Magnetic and Orbital Orderings in Iron Chalcogenides

Wei-Guo Yin

Brookhaven National Laboratory

Collaborators:
Theory: Wei Ku, Chi-Cheng Lee, Chia-Hui Lin, Limin Wang, Wei Kang
Experiment: Q. Li, C. Petrovic, G. Gu, G. Xu, J. Tranquada
Outline

1. Magnetism
 - E-type AF in FeTe
 - Unified picture in a toy model
 - Hund’s metal and insulator

2. Orbital ordering
 - Review OO in pnictides
 - FeTe

3. FeTe under pressure
Why FeTe?

- The parent compound of the 11 family
- Its magnetism is one of the main unresolved issues in the field of FeSC. Its resolution is relevant to many other puzzles.
- FeTe for high Tc?

N. Katayama et al., JPSJ (2010)
FeTe for high Tc?

A. Subedi et al., PRB 78, 134514 (2008)

“In a scenario where superconductivity is mediated by spin fluctuations at the SDW nesting vector, the strongest superconductor in this series would be doped FeTe.”

<table>
<thead>
<tr>
<th></th>
<th>a (Å)</th>
<th>c (Å)</th>
<th>z_X</th>
<th>N(E_F)</th>
<th>m_{SDW}(μ_B)</th>
<th>E_{SDW}</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeS</td>
<td>3.6735</td>
<td>5.0328</td>
<td>0.2243</td>
<td>1.35</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>FeSe</td>
<td>3.765</td>
<td>5.518</td>
<td>0.2343</td>
<td>0.95</td>
<td>0.65</td>
<td>5</td>
</tr>
<tr>
<td>FeTe</td>
<td>3.8215</td>
<td>6.2695</td>
<td>0.2496</td>
<td>1.83</td>
<td>1.28</td>
<td>47</td>
</tr>
</tbody>
</table>
arsenides
(1111, 122, 111, etc.)

• Rule out the FS nesting mechanism
 FS nesting vector is $(\pi, 0)$ in 1-Fe u.c.

• Heisenberg models?
 F. Ma et al., PRL (09) DFT \rightarrow J1-J2-J3
 J. Hu et al., t-J1-J2-J3 \rightarrow SC
E-type: Not compatible with SC

FeTe$_{1-x}$Se$_x$

Xu et al., PRB 82, 104525 (2010)
- FeTe is a politically incorrect parent
- It knows some dirty tricks in FeSC
More about Heisenberg model fits

5-orbital Hubbard model: HF

- E*-type is stabilized only for large U and J_H
- Heisenberg: better for FeTe than for LaOFeAs?
J from linear response: Arsenides

DFT: M. J. Han et al., PRL 102, 107003 (2009)

<table>
<thead>
<tr>
<th>System</th>
<th>Moment</th>
<th>J_{1a}</th>
<th>J_2</th>
<th>J_{1b}</th>
<th>$J_{1a}/2J_2$</th>
<th>$J_{1a} + 2J_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaFeAsO</td>
<td>1.69</td>
<td>47.4</td>
<td>22.4</td>
<td>-6.9</td>
<td>1.06</td>
<td>92.2</td>
</tr>
<tr>
<td>CeFeAsO</td>
<td>1.79</td>
<td>31.6</td>
<td>15.4</td>
<td>2.0</td>
<td>1.03</td>
<td>62.4</td>
</tr>
<tr>
<td>PrFeAsO</td>
<td>1.76</td>
<td>57.2</td>
<td>18.2</td>
<td>3.4</td>
<td>1.57</td>
<td>93.6</td>
</tr>
<tr>
<td>NdFeAsO</td>
<td>1.49</td>
<td>42.1</td>
<td>15.2</td>
<td>-1.7</td>
<td>1.38</td>
<td>72.5</td>
</tr>
<tr>
<td>CaFe$_2$As$_2$</td>
<td>1.51</td>
<td>36.6</td>
<td>19.4</td>
<td>-2.8</td>
<td>0.95</td>
<td>75.4</td>
</tr>
<tr>
<td>SrFe$_2$As$_2$</td>
<td>1.69</td>
<td>42.0</td>
<td>16.0</td>
<td>2.6</td>
<td>1.31</td>
<td>74.0</td>
</tr>
<tr>
<td>BaFe$_2$As$_2$</td>
<td>1.68</td>
<td>43.0</td>
<td>14.3</td>
<td>-3.1</td>
<td>1.51</td>
<td>71.5</td>
</tr>
<tr>
<td>KFe$_2$As$_2$</td>
<td>1.58</td>
<td>42.5</td>
<td>15.0</td>
<td>-2.9</td>
<td>1.42</td>
<td>72.5</td>
</tr>
<tr>
<td>LiFeAs</td>
<td>1.69</td>
<td>43.4</td>
<td>22.9</td>
<td>-2.5</td>
<td>0.95</td>
<td>89.2</td>
</tr>
</tbody>
</table>

