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Davis, et al. Science’10 

The orthorhombic transition follows the 
magnetic transition with (π,0) ordering            

Green&Paglione, Nat.Phys.’10 

Both, chemical doping and 
pressure suppress the SDW and 
induce SC.  
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•  Experimentally several phononic signatures show unconventional 
behavior in the magnetic state: Choi et al. PRB’08, Le Tacon et al. PRB’08, 
PRB’09, Chauviere et al. PRB’09, PRB’11, Akrap et al. PRB’09, Zhang et al. 
JACS’10, Schafgans et al. PRB’11, Nakajima et al. PNAS’11, Kim et al Nat. Mat.’12, 
Liu et al. PRL’13… 

Zbiri et al., Phys. Cond. Matt’10 

•  Theoretically (Ab-initio calculations): 
•  iron-magnetism is present also above 

TN? what about the estimations of the 
electron-phonon coupling? 

•  The electron-phonon coupling has been 
shown to be enhanced by magnetism. 
(Yndurain et al PRB’09, Boeri et al. PRB’10) 

•  Role for the mechanism of 
superconductivity?  

A1g As-phonon 
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It has been claimed that the height of the As atom affects: 
•  the band structure at the Fermi level  
•  the magnetic moment, magnetic ordering 
•  the superconducting critical temperature, sc gap  



Raman A1g As-phonon 
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A1g=LL 
B1g=x’y’ 
B2g=xy 



Raman A1g As-phonon 
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Chauviere et al PRB’11 
(BaFe2As2) 

Below the Magneto-structural 
transition the A1g As-phonon 
Intensity increases a lot for 
B1g (x’y’) 

A1g=LL 
B1g=x’y’ 
B2g=xy 



Raman A1g As-phonon 
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Chauviere et al PRB’11 
(BaFe2As2) 

Below the Magneto-structural 
transition the A1g As-phonon 
Intensity increases a lot for 
B1g (x’y’) 

A1g=LL 
B1g=x’y’ 
B2g=xy 

A1g As-phonon intensity in 
B1g is 1.5 bigger than in A1g 
in the magnetic state of BaFe2As2 

The structural transition cannot 
explain these features, Why then? 



 Raman A1g As-phonon 
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Rahlenbeck et al PRB’09 
(BaFe2As2): Below the  
Magneto-structural 
transition softening and 
narrower scattering rate  

Choi et al PRB’08 
(CaFe2As2): Below the  
Magneto-structural 
transition hardening and 
narrower scattering rate 



 
 

Our work: 
Coupling of the A1g arsenide phonon 

to magnetism in iron pnictides 
  
 
 

N. García-Martinez, B.V, M.J. Calderón, S. Chiuci, E. Cappelluti, E. Bascones,  
arXiv:1307.7065 
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Our model: Microscopic Hamiltonian 

dxy 
 
dxz, dyz 
 
d3z2-r2 
 

dx2-y2 

Spin 2 

Introducing on-site interactions: 
U -> intraorbital repulsion 
U’ -> interorbital repulsion 
J -> Hund’s coupling 
U’=U-2J 
 

6 electrons in 5 d orbitals in a tetrahedral environment with crystal 
field 100-200meV: 

! 

H = HTB +Hph +H int
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Tight-binding  

ü  Focus on Fe-pnictogen planes, square lattice, Fe unit cell 

ü  Five Fe d-orbitals; pnictogen included through hoppings;  

direct (Fe-Fe) + indirect (Fe-pnictogen-Fe) hoppings 

ü  Symmetry of the orbitals considered through Slater-Koster  

parameters to describe the hoppings (pdσ, pdπ, ddσ1, ddπ1,ddδ1) 

ü  Straightforward change of pnictogen position (angle α) 
 

MJ Calderon, B.V, E Bascones PRB’09 
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Phonon Hamiltonian 
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We are just interested in Raman processes i.e q=0  

The electron-phonon coupling is split in two contributions gα (geometrical) y gpd  
(through energy integrals pdσ and pdπ). Both have local and non-local contributions: 

Geometrical  
phonon coupling:   

Energy integral  
phonon coupling:   

With:  
We assume:   valid for p & d orbitals localized 



(π,0) Magnetic phase diagram 

We calculate the magnetic U-JH/U phase diagram applying  
mean field theory to the electronic Hamiltonian.  

