Report Contributors

From the initial collection of samples to the final reproduction, the 2014 BNL Groundwater Status Report required the expertise and cooperation of many people and organizations to complete. The contributions of the following individuals are gratefully acknowledged:

Environmental Protection Division
John Burke William Dorsch Brian Foley
Robert Howe Richard Lagattolla Doug Paquette
Vincent Racaniello Jason Remien Susan Young

Facility and Operations Directorate
Eric Kramer

J.R. Holzmacher P.E., LLC
Amanda DiazGranados Kyle Sarich Anthony Zalak
Patricia Zalak

R&C Formations, LTD.
Robert Casson Melissa Yost Arthur John Scheff
Sean Hanrahan

P.W. Grosser Consulting
Adrian Steinhauff Paul Boyce
Contents

Report Contributors ... i
Contents ... iii
List of Appendices .. ix
List of Figures .. xiii
List of Tables .. xvii
Acronyms and Abbreviations ... xix
Executive Summary .. xxi

1.0 INTRODUCTION AND OBJECTIVES

1.1 Groundwater Monitoring Program ... 1-1
 1.1.1 Regulatory Requirements .. 1-2
 1.1.2 Groundwater Quality and Classification .. 1-3
 1.1.3 Monitoring Objectives .. 1-3
 1.2 Private Well Sampling .. 1-6

2.0 HYDROGEOLOGY

2.1 Hydrogeologic Data .. 2-1
 2.1.1 Groundwater Elevation Monitoring ... 2-2
 2.1.2 Pumpage of On-Site Water Supply and Remediation Wells ... 2-2
 2.1.3 Off-Site Water Supply Wells ... 2-4
 2.1.4 Summary of On-Site Recharge and Precipitation Data ... 2-4
2.2 Groundwater Flow .. 2-6
 2.2.1 Water-Table Contour Map .. 2-6
 2.2.2 Deep Glacial Contour Map .. 2-6
 2.2.3 Well Hydrographs .. 2-7
 2.2.4 Groundwater Gradients and Flow Rates .. 2-7
2.3 New Geologic Data .. 2-7
2.4 Monitoring Well Maintenance Program .. 2-8

3.0 CERCLA GROUNDWATER MONITORING AND REMEDIATION

3.1 Operable Unit I .. 3-1
 3.1.1 OU I South Boundary Treatment System .. 3-5
 3.1.2 System Description .. 3-5
 3.1.3 Groundwater Monitoring .. 3-5
 3.1.4 Monitoring Well VOC Results .. 3-5
 3.1.5 Radionuclide Monitoring Results ... 3-6
 3.1.6 System Operations .. 3-7
 3.1.7 System Operational Data .. 3-7
 3.1.8 System Evaluation ... 3-8
 3.1.9 Recommendations .. 3-9

3.2 Operable Unit III ... 3-11
 3.2.1 Carbon Tetrachloride Post Closure Monitoring ... 3-13
3.2.2 Building 96 Treatment System .. 3-15
 3.2.2.1 System Description .. 3-15
 3.2.2.2 Source Area Remediation ... 3-15
 3.2.2.3 Groundwater Monitoring ... 3-15
 3.2.2.4 Monitoring Well Results ... 3-15
 3.2.2.5 System Operations .. 3-17
 3.2.2.6 System Operational Data ... 3-18
 3.2.2.7 System Evaluation .. 3-18
 3.2.2.8 Recommendations .. 3-20
 3.2.3 Building 452 Freon-11 Treatment System ... 3-21
 3.2.3.1 System Description .. 3-21
 3.2.3.2 Source Area .. 3-21
 3.2.3.3 Groundwater Monitoring ... 3-21
 3.2.3.4 Monitoring Well Results ... 3-22
 3.2.3.5 System Operations .. 3-23
 3.2.3.6 System Operational Data ... 3-23
3.2.3 Middle Road Treatment System
3.2.3.1 System Description
3.2.3.2 Groundwater Monitoring
3.2.3.3 Monitoring Well Results
3.2.3.4 System Operations
3.2.3.5 System Operational Data
3.2.3.6 System Evaluation
3.2.3.7 System Evaluation
3.2.3.8 Recommendations

3.2.4 North Street Treatment System
3.2.4.1 System Description
3.2.4.2 Groundwater Monitoring
3.2.4.3 Monitoring Well Results
3.2.4.4 System Operations
3.2.4.5 System Operational Data
3.2.4.6 System Evaluation
3.2.4.7 Recommendations

3.2.5 OU III South Boundary Treatment System
3.2.5.1 System Description
3.2.5.2 Groundwater Monitoring
3.2.5.3 Monitoring Well Results
3.2.5.4 System Operations
3.2.5.5 System Operational Data
3.2.5.6 System Evaluation
3.2.5.7 Recommendations

3.2.6 Western South Boundary Treatment System
3.2.6.1 System Description
3.2.6.2 Groundwater Monitoring
3.2.6.3 Monitoring Well Results
3.2.6.4 System Operations
3.2.6.5 System Operational Data
3.2.6.6 System Evaluation
3.2.6.7 Recommendations

3.2.7 Industrial Park Groundwater Treatment System
3.2.7.1 System Description
3.2.7.2 Groundwater Monitoring
3.2.7.3 Monitoring Well Results
3.2.7.4 System Operations
3.2.7.5 System Operational Data
3.2.7.6 System Evaluation
3.2.7.7 Recommendations

3.2.8 Industrial Park East Monitoring Program
3.2.8.1 Groundwater Monitoring
3.2.8.2 Monitoring Well Results
3.2.8.3 Groundwater Monitoring Program Evaluation
3.2.8.4 Recommendations

3.2.9 North Street Treatment System
3.2.9.1 System Description
3.2.9.2 Groundwater Monitoring
3.2.9.3 Monitoring Well Results
3.2.9.4 System Operations
3.2.9.5 System Operational Data
3.2.9.6 System Evaluation
3.2.9.7 Recommendations

3.2.10 North Street East Treatment System
3.2.10.1 System Description
3.2.10.2 Groundwater Monitoring
3.2.10.3 Monitoring Well Results
3.2.10.4 System Operations
3.2.10.5 System Operational Data
3.2.10.6 System Evaluation
3.2.10.7 Recommendations

