relative enhance-
ment of the state by hybridization is however not as large
as might have been expected, due to the repulsive intrapoc-
ket processes, which cost energy as the nodes are suppressed
(Fig. 8 f)).

Our results above indicate strongly that the real KxFe2�ySe2
is in the limit of small hybridization of the phase diagram pro-
posed by Khodas and Chubukov10. To verify this, we can es-
timate for our 3D system both the hybridization and ellipticity
entering the effective tuning parameter keff, yielding

keff '
dx

h Dxk
vF (k)kF (k) i

, (16)

where dx is the maximum splitting of low symmetry degen-
eracies by hybridization, of order 10 meV, and Dx is the dif-
ference of the two electron band energies crossing the Fermi
surface near M, a measure of the ellipticity. For our Fermi
surfaces, this yields values of k of order 0.1-0.3, significantly
below the crossover of order k ⇡ 1 identified as the instability
of the d-wave state, consistent with our results for the pairing
state.

V. CONCLUSIONS

The KxFe2�ySe2 system is one of the most interesting of
the Fe-based superconductors under current investigation, in
part because the lack of a G-centered hole pocket makes the
usual s± gap structure less likely. We have explored the pos-
sible pairing symmetries within a full-scale 3D microscopic
spin fluctuation-exchange calculation using a 10 Fe-orbital
tight-binding band structure which respects the I4/mmm space
group symmetry of the crystal, and found a variety of possible
states. For two different fillings consistent with the ARPES-
determined absence of the hole pocket, we find that the dx2�y2

symmetry is dominant, with a dxy state as next leading insta-
bility. These states are the 3D analogs of 2D nodeless d-wave
states discussed in earlier calculations6,7,11,17, but as required
by crystal symmetry9 display “quasi-nodes” on the large elec-
tron pockets which may be vertical, horizontal, or looplike de-

pending on filling. The DFT band structure used to generate
our tight-binding band structure in this first part of our analy-
sis shows that this particular system exhibits extremely small
hybridization of the electron pockets. Following the proposal
of Refs. 9 and 10, where it was demonstrated that the bonding-
antibonding s± state (which changes sign between inner and
outer electron pocket) is stabilized through hybridization, we
attempted to increase the splitting of the bands by includ-
ing spin-orbit coupling in our calculation in an approximation
which agrees well with full relativistic DFT calculations. We
found that, while the stability of the s-wave state was indeed
enhanced somewhat relative to the d-wave states, the effect
was too small to make the third-place s-wave state dominant
over the d-wave, and we believe that the real system is in the
small effective hybridization (keff) limit where the d wave is
stable10. The width of the quasi-nodes of the d-wave gap func-
tion on the large electron pockets indeed appears to scale with
the strength of the hybridization, as anticipated in Ref. 7.

As discussed in Ref. 7, since the d-wave gap functions
found here vary so rapidly near the quasi-nodes on the large
electron pockets, it is possible that the small quasiparticle
phase space they imply would not be detectable in the low-
resultion thermodynamic experiments which have concluded
that this system is nodeless. In this and other early analy-
sis, the the additional electron-like Z-centered Fermi pocket
observed in ARPES analysis of this system35 was neglected;
indeed, it is found here to have very little influence on the
eigenvalues of the pairing states in our calculations. Never-
theless, the gap function induced on these pockets is subject
to the same requirements of pairing symmetry as the gap on
the rest of the Fermi surface. In particular, d-wave symmetry
implies that nodes are required on these small pockets, and the
report of an isotropic gap on this pocket by Xu et al.35 is in-
deed inconsistent with our finding that d-wave is always dom-
inant. It is possible that the gap anisotropy on this very small
Fermi surface feature is harder to resolve than anticipated by
the authors of Ref. 35, or that our calculations are missing in-
gredients (such as stronger correlations) which are important
in in the chalcogenide systems. It is also worth mentioning
in closing that our starting point is based on a band structure
associated with the doped KFe2Se2 compound, which may be
different from the actual composition and structure of the su-
perconducting material2–4.
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FIG. 2. (Color online) (a) Color map of the reciprocal space,
showing intensity difference between the SC and normal states at
E = 15 meV, measured by the FlatCone detector. (b) The same map
as in (a), rebinned on a 81 × 81 grid, symmetrized with respect to
the mirror planes and smoothed using a Gaussian filter with 1 pixel
standard deviation. (c) Longitudinal cuts (along the short axis of the
ellipse) through the data in (a) at all four resonance positions. The
intensity was integrated within a window of 0.28 r.l.u. in the direction
perpendicular to the cut. (d) The same in the transverse direction (long
axis of the ellipse). The intensity was integrated within a window of
0.12 r.l.u. in the direction perpendicular to the cut. The widths of the
integration windows are given by the horizontal and vertical bars in
panel (a), respectively.