INS: J. Zhao et al., Nature Phys. 5, 555 (2009)

$SJ_{1a} = 49.9$, $SJ_{1b} = -5.7$, $SJ_2 = 18.9$

- DFT agrees with INS
- The J’s agree with the C type
J from linear response: FeTe

DFT:
M. J. Han et al., PRL 103, 067001 (2009)

<table>
<thead>
<tr>
<th>System</th>
<th>Moment</th>
<th>J_{1a}</th>
<th>J_{1b}</th>
<th>J_{2a}</th>
<th>J_{2b}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double-stripe Fe$_{1.068}$Te</td>
<td>2.09 (1.97)</td>
<td>-7.6</td>
<td>-26.5</td>
<td>46.5</td>
<td>-34.9</td>
</tr>
<tr>
<td>FeTe</td>
<td>2.16</td>
<td>-4.2</td>
<td>12.9</td>
<td>-6.2</td>
<td>-15.3</td>
</tr>
<tr>
<td>Single-stripe FeTe</td>
<td>2.09</td>
<td>38.6</td>
<td>21.7</td>
<td>5.0</td>
<td>...</td>
</tr>
<tr>
<td>LaFeAsO$_a$</td>
<td>1.69 (0.36)</td>
<td>47.4</td>
<td>-6.9</td>
<td>22.4</td>
<td>...</td>
</tr>
</tbody>
</table>

INS:
O. J. Lipscombe et al., PRL 106, 057004 (2011)

J_{1a}=-17.5; J_{1b}=-51.0; J_{2a}=J_{2b}=21.7; J_{3}=6.8

- DFT disagrees with INS
- All sets of J’s disagree with the E type
- J’s from different orders are different
Both set of J’s disagree with the E type GS
Fluctuations and ordering appear at different wave vectors in Fe$_{1.08}$Te.

D. Parshall et al., PRB 85, 140515(R) (2012)
For more strange T-dependent spin dynamics in Fe$_{1+y}$Te, come to Igor Zaliznyak’s talk tomorrow.
What’s weird?

- More correlated FeTe is much worse described by one Heisenberg model.
- Needs different J’s for different spin orders and T.
- E-type is incompatible with SC; its physics is not J1-J2-J3.

The magnetism in FeTe is one of the main unresolved issues in the field of FeSC.

Hints:

- Correlation in FeTe is governed not by U but by Hund’s rule coupling K.
- Explicit orbital degree of freedom to self-adjust to different spin orders, T, and vacancy order.
Fe-vacancy order

<table>
<thead>
<tr>
<th>Material</th>
<th>Fe vacancy</th>
<th>Spin pattern</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeTe</td>
<td>0</td>
<td>E / Block</td>
<td>Xiang / Yin</td>
</tr>
<tr>
<td>FeSe</td>
<td>0</td>
<td>C</td>
<td>Singh</td>
</tr>
<tr>
<td>K$_2$Fe$_7$Se$_8$</td>
<td>12.5%</td>
<td>C</td>
<td>Cao</td>
</tr>
<tr>
<td>K$_2$Fe$_4$Se$_5$</td>
<td>20%</td>
<td>Block</td>
<td>Cao/Xiang/Yin</td>
</tr>
<tr>
<td>K$_2$Fe$_3$Se$_4$</td>
<td>25%</td>
<td>C</td>
<td>Xiang</td>
</tr>
<tr>
<td>BaFe$_2$Se$_3$</td>
<td>33% ladder</td>
<td>Block</td>
<td>Hu</td>
</tr>
<tr>
<td>KFe$_2$Se$_3$</td>
<td>33% ladder</td>
<td>C</td>
<td>Yin</td>
</tr>
<tr>
<td>Ce$_2$O$_2$FeSe$_2$</td>
<td>50% chain</td>
<td>F-intra</td>
<td>Hu</td>
</tr>
<tr>
<td>KFeAgTe$_2$</td>
<td>50%</td>
<td>???</td>
<td>Lei</td>
</tr>
<tr>
<td>TaFeTe$_3$</td>
<td>ladder?</td>
<td>A</td>
<td>Feng</td>
</tr>
<tr>
<td>KFe$_2$Se$_2$</td>
<td>0</td>
<td>Block</td>
<td>Hu</td>
</tr>
<tr>
<td>CuFeSb</td>
<td>0</td>
<td>F</td>
<td>Mao</td>
</tr>
</tbody>
</table>
Spin-Fermion Model

\[H = - \sum_{ij\gamma\sigma} \left(t_{ij}^{\gamma\sigma} d_{i\gamma\sigma}^\dagger d_{j\gamma\sigma} + h.c. \right) - K \sum_i \vec{S}_i \cdot \vec{S}_i + \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j \]

W.-G. Yin et al., PRL (2010); W. Lv et al., PRB (2010); S. Liang et al., PRL (2012).