3.2.11 LIPA/Airport Treatment System
3.2.11.1 System Description
3.2.11.2 Groundwater Monitoring
3.2.11.3 Monitoring Well Results
3.2.11.4 System Operations
3.2.11.5 System Operational Data
3.2.11.6 System Evaluation
3.2.11.7 Recommendations
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.12 Magothy Aquifer</td>
<td>3-61</td>
</tr>
<tr>
<td>3.2.12.1 Monitoring Well Results</td>
<td>3-62</td>
</tr>
<tr>
<td>3.2.12.2 Recommendations</td>
<td>3-63</td>
</tr>
<tr>
<td>3.2.13 Central Monitoring</td>
<td>3-65</td>
</tr>
<tr>
<td>3.2.13.1 Groundwater Monitoring</td>
<td>3-65</td>
</tr>
<tr>
<td>3.2.13.2 Monitoring Well Results</td>
<td>3-65</td>
</tr>
<tr>
<td>3.2.13.3 Groundwater Monitoring Program Evaluation</td>
<td>3-65</td>
</tr>
<tr>
<td>3.2.13.4 Recommendation</td>
<td>3-65</td>
</tr>
<tr>
<td>3.2.14 Off-Site Monitoring</td>
<td>3-67</td>
</tr>
<tr>
<td>3.2.14.1 Groundwater Monitoring</td>
<td>3-67</td>
</tr>
<tr>
<td>3.2.14.2 Monitoring Well Results</td>
<td>3-67</td>
</tr>
<tr>
<td>3.2.14.3 Groundwater Monitoring Program Evaluation</td>
<td>3-67</td>
</tr>
<tr>
<td>3.2.14.4 Recommendation</td>
<td>3-67</td>
</tr>
<tr>
<td>3.2.15 South Boundary Radionuclide Monitoring Program</td>
<td>3-69</td>
</tr>
<tr>
<td>3.2.15.1 Groundwater Monitoring</td>
<td>3-69</td>
</tr>
<tr>
<td>3.2.15.2 Monitoring Well Results</td>
<td>3-69</td>
</tr>
<tr>
<td>3.2.15.3 Groundwater Monitoring Program Evaluation</td>
<td>3-69</td>
</tr>
<tr>
<td>3.2.15.4 Recommendations</td>
<td>3-69</td>
</tr>
<tr>
<td>3.2.16 BGRR/WCF Strontium-90 Treatment System</td>
<td>3-71</td>
</tr>
<tr>
<td>3.2.16.1 System Description</td>
<td>3-71</td>
</tr>
<tr>
<td>3.2.16.2 Groundwater Monitoring</td>
<td>3-71</td>
</tr>
<tr>
<td>3.2.16.3 Monitoring Well/Temporary Well Results</td>
<td>3-72</td>
</tr>
<tr>
<td>3.2.16.4 System Operations</td>
<td>3-74</td>
</tr>
<tr>
<td>3.2.16.5 System Operational Data</td>
<td>3-75</td>
</tr>
<tr>
<td>3.2.16.6 System Evaluation</td>
<td>3-76</td>
</tr>
<tr>
<td>3.2.16.7 Recommendations</td>
<td>3-77</td>
</tr>
<tr>
<td>3.2.17 Chemical/Animal Holes Strontium-90 Treatment System</td>
<td>3-79</td>
</tr>
<tr>
<td>3.2.17.1 System Description</td>
<td>3-79</td>
</tr>
<tr>
<td>3.2.17.2 Groundwater Monitoring</td>
<td>3-79</td>
</tr>
<tr>
<td>3.2.17.3 Monitoring Well Results</td>
<td>3-79</td>
</tr>
<tr>
<td>3.2.17.4 System Operations</td>
<td>3-80</td>
</tr>
<tr>
<td>3.2.17.5 System Operational Data</td>
<td>3-81</td>
</tr>
<tr>
<td>3.2.17.6 System Evaluation</td>
<td>3-81</td>
</tr>
<tr>
<td>3.2.17.7 Recommendations</td>
<td>3-82</td>
</tr>
<tr>
<td>3.2.18 HFBR Tritium Pump and Recharge System</td>
<td>3-83</td>
</tr>
<tr>
<td>3.2.18.1 System Description</td>
<td>3-83</td>
</tr>
<tr>
<td>3.2.18.2 Groundwater Monitoring</td>
<td>3-83</td>
</tr>
<tr>
<td>3.2.18.3 Monitoring Well Results</td>
<td>3-83</td>
</tr>
<tr>
<td>3.2.18.4 System Operations</td>
<td>3-84</td>
</tr>
<tr>
<td>3.2.18.5 System Evaluation</td>
<td>3-85</td>
</tr>
<tr>
<td>3.2.18.6 Recommendations</td>
<td>3-86</td>
</tr>
<tr>
<td>3.3 Operable Unit IV</td>
<td>3-87</td>
</tr>
<tr>
<td>3.3.1 Building 650 and Sump Outfall Strontium-90 Monitoring Program</td>
<td>3-89</td>
</tr>
<tr>
<td>3.3.1.1 Groundwater Monitoring</td>
<td>3-89</td>
</tr>
<tr>
<td>3.3.1.2 Monitoring Well Results</td>
<td>3-89</td>
</tr>
<tr>
<td>3.3.1.3 Groundwater Monitoring Program Evaluation</td>
<td>3-89</td>
</tr>
<tr>
<td>3.3.1.4 Recommendations</td>
<td>3-90</td>
</tr>
<tr>
<td>3.4 Operable Unit V</td>
<td>3-91</td>
</tr>
<tr>
<td>3.4.1 OU V Monitoring Program</td>
<td>3-91</td>
</tr>
<tr>
<td>3.5 Operable Unit VI EDB Treatment System</td>
<td>3-93</td>
</tr>
<tr>
<td>3.5.1 System Description</td>
<td>3-93</td>
</tr>
<tr>
<td>3.5.2 Groundwater Monitoring</td>
<td>3-93</td>
</tr>
<tr>
<td>3.5.3 Monitoring Well Results</td>
<td>3-93</td>
</tr>
<tr>
<td>3.5.4 System Operational Data</td>
<td>3-94</td>
</tr>
<tr>
<td>3.5.5 System Evaluation</td>
<td>3-95</td>
</tr>
<tr>
<td>3.5.6 Recommendations</td>
<td>3-96</td>
</tr>
<tr>
<td>3.6 Site Background Monitoring</td>
<td>3-97</td>
</tr>
<tr>
<td>3.6.1 Groundwater Monitoring</td>
<td>3-97</td>
</tr>
<tr>
<td>3.6.2 Monitoring Well Results</td>
<td>3-97</td>
</tr>
<tr>
<td>3.6.3 Groundwater Monitoring Program Evaluation</td>
<td>3-97</td>
</tr>
<tr>
<td>3.6.4 Recommendation</td>
<td>3-97</td>
</tr>
<tr>
<td>3.7 Current and Former Landfill Groundwater Monitoring</td>
<td>3-99</td>
</tr>
<tr>
<td>3.7.1 Current Landfill Summary</td>
<td>3-99</td>
</tr>
</tbody>
</table>
3.7.2 Current Landfill Recommendations ... 3-99
3.7.3 Former Landfill Summary .. 3-99
3.7.4 Former Landfill Recommendations ... 3-100
3.8 g-2 Tritium Source Area and Groundwater Plume .. 3-100
3.8.1 g-2 Tritium Source Area and Plume Groundwater Monitoring 3-101
3.8.2 g-2 Tritium Source Area and Plume Monitoring Well Results 3-101
3.8.3 g-2 Tritium Source Area and Plume Groundwater Monitoring Program Evaluation 3-102
3.8.4 g-2 Tritium Source Area and Plume Recommendations 3-103
3.9 Brookhaven Linac Isotope Producer (BLIP) ... 3-105
3.9.1 BLIP Groundwater Monitoring ... 3-105
3.9.2 BLIP Monitoring Well Results ... 3-105
3.9.3 BLIP Groundwater Monitoring Program Evaluation 3-106
3.9.4 BLIP Recommendation .. 3-106

4.0 FACILITY MONITORING PROGRAM SUMMARY .. 4-1
4.1 Alternating Gradient Synchrotron (AGS) Complex .. 4-3
 4.1.1 AGS Building 912 ... 4-3
 4.1.1.1 AGS Building 912 Groundwater Monitoring .. 4-3
 4.1.1.2 AGS Building 912 Monitoring Well Results .. 4-4
 4.1.1.3 AGS Building 912 Groundwater Monitoring Program Evaluation 4-4
 4.1.1.4 AGS Building 912 Recommendations .. 4-4
 4.1.2 AGS Booster Beam Stop .. 4-5
 4.1.2.1 AGS Booster Groundwater Monitoring .. 4-5
 4.1.2.2 AGS Booster Monitoring Well Results ... 4-5
 4.1.2.3 AGS Booster Groundwater Monitoring Program Evaluation 4-5
 4.1.2.4 AGS Booster Recommendation ... 4-5
 4.1.3 NASA Space Radiation Laboratory (NSRL) ... 4-6
 4.1.3.1 NSRL Groundwater Monitoring ... 4-6
 4.1.3.2 NSRL Monitoring Well Results ... 4-6
 4.1.3.3 NSRL Groundwater Monitoring Program Evaluation 4-6
 4.1.3.4 NSRL Recommendation .. 4-6
 4.1.4 Former AGS E-20 Catcher .. 4-7
 4.1.4.1 Former AGS E-20 Catcher Groundwater Monitoring 4-7
 4.1.4.2 Former AGS E-20 Catcher Monitoring Well Results 4-7
 4.1.4.3 Former AGS E-20 Catcher Groundwater Monitoring Program Evaluation 4-7
 4.1.4.4 Former AGS E-20 Catcher Recommendation ... 4-7
 4.1.5 AGS Building 914 .. 4-8
 4.1.5.1 AGS Building 914 Groundwater Monitoring .. 4-8
 4.1.5.2 AGS Building 914 Monitoring Well Results .. 4-8
 4.1.5.3 AGS Building 914 Groundwater Monitoring Program Evaluation 4-8
 4.1.5.4 AGS Building 914 Recommendation .. 4-8
 4.1.6 Former g-2 Beam Stop .. 4-9
 4.1.6.1 Former g-2 Beam Stop Groundwater Monitoring .. 4-9
 4.1.6.2 Former g-2 Beam Stop Monitoring Well Results ... 4-9
 4.1.6.3 Former g-2 Beam Stop Groundwater Monitoring Program Evaluation 4-10
 4.1.6.4 Former g-2 Beam Stop Recommendation ... 4-10
 4.1.7 AGS J-10 Beam Stop .. 4-10
 4.1.7.1 AGS J-10 Beam Stop Groundwater Monitoring .. 4-9
 4.1.7.2 AGS J-10 Beam Stop Monitoring Well Results ... 4-10
 4.1.7.3 AGS J-10 Beam Stop Groundwater Monitoring Program Evaluation 4-10
 4.1.7.4 AGS J-10 Beam Stop Recommendation .. 4-10
 4.1.8 Former AGS U-Line Beam Target and Stop Areas .. 4-11
 4.1.8.1 Former AGS U-Line Groundwater Monitoring .. 4-10
 4.1.8.2 Former AGS U-Line Groundwater Monitoring Program Evaluation 4-10
 4.1.8.3 Former AGS U-Line Groundwater Monitoring Program Evaluation 4-10
 4.1.8.4 Former AGS U-Line Recommendation ... 4-10
 4.2 Relativistic Heavy Ion Collider (RHIC) .. 4-11
 4.2.1 RHIC Groundwater Monitoring ... 4-11
 4.2.2 RHIC Monitoring Well Results ... 4-11
 4.2.3 RHIC Groundwater Monitoring Program Evaluation 4-11
 4.2.4 RHIC Recommendation ... 4-11
 4.3 Brookhaven Medical Research Reactor (BMRR) ... 4-13
 4.3.1 BMRR Groundwater Monitoring ... 4-13