anisotropic widths of the transverse and longitudinal profiles
are observed in the intensity difference. The peak in the
longitudinal direction for both resonances near ( 3

4
1
2 0) and

( 1
2

3
4 0) in Fig. 3(a) is found at an incommensurate position of

H = 0.78 or K = 0.78, respectively, as marked by the arrow.
This is also consistent with the FlatCone data in Fig. 3(c),
where the peak intensity is offset to the right from H = 3

4 .
An elliptical in-plane shape of the resonance has also been

observed in BaFe2−xCoxAs2
25,34 and in Ba1−xKxFe2As2

35

at the BZ boundary, so that both axes of the ellipse are
aligned along the natural mirror planes of the reciprocal space.
In RbxFe2−ySe2, however, the ellipse could be asymmetric,
because H = 3

4 is not a natural high-symmetry plane. Indeed,
the shape in Fig. 3(c) suggests a slight bending of the ellipse
toward ( 1

2
1
2 0). In the colormap in Fig. 3(c), we also observe

weak streaks of intensity reaching toward ( 1
2

1
4 0) and ( 3

4
1
2 0),

barely above the statistical noise level, which could form parts
of a ring connecting all four resonance positions. Nevertheless,
the peak profile measured parallel to the longitudinal direction
and offset by 0.08 r.l.u. from the center of the ellipse [Fig. 3(d)]
does not show any notable shift of the peak center beyond
statistical uncertainty. This indicates a nearly symmetric
(noncurved) shape of the resonance peak in the vicinity of
its maximum.

Finally, we turn to the in-plane dispersion of the resonance,
which could be studied due to the broad distribution of the
resonant intensity in energy, as can be seen in Fig. 1(e).
Figure 3(e) presents longitudinal momentum scans of the
resonant intensity at 12, 15, and 18 meV. Here, the peak
center shifts from H = (0.764 ± 0.002) r.l.u. at 12 meV to
H = (0.782 ± 0.003) r.l.u. at 15 meV, although we do not
resolve a further shift upon changing the energy to 18 meV.
Moreover, comparison of the peak position at L = −0.5
[Fig. 1(a)], centered at H = 0.244 ± 0.002, and at L = 0
[Fig. 3(a)], where it is shifted to a position equivalent to
H = 0.218 ± 0.003, also suggests a small (∼10%) variation
in the peak position along the c axis.

To verify the origin of the observed spectrum of spin excita-
tions in RbxFe2−ySe2, we will now compare our experimental
observations with the results of band structure calculations.
For this purpose, we employ the tight-binding model that
was introduced in Ref. 28 to describe the electronic structure
of an electron-doped AxFe2Se2. The chemical potential has
been adjusted by a rigid-band shift of the bands to match
the positions of the magnetic resonant peaks in the calculated
susceptibility with the experimental data. This resulted in a
doping level of ∼0.18 electrons/Fe, in reasonable agreement

FIG. 3. (Color online) TAS-mode data. (a) Longitudinal momen-
tum scans through the center of the ellipse at Q1 = ( 3

4
1
2 0) (triangles)

and Q2 = ( 1
2

3
4 0) (squares and diamonds) as indicated in sketch (c)

at E = 15 meV. The intensity in the SC and in the normal states (top)
is shown together with their difference (bottom). (b) The same for
transverse momentum scans at Q2 = ( 3

4
1
2 0). (c) A fragment of the

FlatCone map from Fig. 2 that illustrates the directions of the scans
shown in this figure. Panels (d) and (e) show only the difference
in intensity between SC and normal states. (d) Momentum scan
at E = 15 meV parallel to the longitudinal direction at K = 0.42,
offset from the center of the ellipse. (e) Momentum scans at different
energies along the short axis of the ellipse. The plot at E = 15 meV is
an average of the two profiles in panel (a) at both resonance positions.

140511-3

Experiment

Friemel et al., PRB 2012



Neutron scattering - Transverse momentum scans
- SO coupling λ=0.05

RAPID COMMUNICATIONS

RECIPROCAL-SPACE STRUCTURE AND DISPERSION OF . . . PHYSICAL REVIEW B 85, 140511(R) (2012)

FIG. 2. (Color online) (a) Color map of the reciprocal space,
showing intensity difference between the SC and normal states at
E = 15 meV, measured by the FlatCone detector. (b) The same map
as in (a), rebinned on a 81 × 81 grid, symmetrized with respect to
the mirror planes and smoothed using a Gaussian filter with 1 pixel
standard deviation. (c) Longitudinal cuts (along the short axis of the
ellipse) through the data in (a) at all four resonance positions. The
intensity was integrated within a window of 0.28 r.l.u. in the direction
perpendicular to the cut. (d) The same in the transverse direction (long
axis of the ellipse). The intensity was integrated within a window of
0.12 r.l.u. in the direction perpendicular to the cut. The widths of the
integration windows are given by the horizontal and vertical bars in
panel (a), respectively.