! 

H = HTB +H int (U,J)
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E. Bascones, M.J. Calderón, B. V., PRL’10; PRB’12 

xy and yz become half-
filled gap states 

We study 
this line 
J=0.25U 
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Band structure for the non-magnetic 
and magnetic regime in the itinerant 

region 
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Spectral weight 
reorganization at 
low energies due 
to magnetism in a 
multiorbital system	



We have add a 
renormalization 
factor of 3 (in 
accordance with 
ARPES)	





Raman response for the 
A1g As-phonon 
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Raman vertices: 
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In the PM state B1g and B2g Raman response are zero because they 
are orthogonal to the symmetry of the A1g As-phonon. 
Our proposal: Due to the electron-phonon coupling the B1g Raman 
response of the A1g As-phonon is large in the magnetic state since 
the tetragonal symmetry is broken by the (π,0) magnetic ordering: 
Anomalies in phonons driven by magnetism 

(antisymmetric kx    ky) 

 (antisymmetric kx    -kx or    ky     -ky ) 



Charge-phonon theory I: 
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Raman vertex 
Electron phonon 

Interaction  

Ω0 and Γ0 are the phonon 
frequency and the phonon 
scattering rate 	



The Raman response is calculated using the Charge-phonon theory 

This contribution has been calculated in  
B.V, Calderon, Leon, Bascones PRB’13 

Our main calculation Mixed bubble 

Phonon propagator 



Charge-phonon theory II: 
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Charge-phonon theory II: 
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Charge phonon theory related to 
Fano theory. All the physics is 
encoded in the mixed bubble: 

E. Cappelluti, et al, PRB’12 



Results: A1g As-phonon Raman intensity  
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There is a critical value of U  
where IB1g > IA1g as in BaFe2As2 
 

IA1g increases a lot in the 
magnetic state as in 122  
compounds 

But the resulting 
intensity cannot be 
calculated due to 
uncertainties in the 
values of the 
phonon couplings 
gα and gpd 

NM NM AFM AFM 



Phonon hardening/softening and 
life-time  
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Softening of the 
phonon frequency in 
the magnetic state.  
 

Narrowing or broadening 
appear depending on 
parameters 
 

Hardening just for large 
values of U when e-ph 
coupling goes via gpd 



Phonon hardening/softening and 
life-time  
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Softening of the 
phonon frequency in 
the magnetic state.  
 

Narrowing or broadening 
appear depending on 
parameters 
 

Hardening just for large 
values of U when e-ph 
coupling goes via gpd 

The softening is related to the 
spectral weight redistribution in a 
multiorbital system from higher 
energies (Ω > Ω0) to lower 
energies (Ω < Ω0) when entering 
into the magnetic state.	
  
 



Summary of our work 
 
•  The electron-phonon coupling is via the dependence of the Slater-Koster 

parameters (α, pdσ, pdπ) on the As position.  
•  Magnetism is included at the mean-field Hartree-Fock level.  
•  The Raman response is evaluated in the paramagnetic and in the (π, 0) 

magnetic states using the proper generalization of the charge-phonon theory. 

•  A finite Raman intensity can be observed in the magnetic state in the B1g but not 
in the B2g polarization and it is a consequence of the coupling of the phonons to 
the anisotropic (π,0) magnetic state.   

•  Softening and hardening are possible.  
•  For a quantitative comparison more work is needed. 
 
Outlook 
•  It is possible that in the nematic state there is a signal in B1g.  
•  In the double stripe magnetic state of FeTe, the out-of-plane Te-phonon will 

be different from zero in the B2g polarization geometry, instead B1g 
symmetry.  