2014 BNL GROUNDWATER STATUS REPORT vi
5.0 SUMMARY OF RECOMMENDATIONS

5.1 OU I South Boundary Treatment System
5.2 Carbon Tetrachloride Treatment System
5.3 Building 96 Treatment System
5.4 452 Freon-11 Source Area and Groundwater Plume
5.5 Middle Road Treatment System Building
5.6 OU III South Boundary Treatment System
5.7 Western South Boundary Treatment System
5.8 Industrial Park Treatment System
5.9 Industrial Park East Treatment System
5.10 North Street Treatment System
5.11 North Street East Treatment System
5.12 LIPA/Airport Treatment System
5.13 Magothy Monitoring
5.14 Central Monitoring
5.15 Off-Site Monitoring
5.16 South Boundary Radionuclide Monitoring Program
5.17 BGRRW CF Strontium-90 Treatment System
5.18 Chemical/Animal Holes Strontium-90 Treatment System
5.19 HFBR Tritium Pump and Recharge System
5.20 Building 650 (Sump Outfall) Strontium-90 Monitoring
5.21 Operable Unit V
5.22 Operable Unit VI EDB Treatment System
5.23 Site Background Monitoring
5.24 Current Landfill Groundwater Monitoring
5.25 Former Landfill Groundwater Monitoring
5.26 g-2 Tritium Source Area and Groundwater Plume
5.27 Brookhaven Linac Isotope Producer (BLIP) Facility
5.28 Alternating Gradient Synchrotron (AGS) Complex

CONTENTS
5.29 Relativistic Heavy Ion Collider (RHIC) Facility ... 5-6
5.30 Brookhaven Medical Research Reactor (BMRR) Facility ... 5-6
5.31 Sewage Treatment Plant (STP) Facility .. 5-7
5.32 Motor Pool Maintenance Area .. 5-7
5.33 On-Site Service Station ... 5-7
5.34 Major Petroleum Facility (MPF) Area .. 5-7
5.35 Waste Management Facility (WMF) .. 5-7
5.36 National Synchrotron Light Source II (NSLS-II) ... 5-7

Reference List
List of Appendices

A. Sitewide Groundwater Elevation Measurements and Vertical Gradient Calculations 2014
B. Long-Term Well Hydrographs
C. 2014 CERCLA Groundwater Results
 OU I (South Boundary)
 OU III (Carbon Tetrachloride)
 OU III (Bldg. 96)
 OU III (Middle Road)
 OU III (South Boundary)
 OU III (Western South Boundary)
 OU III (Industrial Park)
 OU III (Industrial Park East)
 OU III (North Street)
 OU III (North Street East)
 OU III (LIPA/Airport)
 OU III (Magothy)
 OU III (Central)
 OU III (Off-Site)
 OU III (BGRR/WCF Sr-90)
 OU III (Chemical/Animal Holes Sr-90)
 OU III (AOC 29/HFBR Tritium)
 Building 452 Freon-11
 OU IV (AOC 6 Sr-90)
 OU V
 OU VI EDB
 Site Background
 Current Landfill
 Former Landfill
 g-2Tritium Source Area and Groundwater Plume
 BLIP Facility
D. 2014 Facility Monitoring Groundwater Results
 AGS Research Areas
 Building 801
 RHIC Facility
 Major Petroleum Facility
 Motor Pool Area
 Service Station
 Sewage Treatment Plant and Peconic River
 New Waste Management Facility
E. Sample Collection, Tracking, and QA/QC Results
 1.0 Groundwater Sampling
 1.1 Sample Collection
 1.1.1 Decontamination
 1.2 Sample Tracking System
 1.2.1 Sample Identification
 1.2.2 Sample Tracking
 1.2.3 Sample Packaging and Shipping
 1.2.4 Sample Documentation
 1.3 Analytical Methods
 1.3.1 Chemical Analytical Methods
 1.3.2 Radiological Analytical Methods
 1.4 Quality Assurance and Quality Control
 1.4.1 Calibration and Preventive Maintenance of Field Instruments
 1.4.2 QA/QC Sample Collection
 1.4.2.1 Equipment Blanks
 1.4.2.2 Field Blanks
 1.4.2.3 Duplicate Samples
 1.4.2.4 Requirements for Matrix Spike/Matrix Spike Duplicate Volumes
 1.4.3 Data Verification
 1.4.4 Data Usability

F. Remediation System Data Tables

 OU I South Boundary System
 F-1 Extraction Wells Tritium and VOC Data
 F-2 Air Stripper Influent Tritium and VOC Data
 F-3 Air Stripper Effluent Tritium and VOC Data
 F-4 Cumulative Mass Removal

 OU III Building 96 System
 F-5 Influent and Effluent VOC Data
 F-6 Source Control Air Sampling Results (Hits Only)
 F-7 Pumpage and Mass Removal

 Building 452 Freon Extraction System
 F-8 System Influent VOC Data
 F-9 System Effluent VOC Data
 F-10 Cumulative Mass Removal

 OU III Middle Road System
 F-11 Extraction Wells VOC Data
 F-12 Air Stripper Influent VOC Data
 F-13 Air Stripper Effluent VOC Data
 F-14 Cumulative Mass Removal

 OU III South Boundary System
 F-15 Extraction Well VOC Data
 F-16 Air Stripper Influent VOC Data
LIST OF APPENDICES

F-17 Air Stripper Effluent VOC Data
F-18 Cumulative Mass Removal

OU III Western South Boundary System
F-19 Extraction Wells VOC Data
F-20 Air Stripper Influent Data
F-21 Air Stripper Effluent Data
F-22 Cumulative Mass Removal

OU III Industrial Park System
F-23 TVOC Influent, Effluent and Efficiency Performance
F-24 Cumulative Mass Recovery
F-25 Air Flow Rates

OU III Industrial Park East System
F-26 Extraction Well VOC Data

OU III North Street System
F-27 Cumulative Mass Removal
F-28 Extraction Wells VOC Data and Tritium Data
F-29 Carbon Influent VOC Data
F-30 Carbon Effluent VOC and Tritium Data

OU III North Street East System
F-31 Extraction Wells VOC Data
F-32 Carbon Influent VOC Data
F-33 Carbon Effluent VOC and Tritium Data
F-34 Cumulative Mass Removal

OU III LIPA/Airport System
F-35 Cumulative Mass Removal
F-36 Extraction Well VOC Data
F-37 Carbon Influent VOC Data
F-38 Carbon Effluent VOC Data