- Itinerant electrons: \(xz, yz \)
- Localized spins: the other Fe 3d orbitals
 - \(J_1 \) & \(J_2 \): AF superexchange (\(J_2 \approx J_1 \) → stripy AF)
- \(K \): Hund’s rule coupling
- “Double-Exchange” FM to gain kinetic energy, sensitive to band filling
- “DE” FM vs. “SE” AF
 - different length scales
Inspired by

- Orbital-selective Mott transition
 - L. de’ Medici et al., PRL (09).

- Electron correlation controlled by Hund’s coupling K
 - Johannes & Mazin, PRB (09).
 - Solvation of U by highly polarizable anions but not K.
 Sawatzky et al., EPL 86, 17006 (2009).

- Spin-dependent QP dispersion (SI-STM)
 - Chuang et al., Science 327, 181 (2010) “the delocalized electronic states detectable by quasiparticle interference imaging are dispersive along the b axis [FM direction] only.”
E-type vs. A-type AF in RMnO_3

- **Degenerate orbitals with anisotropic hoppings**
- **Double-exchange (DE) mechanism**

- **Electronic softness:** Small change in parameters

Zhou & Goodenough, PRL (1996)
Hotta et al., PRL (1996)
Model Parameters: \(n \)

\[
H = - \sum_{i\gamma\gamma'} (t_{ij}^{\gamma\gamma'} d_{i\gamma}^\dagger d_{i\gamma'} + h.c.) - K \sum_i \vec{s}_i \cdot \vec{S}_i + \sum_{ij} J_{ij} \vec{s}_i \cdot \vec{S}_j
\]

\(n=1 \): one electron (intermediate spin)

\(n=3 \): one hole (high spin)

\(t_{2g} \)

\(e_g \)

Kruger et al., PRB (2009)

Lee, Yin, Ku, PRL (2009)

OSMT
Material Dependence

\[H = - \sum_{i \gamma \gamma' \sigma} (t_{ij}^{\gamma \gamma'} d_{i \gamma \sigma}^{\dagger} d_{i' \gamma' \sigma} + h.c.) - K \sum_{i} \mathbf{s}_i \cdot \mathbf{S}_i + \sum_{ij} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j \]

- \(t \): strong anisotropy
- \(t' \): comparable to \(t \)
- \(J, J' \): comparable and isotropic
- \(KS \): leading material dependence

\(JS^2, J'S^2 \approx 10 \text{ meV} \)
\(KS \approx 0.8 \text{ eV} \)

LaOFeAs:
- 1.31 Å
- 0.36 \(\mu_B \)

FeTe:
- 1.73 Å
- 1.70 \(\mu_B \)

\(z_{\text{anion}} \) (up) \(\rightarrow \) \(S \) (up), \(J \) (down) \(\rightarrow \) \(JS^2 \) less sensitive; \(KS (z_{\text{anion}}) \).
\(Z_{\text{anion}} \) induced quantum PT

\(BaFe_2As_2 \)

Large $z_{\text{anion}} \rightarrow$ FM

CuFeSb

W. Kang et al., unpublished

B. Qian et al., PRB 85, 144427 (2012)
then, a critical question is why the E-type AF order of FeTe is metallic. The answer is that the iron-based superconductors have a considerably large NNN intraorbital hopping parameter t'. Comparable NN and NNN parameters are suggested by the crystal structure—the anions sit above or below the center of the Fe plaque. Besides, that the observed Fermi surface has a hole pocket around $(0, 0)$ and an electron pocket around $(\pi, 0)$ implies that $-2t' > t_{||}$. This condition is found to warrant the overlap of the split subbands and the metallicity of the system. We verified that had $t' = 0$, the E type would be insulating.

\begin{itemize}
 \item Gap: bonding-antibonding splitting
\end{itemize}
In the absence of Fe vacancy, X-type* and E-type are nearly degenerate.

- Each Fe atom is linked to one xz bond and one yz bond.
- Likewise, X-type is metallic, but insulating for $t' = 0$.