It would be interesting to explore these possibilities experimentally.	
  
 



Thank you! 





Going beyond…. 
•   The interplay between magnetism and As-heigh should be treated self-consistently 
•  The electron-phonon coupling could be go through the interactions 
•  Magnetism beyound mean-field. 
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Anisotropy in transport: 

- Anisotropy in transport (Chu et al. PRB’10; Science’10, Tanatar et al. 
PRB’11) and in optical conductivity (Dusza et al, EPL’11, Review: I.R. Fisher 
et al. Rep. Prog. Phys.’11, Nakakima et al. ‘11), etc 

Chu et al. Science’10 

Fe 
More metallic 

Le
ss

 m
et

al
lic
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Unexpected because:  
•  FM bond is shorter than AF one 
•  AF is naively associated with gaps 

and FM with metallicity 
•  Scattering rate is larger in the AF 

direction 



Magnetism: (π,0) mean field phase 
diagram: metallic region 
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We also calculate the Drude ratio with the Kubo formula and  

get the same result. 

We assume the scattering rate is isotropic 

Da / Db =
va
2 (k,n )g (k,n )!("n (k)! EF )

k ,n
"

vb
2 (k,n )g (k,n )!("n (k)! EF )

k ,n
"

Drude weight ratio 
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Da/Db>1 consistent with experimental ra/rb<1 
Is given in regions with low magnetic moment 
 

Drude weight ratio: Da/Db 

Drude weight anisotropy: 
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nyz<nzx 

Experimental signs of anisotropy and orbital ordering are anticorrelated, B. 
Valenzuela, E. Bascones, M.J. Calderón, PRL 105, 207202 (2010) 

         nyz-nzx 

Da/Db>1 consistent with experimental ra/rb<1 

Drude weight ratio: Da/Db 

Is orbital order responsible of 
resistivity anisotropy? 
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Magnetic reconstruction as origin of the conductivity 
anisotropy 
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Anisotropy linked to topology and morphology of the Fermi Surface.  
Experimental anisotropy in general for low moment. 

B. Valenzuela, EB, M.J. Calderón, PRL 105, 207202 (2010)  

Dx/Dy=	
  0.72	
  Dx/Dy=	
  1.34	
  

Dx/Dy=	
  0.52	
  Dx/Dy=	
  1.09	
  



Sensitivity of the anisotropy to 
the angle α 
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The effect of magnetism is not just at the Fermi surface but it is seen at all 
energies in the band 

Bands 

U=2.2, J=0.07U 

BNL, New York 2013  



 Orbital reorganization in the Hartree-Fock phase diagram  

x2-y2  

3z2-r2 

(π,0)  in x2-y2 configuration 
(π,π)  in 3z2-r2 configuration 

Resembles the orbital reorganization 
found in the strong coupling limit 

M.J. Calderón, G. León , B. Valenzuela, EB, arXiv: 1107.2279 (2011) 



Tight-binding for five orbitals: angle 
dependence of the hoppings 

BNL, New York 2013  
MJ Calderon, B.V, E Bascones PRB’09 

Hoppings related 
by symmetry and 
calculated with 
four fitting 
parameters 

Experimental range 



 Hartree-Fock phase diagram. Sentivity to Crystal field  
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Reasoning from the strong coupling point of 
view to understand the LM  

  

The low moment 
phase is stabilized 
because crossed 
hoppings are as big as 
direct hoppings and 
also very anisotropic: 
Release frustration  

Q=(π,0) 

t y
yz,x2!y2

= 0

t xxy,yz = 0



Orbital ordering in the band structure for 
U=2.2 eV and J=0.07U  

  



Phase separation  
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Magnetism: Mean field phase diagram 
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In the mean field 
description there is a DS 
phase charge modulated 
instead of FM. But 
strong coupling analysis 
also points to DS 
instability at high JH 

7 electrons 
 
5 electrons 

M.J. Calderón, G. León , B. V., E. Bascones, arXiv: 1107.2279 (2011) 