OU III BGRR/WCF Sr-90 System
F-39 Extraction Well Data
F-40 System Influent Data
F-41 System Effluent Data
F-42 Cumulative Mass Removal

OU III Chemical/Animal Holes Sr-90 System
F-43 Extraction Well Data
F-44 System Influent Data
F-45 System Effluent Data
F-46 Cumulative Mass Removal

OU III HFBR Tritium System
F-44 Effluent VOC and Tritium Data
F-48 Extraction Well VOC and Tritium Data

OU VI EDB Pump and Treat System
F-49 Extraction Well VOC Data
F-50 System Influent VOC Data
F-51 System Effluent VOC Data

G. Data Usability Reports
List of Figures

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-1</td>
<td>2014 Extent of Primary BNL VOC Plumes</td>
</tr>
<tr>
<td>E-2</td>
<td>2014 Extent of Primary BNL Radionuclide Plumes</td>
</tr>
<tr>
<td>1-1</td>
<td>Key Site Features</td>
</tr>
<tr>
<td>1-2</td>
<td>Monitoring Well Locations</td>
</tr>
<tr>
<td>2-1</td>
<td>Generalized Geologic Cross Section in the Vicinity of Brookhaven National Laboratory</td>
</tr>
<tr>
<td>2-2</td>
<td>Water-Table Contours of the Shallow Glacial Zone, December 1-5, 2014</td>
</tr>
<tr>
<td>2-3</td>
<td>Potentiometric Surface Contours of the Deep Glacial Zone, December 1-5, 2014</td>
</tr>
<tr>
<td>2-4</td>
<td>Summary of BNL Supply Well Pumpage 1992 through 2014</td>
</tr>
<tr>
<td>2-5</td>
<td>Suffolk County Water Authority Pumping Near BNL</td>
</tr>
<tr>
<td>3.0-1</td>
<td>Groundwater Remediation Systems</td>
</tr>
<tr>
<td>3.0-2</td>
<td>Summary of Laboratory Analyses Performed for the CERCLA Monitoring Well Program in 2014</td>
</tr>
<tr>
<td>3.1-1</td>
<td>OU I South Boundary / North Street East, TVOC Plume Distribution</td>
</tr>
<tr>
<td>3.1-2</td>
<td>OU I South Boundary / North Street East, TVOC Plume Comparison 1997-2014</td>
</tr>
<tr>
<td>3.1-3</td>
<td>OU I South Boundary / North Street East, TVOC Hydrogeologic Cross Section (A-A')</td>
</tr>
<tr>
<td>3.1-4</td>
<td>OU I Current Landfill / South Boundary / North Street East, Historical VOC Trends</td>
</tr>
<tr>
<td>3.1-5</td>
<td>OU I South Boundary / North Street East, Historical Tritium Trends</td>
</tr>
<tr>
<td>3.1-6</td>
<td>OU I South Boundary / North Street East, Sr-90 Results</td>
</tr>
<tr>
<td>3.1-7</td>
<td>OU I South Boundary / North Street East, Historical Sr-90 Trends</td>
</tr>
<tr>
<td>3.1-8</td>
<td>OU I South Boundary Groundwater Remediation System, Historic Total Volatile Organic Compound Trends in Extraction Wells</td>
</tr>
<tr>
<td>3.1-9</td>
<td>OU I South Boundary Groundwater Remediation System, Cumulative VOC Mass Removed</td>
</tr>
<tr>
<td>3.1-10</td>
<td>OU I South Boundary Groundwater Remediation System, Average Core Monitoring Well TVOC Concentration</td>
</tr>
<tr>
<td>3.2-1</td>
<td>OU III / OU IV / North Street, TVOC Plume Distributions</td>
</tr>
<tr>
<td>3.2-2</td>
<td>OU III, TVOC Hydrogeologic Cross Section (B-B')</td>
</tr>
<tr>
<td>3.2-3</td>
<td>OU III / OU IV / North Street, TVOC Plume Comparison 1997-2014</td>
</tr>
<tr>
<td>3.2.2-1</td>
<td>OU III Building 96 Area, TVOC Plume Distribution</td>
</tr>
<tr>
<td>3.2.2-2</td>
<td>OU III Building 96 Area, Historical VOC Trends</td>
</tr>
<tr>
<td>3.2.2-3</td>
<td>OU III Building 96 Area, Hydrogeologic Cross Section (D-D')</td>
</tr>
<tr>
<td>3.2.2-4</td>
<td>OU III Building 96 Area, Hexavalent Chromium Results</td>
</tr>
<tr>
<td>3.2.2-5</td>
<td>OU III Building 96 Area, Extraction Well TVOC Concentrations</td>
</tr>
<tr>
<td>3.2.2-6</td>
<td>OU III Building 96 Area, TVOC Plume Comparison 2000-2014</td>
</tr>
<tr>
<td>3.2.3-1</td>
<td>Building 452 Area, Freon-11 Monitoring Well Network, 4th Quarter 2014</td>
</tr>
<tr>
<td>3.2.3-2</td>
<td>Facility Monitoring Program, Building 452 Area Freon-11, 4th Quarter 2014 Hydrogeologic Cross Section (Q-Q')</td>
</tr>
<tr>
<td>3.2.3-3</td>
<td>Facility Monitoring Program, Building 452 Area, Historical Freon-11 Trends</td>
</tr>
<tr>
<td>3.2.3-4</td>
<td>Facility Monitoring Program, Building 452 Area, Freon-11 Treatment System - TVOC Influent Concentrations</td>
</tr>
<tr>
<td>3.2.3-5</td>
<td>Facility Monitoring Program, Building 452 Area, Freon-11 Plume Comparison 2011-2014</td>
</tr>
<tr>
<td>3.2.4-1</td>
<td>OU III Middle Road Area, TVOC Plume Distribution</td>
</tr>
<tr>
<td>3.2.4-2</td>
<td>OU III Middle Road Area, TVOC Hydrogeologic Cross Section (E-E')</td>
</tr>
<tr>
<td>3.2.4-3</td>
<td>OU III and OU IV Plume(s), Historical VOC Trends</td>
</tr>
<tr>
<td>3.2.4-4</td>
<td>OU III Middle Road Area, TVOC Hydrogeologic Cross Section (B1-B1')</td>
</tr>
<tr>
<td>3.2.4-5</td>
<td>OU III Middle Road Groundwater Remediation System, Cumulative VOC Mass Removed</td>
</tr>
<tr>
<td>3.2.4-6</td>
<td>OU III Middle Road Groundwater Remediation System, Total Volatile Organic Compounds in Recovery Wells</td>
</tr>
<tr>
<td>3.2.5-1</td>
<td>OU III and OU IV South Boundary / Industrial Park Areas, TVOC Plume Distribution</td>
</tr>
<tr>
<td>3.2.5-2</td>
<td>OU III South Boundary Area, TVOC Hydrogeologic Cross Section (F-F')</td>
</tr>
<tr>
<td>3.2.5-3</td>
<td>OU III South Boundary Groundwater Remediation System, Total Volatile Organic Compounds in Extraction Wells</td>
</tr>
</tbody>
</table>
3.2.5-4 OU III South Boundary Groundwater Remediation System, Cumulative VOC Mass Removed

3.2.6-1 OU III Western South Boundary, TVOC Plume Distribution
3.2.6-2 OU III Western South Boundary, Historical VOC Trends
3.2.6-3 OU III Western South Boundary Groundwater Remediation System, Historic Extraction Well Total Volatile Organic Compound Concentrations
3.2.6-4 OU III Western South Boundary Groundwater Remediation System, Cumulative VOC Mass Removed

3.2.7-1 OU III Industrial Park Area, TVOC Plume Distribution
3.2.7-2 OU III Industrial Park and Industrial Park East, TVOC Hydrogeologic Cross Section (G-G')
3.2.7-3 OU III Industrial Park, Historical VOC Trends
3.2.7-4 OU III Industrial Park Groundwater Remediation System, TVOC Influent Concentration
3.2.7-5 OU III Industrial Park Groundwater Remediation System, TVOC Effluent Concentration
3.2.7-6 OU III Industrial Park Groundwater Remediation System, Cumulative VOC Mass Removed
3.2.7-8 OU III Industrial Park Groundwater Remediation System, Average Core Monitoring Well TVOC Concentration