Fe vacancy blockade

- Fe vacancies interfere with bonding except in X
- t' effects between FM blocks is suppressed \rightarrow insulating
245 is not a Mott insulator

- High-energy “gap” scales with U.
- Low-energy gap is not a Mott gap
 - insensitive to U,
 - sensitive to the magnetic pattern.
- scales with tetramer distortion \Rightarrow bonding-antibonding splitting

W.-G. Yin et al., PRB 86, 081106(R) (2012)

“Hund’s metal”
Two-leg Spin Ladder $\text{Ba}_{1-x}\text{K}_x\text{Fe}_2\text{Se}_3$

<table>
<thead>
<tr>
<th>x</th>
<th>Fe valence</th>
<th>AF type</th>
<th>Pattern</th>
<th>T_N (K)</th>
<th>m (μ_B)</th>
<th>Insulating</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2+ (d^6)</td>
<td>Block</td>
<td></td>
<td>260</td>
<td>3</td>
<td>Yes</td>
</tr>
<tr>
<td>1</td>
<td>2.5+ ($d^{5.5}$)</td>
<td>Stripy</td>
<td></td>
<td>200</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>x</td>
<td>2 – 2.5</td>
<td>Glass</td>
<td></td>
<td>-</td>
<td>2 - 3</td>
<td>Yes</td>
</tr>
</tbody>
</table>

J. M. Caron et al., PRB 85, 180405(R) (2012).
Block vs. Stripy AF

Large K limit: **No** hopping between opposite spins

Kinetic energy gain from bonding-antibonding splitting

- $xz, yz \rightarrow$ strong anisotropy: $t_\sigma \gg t_\pi$
- High-spin configuration: 1 hole/Fe in xz & yz orbitals for Fe$^{2+}$ (Ba123)

<table>
<thead>
<tr>
<th>per 4 Fe</th>
<th>Contributor</th>
<th>Block (X)</th>
<th>Stripy (C)</th>
<th>E(X) – E(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 spins</td>
<td>“SE” AF</td>
<td>$2J_1S^2$</td>
<td>$-(2J_1 + 4J_2)S^2$</td>
<td>$4(J_1 + J_2)S^2 > 0$</td>
</tr>
<tr>
<td>Ba123</td>
<td>4 holes</td>
<td>“DE” FM</td>
<td>$-4t_\sigma$</td>
<td>$-2t_\sigma - 2t_\pi$</td>
</tr>
<tr>
<td>K123</td>
<td>6 holes</td>
<td>“DE” FM</td>
<td>$-2(t_\sigma - t_\pi - t')$</td>
<td>$-2t_\sigma$</td>
</tr>
</tbody>
</table>

$t_\sigma = 0.4 \text{ eV}, \ t_\pi = 0.13 \text{ eV}, \ t' = -0.25 \text{ eV} \rightarrow 0.06 \text{ eV} < (J_1 + J_2)S^2 < 0.135 \text{ eV}$

- **AF favors C-type**
- **FM favors X strongly for Ba123, but weakly for K123**
Spin Glass in $\text{Ba}_{1-x}\text{K}_x\text{Fe}_2\text{Se}_3$

- Kinetic energy gain from bonding-antibonding splitting
- High degeneracy in the deployment of block and “dimer” bonds
 \[1-x : 2x\]
- Monte Carlo simulation is desirable
 like Shuhua Liang et al., PRL 109, 047001 (2012).
Implication: Unified Picture

- **AF & FM play at different length scales.**
 - “SE” AF: local, favoring C-type
 - “DE” FM: extended and sensitive to spatial changes.

- **1D → 2D (the spin-fermion model with the same t’s)**
 - C: K123, LaOFeAs (1111), BaFe$_2$As$_2$ (122), KFe$_{1.5}$Se$_2$ (234), K$_{0.5}$Fe$_{1.75}$Se$_2$ (278)
 - E: FeTe (11)
 - X: Ba123, FeTe$_{1-x}$Se$_x$ (11), K$_{0.8}$Fe$_{1.6}$Se$_2$ (245)
 - F/A: Ce$_2$O$_2$FeSe$_2$ (2212), TaFeSe$_3$ (113), CuFeSb (111)

W.-G. Yin et al., PRL 105, 107004 (2010); PRB 86, 081106(R) (2012)
2. Orbital Ordering
Resistivity Anisotropy

For NaFeAs, R along the AF direction is smaller than along the FM direction.

For FeTe, the opposite is true \rightarrow DE physics.