anisotropic widths of the transverse and longitudinal profiles
are observed in the intensity difference. The peak in the
longitudinal direction for both resonances near ( 3

4
1
2 0) and

( 1
2

3
4 0) in Fig. 3(a) is found at an incommensurate position of

H = 0.78 or K = 0.78, respectively, as marked by the arrow.
This is also consistent with the FlatCone data in Fig. 3(c),
where the peak intensity is offset to the right from H = 3

4 .
An elliptical in-plane shape of the resonance has also been

observed in BaFe2−xCoxAs2
25,34 and in Ba1−xKxFe2As2

35

at the BZ boundary, so that both axes of the ellipse are
aligned along the natural mirror planes of the reciprocal space.
In RbxFe2−ySe2, however, the ellipse could be asymmetric,
because H = 3

4 is not a natural high-symmetry plane. Indeed,
the shape in Fig. 3(c) suggests a slight bending of the ellipse
toward ( 1

2
1
2 0). In the colormap in Fig. 3(c), we also observe

weak streaks of intensity reaching toward ( 1
2

1
4 0) and ( 3

4
1
2 0),

barely above the statistical noise level, which could form parts
of a ring connecting all four resonance positions. Nevertheless,
the peak profile measured parallel to the longitudinal direction
and offset by 0.08 r.l.u. from the center of the ellipse [Fig. 3(d)]
does not show any notable shift of the peak center beyond
statistical uncertainty. This indicates a nearly symmetric
(noncurved) shape of the resonance peak in the vicinity of
its maximum.

Finally, we turn to the in-plane dispersion of the resonance,
which could be studied due to the broad distribution of the
resonant intensity in energy, as can be seen in Fig. 1(e).
Figure 3(e) presents longitudinal momentum scans of the
resonant intensity at 12, 15, and 18 meV. Here, the peak
center shifts from H = (0.764 ± 0.002) r.l.u. at 12 meV to
H = (0.782 ± 0.003) r.l.u. at 15 meV, although we do not
resolve a further shift upon changing the energy to 18 meV.
Moreover, comparison of the peak position at L = −0.5
[Fig. 1(a)], centered at H = 0.244 ± 0.002, and at L = 0
[Fig. 3(a)], where it is shifted to a position equivalent to
H = 0.218 ± 0.003, also suggests a small (∼10%) variation
in the peak position along the c axis.

To verify the origin of the observed spectrum of spin excita-
tions in RbxFe2−ySe2, we will now compare our experimental
observations with the results of band structure calculations.
For this purpose, we employ the tight-binding model that
was introduced in Ref. 28 to describe the electronic structure
of an electron-doped AxFe2Se2. The chemical potential has
been adjusted by a rigid-band shift of the bands to match
the positions of the magnetic resonant peaks in the calculated
susceptibility with the experimental data. This resulted in a
doping level of ∼0.18 electrons/Fe, in reasonable agreement

FIG. 3. (Color online) TAS-mode data. (a) Longitudinal momen-
tum scans through the center of the ellipse at Q1 = ( 3

4
1
2 0) (triangles)

and Q2 = ( 1
2

3
4 0) (squares and diamonds) as indicated in sketch (c)

at E = 15 meV. The intensity in the SC and in the normal states (top)
is shown together with their difference (bottom). (b) The same for
transverse momentum scans at Q2 = ( 3

4
1
2 0). (c) A fragment of the

FlatCone map from Fig. 2 that illustrates the directions of the scans
shown in this figure. Panels (d) and (e) show only the difference
in intensity between SC and normal states. (d) Momentum scan
at E = 15 meV parallel to the longitudinal direction at K = 0.42,
offset from the center of the ellipse. (e) Momentum scans at different
energies along the short axis of the ellipse. The plot at E = 15 meV is
an average of the two profiles in panel (a) at both resonance positions.
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Summary & Conclusions
3D 10-orbital (2-Fe) model RPA studies of pair structure and 
neutron scattering response
dx2-y2 pairing state is leading, with dxy and xs± subdominant
dx2-y2 gap has vertical or horizontal quasi-nodes due to 
negligible hybridization
Hybridization due to SO coupling stabilizes xs±, but dx2-y2 still 
leading

Realistic model based on DFT is in small κeff limit
Both gaps have resonance in neutron scattering and are hard 
to distinguish