3.2.8.1 OU III Industrial Park East Area, TVOC Plume Distribution
3.2.8-2 OU III Industrial Park East, TVOC Hydrogeologic Cross Section (C-C')
3.2.8-3 OU III Industrial Park East Area, VOC Concentrations
3.2.8-4 OU III Industrial Park East, Historical VOC Trends

3.2.9-1 North Street (OU I/IV, Former Landfill, Chemical/Animal Holes), TVOC Plume Distribution
3.2.9-2 North Street (OU I/IV Former Landfill, Chemical/Animal Holes), TVOC Hydrogeologic Cross Section (H-H')
3.2.9-3 North Street (OU I/IV Former Landfill, Chemical/Animal Holes), Historical VOC Trends
3.2.9-4 OU III North Street Groundwater Remediation System, Extraction Well TVOC Concentrations
3.2.9-5 OU III North Street Groundwater Remediation System, Cumulative VOC Mass Removed
3.2.9-6 North Street (OU I/IV Former Landfill, Chemical/Animal Holes), TVOC Plume Comparison 1997-2014

3.2.10-1 OU III North Street East Area, TVOC Plume Distribution
3.2.10-2 OU III North Street East Groundwater Remediation System, Extraction Well TVOC Concentrations
3.2.10-3 OU III North Street East Groundwater Remediation System, Cumulative VOC Mass Removed
3.2.10-4 OU III North Street East TVOC Plume Comparison 2004-2014

3.2.11-1 OU III LIPA / Airport, TVOC Plume Distribution
3.2.11-2 OU III Airport West, TVOC Hydrogeologic Cross Section (N-N')
3.2.11-3 OU III LIPA Groundwater Remediation System, TVOC Influent Concentrations
3.2.11-4 OU III Airport Groundwater Remediation System, TVOC Influent Concentrations
3.2.11-5 OU III LIPA/Airport Groundwater Remediation System, Cumulative VOC Mass Removed
3.2.11-6 OU III LIPA/Airport, Historical VOC Trends

3.2.12-1 Magorthy Well Locations and TVOC Results
3.2.12-2 Magorthy Historical TVOC Trends

3.2.13-1 OU III Central, Monitoring Well Locations
3.2.14-1 OU III Off-Site, Monitoring Well Locations

3.2.15-1 OU III South Boundary, Radionuclide Monitoring Well Locations

3.2.16-1 OU III BGRR/WCF, Sr-90 Plume Distribution
3.2.16-2 OU III BGRR/WCF, Sr-90 Cross Section (I-I')
3.2.16-3 OU III BGRR/WCF, Sr-90 Cross Section (J-J')
3.2.16-4 OU III BGRR/WCF, Sr-90 Cross Section (K-K')
3.2.16-5 OU III BGRR/WCF, Historical Sr-90 Trends
3.2.16-6 OU III BGRR/WCF Extraction Well SR-3, Sr-90 Concentration Comparison to Water Table Elevation
3.2.16-7 OU III BGRR/WCF, Sr-90 Cumulative MilliCuries Removed
3.2.16-8 OU III BGRR/WCF, Sr-90 Influent Concentrations For Extraction Wells
3.2.16-9 OU III BGRR/WCF, Sr-90 Influent Concentrations From April 2008 to Present
3.2.16-10 OU III BGRR/WCF, Sr-90 Plume Comparison 2004-2014
LIST OF FIGURES

3.2.17-1 OU III Chemical/Animal Holes, Sr-90 Plume Distribution
3.2.17-2 OU III Chemical/Animal Holes, Historical Sr-90 Trends
3.2.17-3 OU III Chemical/Animal Holes, Sr-90 Hydrogeologic Cross Section (P-P')
3.2.17-4 OU III Chemical/Animal Holes, Sr-90 Extraction Well Concentrations
3.2.17-5 OU III Chemical/Animal Holes, Sr-90 Cumulative MilliCuries Removed
3.2.17-6 OU III Chemical/Animal Holes, Sr-90 Plume Comparison 2002-2014

3.2.18-1 OU III HFBR AOC 29, Tritium Plume Distribution
3.2.18-2 OU III HFBR AOC 29, Tritium Hydrogeologic Cross Section (L-L')
3.2.18-3 OU III HFBR AOC 29, Historical Tritium Trends
3.2.18-4 OU III HFBR, Peak Tritium Concentrations in Groundwater - HFBR to Cornell Avenue
3.2.18-5 OU III HFBR AOC 29, Tritium Plume Comparison 1997-2014

3.3.1-1 OU IV AOC 6, Sr-90 Plume Distribution
3.3.1-2 OU IV AOC 6, Historical Sr-90 Trends

3.5-1 OU VI, EDB Plume Distribution
3.5-2 OU VI, EDB Hydrogeologic Cross Section (M-M')
3.5-3 OU VI, Historical EDB Trends
3.5-4 OU VI, EDB Plume Comparison 1999-2014
3.5-5 OU VI EDB Extraction Well Concentrations

3.7-1 Current Landfill, Monitoring Well Locations
3.7-2 Former Landfill, Monitoring Well Locations

3.8-1 Facility Monitoring Program, AOC 16T g-2 Tritium Plume, 4th Quarter 2014
3.8-2 Facility Monitoring Program, AOC 16T g-2 Tritium Plume, 4th Quarter 2014 Cross Section (O-O')
3.8-3 Facility Monitoring Program, AOC 16T g-2 Tritium Plume, Maximum Tritium Concentrations Observed from April 2003 through October 2014
3.8-4 Facility Monitoring Program, AOC 16T g-2 Tritium Plume, Comparison of January 2007 through October 2014 results to the 20,000 pCi/L DWS

3.9-1 Facility Monitoring Program, BLIP Facility Area Monitoring Well Locations And Tritium Results, 4th Quarter 2014

4.1-1 Facility Monitoring Program, AGS and BLIP Facility Area, Monitoring Well Locations and Tritium Results, 4th Qtr 2014
4.1-2 Facility Monitoring Program, AGS Facility Area, Maximum Tritium Concentrations Downgradient of Booster Stop
4.1-3 Facility Monitoring Program, AGS Facility Area, Maximum Tritium Concentrations Downgradient of Former AGS E-20 Catcher
4.1-4 Facility Monitoring Program, AGS Facility Area, Maximum Tritium Concentrations Downgradient of Building 914
4.1-5 Facility Monitoring Program, AGS Facility Area, Maximum Tritium Concentrations Downgradient of J-10 Beam Stop
4.1-6 Facility Monitoring Program, AGS Facility Area, Maximum Tritium Concentrations Downgradient of Former U-Line Target
4.1-7 Facility Monitoring Program, AGS Facility Area, Maximum Tritium Concentrations Downgradient of Former U-Line Beam Stop Area
4.2-1 Facility Monitoring Program, Relativistic Heavy Ion Collider, Monitoring Well Locations Tritium Results, 3rd Quarter 2014
4.3-1 Facility Monitoring Program, Brookhaven Medical Research Reactor Monitoring Well Locations 3rd Quarter 2014
4.3-2 Facility Monitoring Program, Brookhaven Medical Research Reactor, Monitoring Well Tritium Concentrations
4.4-1 Sewage Treatment Plant System Sampling and Monitoring Well Locations
4.5-1 Facility Monitoring Program, Motor Pool, Monitoring Well Locations, TVOC Results 4th Quarter 2014
4.5-2 Facility Monitoring Program, Motor Pool, Summary of TVOC Concentrations
4.6-1 Facility Monitoring Program, Service Station, TVOC Plume Distribution, 4th Quarter 2014
4.6-2 Facility Monitoring Program Service Station, Summary of TVOC Concentrations
4.7-1 Facility Monitoring Program, Major Petroleum Facility, Monitoring Well Locations, TVOC Concentrations, 4th Qtr 2014
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7-2</td>
<td>Facility Monitoring Program, Major Petroleum Facility, Well 076-380</td>
</tr>
<tr>
<td>4.8-1</td>
<td>Facility Monitoring Program, Waste Management Facility, Monitoring Well Locations</td>
</tr>
<tr>
<td>4.9-1</td>
<td>Facility Monitoring Program, National Synchrotron Light Source II, Monitoring Well Locations</td>
</tr>
</tbody>
</table>
List of Tables