Ferro-site-orbital order

\[U = n_{xz} - n_{yz} \]

- AF-induced FM direction
- Not inconsistent with resistivity anisotropy

<table>
<thead>
<tr>
<th>U</th>
<th>P = n_{xz} - n_{yz}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.15</td>
</tr>
<tr>
<td>2 eV</td>
<td>0.40</td>
</tr>
</tbody>
</table>

C.-C. Lee et al., PRL 103, 267001 (2009)
Ferro-site-OO in FeTe?

A. M. Turner et al., PRB 80, 224504 (2009).

\[P = n_{XZ} - n_{YZ} = 1 \]

- Large \(J_2 \) and weak \(J_1 \)

INS: \(J_{1a} = -17.5; \ J_{1b} = -51.0; \ J_{2a} = J_{2b} = 21.7; \ J_3 = 6.8 \)
Weak site-OO in FeTe

\[
\begin{pmatrix}
3z^2 - r^2 & x^2 - y^2 & yz & xz & xy \\
3z^2 - r^2 & 1.44 & 0.00 & -0.04 & -0.04 & 0.03 \\
x^2 - y^2 & 0.00 & 1.31 & 0.04 & -0.04 & 0.00 \\
yz & -0.04 & 0.04 & 1.05 & 0.01 & 0.05 \\
xz & -0.04 & -0.04 & 0.01 & 1.05 & 0.05 \\
xy & 0.03 & 0.00 & 0.05 & 0.05 & 1.13 \\
\end{pmatrix}
\]

<table>
<thead>
<tr>
<th>U</th>
<th>P = n_{xz} - n_{yz}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.02</td>
</tr>
<tr>
<td>2 eV</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Bond-OO in FeTe

(spin-up channel)

(Hopping in parenthesis)

\[\langle yz | DM | yz \rangle = 0.121873 (-0.274038)\]

\[\langle xz | DM | xz \rangle = -0.10607 (0.0574313)\]
Site-OO is considerably weak in chalcogenides.

Effect of U on site-OO is large in LaOFeAs but weak in FeTe.

Consistent with large effective J_H in FeTe

\[U_{eff} = U' - J_H \]
Take home messages

- Orbital order is tied to the C-type spin order
- Is C-type spin fluctuation also accompanied by orbital fluctuation?
Part 3 FeTe under pressure
Motivation

A. Subedi et al., PRB 78, 134514 (2008)

“In a scenario where superconductivity is mediated by spin fluctuations at the SDW nesting vector, the strongest superconductor in this series would be doped FeTe.”

<table>
<thead>
<tr>
<th></th>
<th>a (Å)</th>
<th>c (Å)</th>
<th>z_X</th>
<th>$N(E_F)$</th>
<th>$m_{SDW}(\mu_B)$</th>
<th>E_{SDW}</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeS</td>
<td>3.6735</td>
<td>5.0328</td>
<td>0.2243</td>
<td>1.35</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>FeSe</td>
<td>3.765</td>
<td>5.518</td>
<td>0.2343</td>
<td>0.95</td>
<td>0.65</td>
<td>5</td>
</tr>
<tr>
<td>FeTe</td>
<td>3.8215</td>
<td>6.2695</td>
<td>0.2496</td>
<td>1.83</td>
<td>1.28</td>
<td>47</td>
</tr>
</tbody>
</table>

• Pressure can dramatically enhanced Tc in 1111, 122, FeSe.
• FeTe? Failed → Why?
C. Zhang et al, PRB 80, 144519 (2009)

• c axis collapse reminiscent of pressurized CaFe2As2
P decreases the Fe-Te-Fe angle \Rightarrow rigid Fe-Anion bond length

Opposite to what happens in pressurized CaFe$_2$As$_2$

W. Kang et al., unpublished
Pressure driven FM

W. Kang et al., unpublished
M. Bendele et al., PRB 87, 060409(R) (2013).
Tensile strain to increase the Fe-Te-Fe angle

Y. Han et al., PRL 104, 017003 (2010).

60-150 nm thick films
FeTe film can be superconducting

W. Si et al., PRB 81, 092506 (2010) → Oxygen
Are ultrathin FeTe films under sufficient tensile strain superconductive?
Conclusion

- Iron chalcogenides are strongly correlated systems
 - kind of similar to CMR manganites, where Hund’s rule coupling and orbital degeneracy play central roles.
 - kind of similar to cuprates, where AF superexchange between localized moments is also important
 - E-type or block AF results from the above competition
 - Hund’s metal and insulator
 - Orbital order is tied to the C-type spin order
 - The DE physics is correlated with the anion height
 - SC appears when the system is away from the DE limit.

Outlook

- High-Tc FeTe
- Calculate spin dynamics in FeTe, etc., a nonperturbative problem
- C-type spin fluctuation + orbital fluctuation
- Role of Fe-anion interaction