E-1 BNL Groundwater Remediation System Treatment Summary for 1997–2014
E-2 Groundwater Restoration Progress
1-1. Groundwater Standards for Inorganic Compounds
1-2. Groundwater Standards for Pesticides and PCBs
1-3. Groundwater Standards for Organic Compounds
1-4. Groundwater Standards for Radiological Compounds
1-5. Summary of CERCLA Groundwater Samples and Analytical Methods
1-6. Summary of Environmental Surveillance Samples and Analytical Methods
1-7. Summary of Monitoring Wells and Piezometers
1-8. CERCLA Groundwater Monitoring Program – Well Sampling Frequency
2-1. 2014 Water Pumpage Report for Potable Supply Wells
2-2. 2014 Remediation Well Pumpage Report
3.0-1 2014 Summary of Groundwater Remediation Systems at BNL
3.1-1 OU I South Boundary Treatment System, 2014 SPDES Equivalency Permit Levels
3.1-2 OU I South Boundary Temporary Well Data
3.1-3 OU I South Boundary, 2014 Air Stripper VOC Emissions Data
3.2.2-1 OU III Building 96 RTW-1 Treatment Well, 2014 SPDES Equivalency Permit Levels
3.2.2-2 OU III Building 96 Area, 2014 Average VOC Emission Rates
3.2.2-3 OU III Building 96 2014 Extraction Well Pumping Rates
3.2.2-4 OU III Building 96 Temporary Well Data “Hits Only”
3.2.3-1 Building 452 EW-18 Treatment Well, 2014 SPDES Equivalency Permit Levels
3.2.3-2 Building 452 Freon-11 Treatment System 2014 Extraction Well Pumping Rate
3.2.3-3 Building 452 Freon-11 Plume Characterization - December 2014 (Freon-11 Concentrations in µg/L)
3.2.4-1 Middle Road Air Stripping Tower, 2014 SPDES Equivalency Permit Levels
3.2.4-2 Middle Road Air Stripper, 2014 Average VOC Emission Rates
3.2.4-3 OU III Middle Road 2014 Extraction Well Pumping Rates
3.2.5-1 OU III South Boundary Air Stripping Tower, 2014 SPDES Equivalency Permit Levels
3.2.5-2 OU III South Boundary Air Stripper, 2014 Average VOC Emission Rates
3.2.5-3 OU III South Boundary 2014 Extraction Well Pumping Rates
3.2.6-1 Western South Boundary Treatment System, 2014 SPDES Equivalency Permit Levels
3.2.6-2 OU III Western South Boundary 2014 Extraction Well Pumping Rates
3.2.6-3 Western South Boundary, 2014 Air Stripper VOC Emissions Data
3.2.7-1 OU III Industrial Park 2014 Extraction Well Pumping Rates
3.2.7-2 OU III Industrial Park 2014 Temporary Well Data
3.2.9-1 OU III North Street Treatment System, 2014 SPDES Equivalency Permit Levels
3.2.9-2 OU III North Street 2014 Extraction Well Pumping Rates
3.2.10-1 OU III North Street East Treatment System, 2014 SPDES Equivalency Permit Levels
3.2.10-2 OU III North Street East 2014 Extraction Well Pumping Rates
3.2.11-1 OU III LIPA/Airport Treatment System, 2014 SPDES Equivalency Permit Levels
3.2.11-2 OU III LIPA/Airport 2014 Extraction Well Pumping Rates
3.2.12-1 Magothy Aquifer Contamination (Historical and 2014)
3.2.12-2 Magothy Remedy
3.2.16-1 BGRR Sr-90 Treatment System, 2014 SPDES Equivalency Permit Levels
3.2.16-2 OU III BGRR, Summary of Strontium 90 Results From Geoprobe Wells, April 2014 through April 2015
3.2.16-3 BGRR Sr-90 Treatment System 2014 Extraction Well Pumping Rates

3.2.17-1 Chemical Holes Sr-90 Treatment System, 2014 SPDES Equivalency Permit Levels
3.2.17-2 OU III Chemical/Animal Holes Sr-90 Remediation System 2014 Extraction Well Pumping Rates
3.2.17-3 OU III Chemical/Animal Holes Sr-90 Temporary Well Data May 2014

3.2.18-1 Proposed Sampling Frequency Changes for HFBR Downgradient Monitoring Wells

3.5-1 OU VI EDB Treatment System, 2014 SPDES Equivalency Permit Levels
3.5-2 OU VI EDB Pump & Treat System 2014 Extraction Well Pumping Rates

3.6-1 Radiological Background Monitoring, 1996–2001

3.8-1 g-2 Tritium Plume Characterization January 2015, South of Brookhaven Avenue – Geoprobe Transect K and M.

5-1 Proposed Groundwater Monitoring Well Sampling Frequency Changes
Acronyms and Abbreviations

These acronyms and abbreviations reflect the typical manner in which terms are used in Volume II of this document, and may not apply to all situations.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGS</td>
<td>Alternating Gradient Synchrotron</td>
</tr>
<tr>
<td>AOC</td>
<td>Area of Concern</td>
</tr>
<tr>
<td>AS/SVE</td>
<td>Air Sparge/Soil Vapor Extraction</td>
</tr>
<tr>
<td>AWQS (NYS)</td>
<td>Ambient Water Quality Standards</td>
</tr>
<tr>
<td>BGD</td>
<td>Below Ground Ducts</td>
</tr>
<tr>
<td>BGRR</td>
<td>Brookhaven Graphite Research Reactor</td>
</tr>
<tr>
<td>BLIP</td>
<td>Brookhaven Linac Isotope Producer</td>
</tr>
<tr>
<td>bls</td>
<td>below land surface</td>
</tr>
<tr>
<td>BMRR</td>
<td>Brookhaven Medical Research Reactor</td>
</tr>
<tr>
<td>BNL</td>
<td>Brookhaven National Laboratory</td>
</tr>
<tr>
<td>CERCLA</td>
<td>Comprehensive Environmental Response, Compensation and Liability Act</td>
</tr>
<tr>
<td>cfm</td>
<td>cubic feet per minute</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>Ci</td>
<td>curies</td>
</tr>
<tr>
<td>COC</td>
<td>Chain of Custody</td>
</tr>
<tr>
<td>Cr</td>
<td>chromium</td>
</tr>
<tr>
<td>Cr(VI)</td>
<td>hexavalent chromium</td>
</tr>
<tr>
<td>CRDL</td>
<td>Contract Required Detection Limit</td>
</tr>
<tr>
<td>CSF</td>
<td>Central Steam Facility</td>
</tr>
<tr>
<td>CY</td>
<td>calendar year</td>
</tr>
<tr>
<td>DCA</td>
<td>1,1-dichloroethane</td>
</tr>
<tr>
<td>DCE</td>
<td>1,1-dichloroethylene</td>
</tr>
<tr>
<td>DCG</td>
<td>Derived Concentration Guide</td>
</tr>
<tr>
<td>D&D</td>
<td>decommissioning and demolition</td>
</tr>
<tr>
<td>DNAPL</td>
<td>dense non-aqueous-phase liquid</td>
</tr>
<tr>
<td>DOE</td>
<td>United States Department of Energy</td>
</tr>
<tr>
<td>DQO</td>
<td>Data Quality Objective</td>
</tr>
<tr>
<td>DTW</td>
<td>Depth to Water</td>
</tr>
<tr>
<td>DWS</td>
<td>Drinking Water Standards</td>
</tr>
<tr>
<td>EDB</td>
<td>ethylene dibromide</td>
</tr>
<tr>
<td>EDD</td>
<td>Electronic Data Deliverable</td>
</tr>
<tr>
<td>EE/CA</td>
<td>Engineering Evaluation/Cost Analysis</td>
</tr>
<tr>
<td>EIMS</td>
<td>Environmental Information Management System</td>
</tr>
<tr>
<td>EM</td>
<td>Environmental Management</td>
</tr>
<tr>
<td>EMS</td>
<td>Environmental Management System</td>
</tr>
<tr>
<td>EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>EPD</td>
<td>Environmental Protection Division</td>
</tr>
<tr>
<td>ER</td>
<td>Emissions Rate</td>
</tr>
<tr>
<td>ERP</td>
<td>Emissions Rate Potential</td>
</tr>
<tr>
<td>ES</td>
<td>Environmental Surveillance</td>
</tr>
<tr>
<td>ESD</td>
<td>Explanation of Significant Differences</td>
</tr>
<tr>
<td>EW</td>
<td>extraction well</td>
</tr>
<tr>
<td>FFA</td>
<td>Federal Facility Agreement</td>
</tr>
<tr>
<td>ft</td>
<td>feet</td>
</tr>
<tr>
<td>ft msl</td>
<td>feet relative to mean sea level</td>
</tr>
<tr>
<td>GAC</td>
<td>granular activated carbon</td>
</tr>
<tr>
<td>gal/hr</td>
<td>gallons per hour</td>
</tr>
<tr>
<td>gpm</td>
<td>gallons per minute</td>
</tr>
<tr>
<td>GFBR</td>
<td>High Flux Beam Reactor</td>
</tr>
<tr>
<td>HWMF</td>
<td>Hazardous Waste Management Facility</td>
</tr>
<tr>
<td>IAG</td>
<td>Inter Agency Agreement</td>
</tr>
<tr>
<td>ID</td>
<td>identification</td>
</tr>
<tr>
<td>lb/gal</td>
<td>pounds per gallon</td>
</tr>
<tr>
<td>lb/hr</td>
<td>pounds per hour</td>
</tr>
<tr>
<td>lbs</td>
<td>pounds</td>
</tr>
<tr>
<td>LIE</td>
<td>Long Island Expressway</td>
</tr>
<tr>
<td>Linac</td>
<td>Linear Accelerator</td>
</tr>
<tr>
<td>LIPA</td>
<td>Long Island Power Authority</td>
</tr>
<tr>
<td>LTRA</td>
<td>Long Term Response Actions</td>
</tr>
<tr>
<td>mCi</td>
<td>milliCuries</td>
</tr>
<tr>
<td>MCL</td>
<td>Maximum Contaminant Level</td>
</tr>
<tr>
<td>MDA</td>
<td>Minimum Detectable Activity</td>
</tr>
<tr>
<td>MDL</td>
<td>Minimum Detection Limit</td>
</tr>
<tr>
<td>mg/kg</td>
<td>milligrams per kilogram</td>
</tr>
<tr>
<td>mg/L</td>
<td>milligrams per liter</td>
</tr>
<tr>
<td>MGD</td>
<td>millions of gallons per day</td>
</tr>
<tr>
<td>MNA</td>
<td>Monitored Natural Attenuation</td>
</tr>
<tr>
<td>MPF</td>
<td>Major Petroleum Facility</td>
</tr>
<tr>
<td>mrem/yr</td>
<td>millirems per year</td>
</tr>
<tr>
<td>MS/MSD</td>
<td>Matrix Spike/Matrix Spike Duplicate</td>
</tr>
<tr>
<td>msl</td>
<td>mean sea level</td>
</tr>
<tr>
<td>MTBE</td>
<td>methyl tertiary-butyl ether</td>
</tr>
<tr>
<td>NCP</td>
<td>National Oil and Hazardous Substances Pollution Contingency Plan</td>
</tr>
<tr>
<td>NPL</td>
<td>National Priorities List</td>
</tr>
<tr>
<td>NSE</td>
<td>North Street East</td>
</tr>
<tr>
<td>NSLS-II</td>
<td>National Synchrotron Light Source II</td>
</tr>
<tr>
<td>NSRL</td>
<td>NASA Space Radiation Laboratory</td>
</tr>
<tr>
<td>NYCRR</td>
<td>New York Code of Rules and Regulations</td>
</tr>
<tr>
<td>NYS</td>
<td>New York State</td>
</tr>
</tbody>
</table>
The 2014 BNL Groundwater Status Report is a comprehensive summary of data collected during the calendar year, and an evaluation of Groundwater Protection Program performance. This is the nineteenth annual groundwater status report issued by BNL. This document examines the performance of the program on a project-by-project basis.

GROUNDWATER RESTORATION (COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION AND LIABILITY ACT - CERCLA)

Table E-1 summarizes the status and progress of groundwater cleanup at BNL under the provisions of CERCLA. During 2014, 10 volatile organic compound (VOC) groundwater remediation systems were in operation, along with two strontium-90 (Sr-90) treatment systems. In 2014, 143 pounds of VOCs were removed from the aquifers by the treatment systems. To date, 7,276 pounds of VOCs have been removed from the aquifers. The Sr-90 treatment systems removed 1.19 milliCuries (mCi) of Sr-90 from the Upper Glacial aquifer in 2014, for a total of 29.9 mCi since operations began.

A significant cleanup milestone was achieved in 2014 with regulatory approval of the petition for shutdown of the North Street East Treatment System. Groundwater remediation activities for the remaining plumes will continue until the cleanup objectives for the plumes are met. The specific goals are as follows:

- Achieve maximum contaminant levels (MCLs) for VOCs in the Upper Glacial aquifer by 2030
- Achieve MCLs for VOCs in the Magothy aquifer by 2065
- Achieve the MCL of 8 pico Curies per liter (pCi/L) for Sr-90 at the BGRR in the Upper Glacial aquifer by 2070
- Achieve the MCL of 8 pCi/L for Sr-90 at the Chemical/Animal Holes in the Upper Glacial aquifer by 2040

The cleanup objectives will be met by a combination of active treatment and natural attenuation. The comprehensive groundwater monitoring program measures remediation progress.
Table E-1.

<table>
<thead>
<tr>
<th>VOCs Remediation (start date)</th>
<th>1997 – 2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water Treated (gallons)</td>
<td>VOCs Removed (pounds)(c)</td>
</tr>
<tr>
<td>OU I South Boundary (Dec. 1996) (a)</td>
<td>4,177,473,000</td>
<td>369</td>
</tr>
<tr>
<td>OU III Carbon Tetrachloride (Oct. 1999) (e)</td>
<td>153,538,075</td>
<td>349</td>
</tr>
<tr>
<td>OU III Building 96 (Feb. 2001)</td>
<td>379,407,416</td>
<td>127</td>
</tr>
<tr>
<td>OU III Building 452 Freon-11 (March 2012)</td>
<td>58,312,000</td>
<td>88</td>
</tr>
<tr>
<td>OU III Middle Road (Oct. 2001)</td>
<td>2,547,348,550</td>
<td>1082</td>
</tr>
<tr>
<td>OU III South Boundary (June 1997)</td>
<td>4,383,751,850</td>
<td>2,956</td>
</tr>
<tr>
<td>OU III W. South Boundary (Sept. 2002)</td>
<td>1,276,784,000</td>
<td>116</td>
</tr>
<tr>
<td>OU III Building 452 Freon-11 (March 2012)</td>
<td>58,312,000</td>
<td>88</td>
</tr>
<tr>
<td>OU III Middle Road (Oct. 2001)</td>
<td>2,547,348,550</td>
<td>1082</td>
</tr>
<tr>
<td>OU III South Boundary (June 1997)</td>
<td>4,383,751,850</td>
<td>2,956</td>
</tr>
<tr>
<td>OU III W. South Boundary (Sept. 2002)</td>
<td>1,276,784,000</td>
<td>116</td>
</tr>
<tr>
<td>OU III Industrial Park (Sept. 1999)</td>
<td>1,976,798,330</td>
<td>1,061</td>
</tr>
<tr>
<td>OU III Industrial Park East (May 2004)(f)</td>
<td>357,192,000</td>
<td>38</td>
</tr>
<tr>
<td>OU III North Street (June 2004)</td>
<td>1,503,117,000</td>
<td>329</td>
</tr>
<tr>
<td>OU III North Street East (June 2004)</td>
<td>955,558,000</td>
<td>43</td>
</tr>
<tr>
<td>OU III LIPA/Airport (June 2004)</td>
<td>2,261,529,000</td>
<td>363</td>
</tr>
<tr>
<td>OU III HFBR Tritium Plume (May 1997) (a)</td>
<td>721,795,000</td>
<td>180</td>
</tr>
<tr>
<td>OU IV AS/SVE (Nov. 1997)</td>
<td>NA (b)</td>
<td>35</td>
</tr>
<tr>
<td>OU VI EDB (August 2004)</td>
<td>1,410,664,000</td>
<td>NA (d)</td>
</tr>
<tr>
<td>Totals</td>
<td>22,163,268,221</td>
<td>7,133</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sr-90 Remediation (start date)</th>
<th>2003 – 2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water Treated (gallons)</td>
<td>Sr-90 Removed (mCi)</td>
</tr>
<tr>
<td>OU III Chemical Holes (Feb 2003)</td>
<td>51,335,826</td>
<td>4.69</td>
</tr>
<tr>
<td>OU III Building 96 (June 2005)</td>
<td>79,082,000</td>
<td>24.02</td>
</tr>
<tr>
<td>Totals</td>
<td>130,417,826</td>
<td>28.71</td>
</tr>
</tbody>
</table>

Notes:
(a) System was placed in standby mode in 2013.
(b) Air Sparging/Soil Vapor Extraction (AS/SVE) system performance measured by pounds of volatile organic compounds (VOCs) removed. System was decommissioned in 2003.
(c) Values rounded to the nearest whole number.
(d) Ethylene dibromide (EDB) has been detected in the system influent since 2009 at levels slightly above the standard. Therefore, no removal of VOCs is reported.
(e) System was decommissioned in 2010.
(f) System was decommissioned in 2014.
NA – Not applicable

The locations and extent of the primary VOC and radionuclide plumes at BNL, as of December 2014, are summarized on Figures E-1 and E-2, respectively. Significant items of interest during 2014 and early 2015 in addition to system shutdown and closure activities were the following:

- 631 monitoring wells were sampled as part of the CERCLA Groundwater Monitoring Program, comprising a total of 1,514 groundwater samples. In 2014, 67 temporary wells were also installed.
EXECUTIVE SUMMARY

- 1.3 billion gallons of groundwater were treated, and 143 pounds of VOCs and 1.19 mCi of Sr-90 were removed from the aquifers (Table E-1).

- Two new extraction wells were installed in the Industrial Park during 2014, and became operational in January 2015. These wells are capturing deeper VOCs in this area observed at the interface between the deep Upper Glacial and Magothy aquifers. Eight new monitoring wells were installed in conjunction with this work and are also included under the Magothy groundwater monitoring program.

- Groundwater characterization work during April 2015 at the eastern perimeter of the OU I former HWMF resulted in a temporary well containing 148 pCi/L Sr-90. This will result in the installation of additional temporary wells inside the yard to determine whether it is an isolated occurrence or there is a persistent source remaining.

- The North Street East Treatment System was placed in standby mode following regulatory approval of a petition for shutdown in June 2014.

- North Street Treatment System extraction wells NS-1 and NS-2 were placed back in operation during 2014 due to rebounding VOC concentrations above the capture goal in nearby monitoring wells. Operation will continue until concentrations decrease to levels below the capture goal.

- Significant reductions of VOC concentrations continued during 2014 in the Building 96 source area monitoring wells following source area soil remediation in late 2010.

- The anticipated rebound of Sr-90 concentrations in the BGRR/Building 701 source area monitoring wells (as discussed in the 2012 Groundwater Status Report BNL 2013a) was observed during 2013. The rebound of Sr-90 concentrations has yet to be observed in extraction well SR-3, which is located approximately 60 feet south of the source area monitoring wells. Continued monitoring of this area for elevated Sr-90 concentrations resulting from a historic high water table elevation in late 2010 will continue in 2015.

- During 2014, tritium continued to be detected in g-2 source area monitoring wells at concentrations above the 20,000 pCi/L drinking water standard (DWS). Natural radioactive decay and dispersion has significantly reduced tritium concentrations downgradient of the source area. Monitoring results indicate that tritium concentrations in the small plume segment that was located near the National Synchrotron Light Source II (NSLS-II) facility have attenuated to less than the 20,000 pCi/L DWS in 2014.

Additional information on the groundwater restoration program is summarized in Table E-2.

INSTITUTIONAL CONTROLS

Institutional controls are in place at BNL to ensure effectiveness of all groundwater remedies. During 2014, the institutional controls continued to be effective in protecting human health and the environment. In accordance with the BNL Land Use Controls Management Plan (BNL 2013f) the following institutional controls continued to be implemented for the groundwater remediation program:

- Groundwater monitoring, including BNL potable supply systems and Suffolk County Department of Health Services (SCDHS) monitoring of Suffolk County Water Authority (SCWA) well fields closest to BNL;

- Implementing controls on the installation of new supply wells and recharge basins on BNL property;
• Continuing to offer private well testing (via SCDHS) for those homes in the previously defined hook-up area not connected to public water;

• Suffolk County Sanitary Code Article 4 placement of prohibitions on the installation of new potable water-supply wells where public water service exists; and

• Maintaining property access agreements for treatment systems off the BNL property.

FACILITY MONITORING

BNL’s Facility Monitoring program includes groundwater monitoring at 12 active research facilities (e.g., accelerator beam stops and target areas) and support facilities (e.g., fuel storage and waste management facilities). Monitoring conducted at the former g-2 experiment area within the Alternating Gradient Synchrotron (AGS) facility, Brookhaven Linac Isotope Producer (BLIP), and Building 452 is used to verify the effectiveness of CERCLA corrective actions. During 2014, groundwater samples were collected from 125 wells during 223 individual sampling events.

Highlights of the Facility Monitoring surveillance program are as follows:

• Monitoring conducted during 2014 at BNL’s major accelerator facilities (e.g., AGS, Relativistic Heavy Ion Collider and National Synchrotron Light Source-II, and Brookhaven Linac Isotope Producer) has not identified any new impacts to groundwater quality.

• Monitoring conducted at four support facilities (Sewage Treatment Plant, Waste Management Facility, Major Petroleum Facility, and Motor Pool) has not identified any new impacts to groundwater quality.

• Monitoring at the Upton Service Station continues to detect VOCs associated with petroleum products and a degreasing solvent at concentrations that exceed NY Ambient Water Quality Standards. It is believed that the contaminants originate from historical vehicle maintenance activities and are not related to current operations.

SIGNIFICANT GROUNDWATER STATUS REPORT RECOMMENDATIONS

The data summarized in this report are the basis for several significant proposed operational and groundwater monitoring changes. A summary of these significant changes follows (specific details of which are provided in Section 5).

• **OU III Building 96 Treatment System** – Perform a soil-gas survey for VOCs to the west of the former Building 96 source area to determine if there may be an additional source for elevated VOCs in wells slightly west of the main plume.

• **HFBR Tritium Plume** – Discontinue monitoring south of Temple Place based on the attenuation of the plume and reduction in slugs exceeding the 20,000 pCi/L DWS detected directly in front of the HFBR building. Following installation of several new monitoring wells directly south of the HFBR discontinue monitoring of the 25 wells located on Cornell Avenue.

• **Building 452 Freon-11 Treatment System** - Maintain pulsed-pumping of extraction well EW-18. Prepare a petition for shutdown when Freon-11 concentrations decrease to below the 50 µg/L cleanup goal in all wells.

• **OU III South Boundary Treatment System** – Place extraction wells EW-3 and EW-5 in standby mode, as VOC concentrations were below AWQS during 2014.
EXECUTIVE SUMMARY

- **BGR/WCF Sr-90 Treatment System** – Maintain the increased frequency of sampling for Building 701 source area monitoring wells and extraction well SR-3 to evaluate the relationship between high water table elevation and the release of Sr-90 from the source area.

- **Chemical/Animal Holes Sr-90 Treatment System** – Due to elevated Sr-90 concentrations in monitoring wells north of EW-1 in the first quarter 2015, the planned submittal of the Petition for Shutdown will be delayed and the data further evaluated.

- **Operable Unit VI EDB Treatment System** – Monitoring and extraction well data indicate the plume may be migrating slower than originally modeled. Update the groundwater model with recent data to evaluate the projected system operation duration.
Table E-2. Groundwater Restoration Progress.

<table>
<thead>
<tr>
<th>Project</th>
<th>Target</th>
<th>Mode</th>
<th>Treatment Type</th>
<th>Expected System Shutdown</th>
<th>Highlights</th>
</tr>
</thead>
<tbody>
<tr>
<td>OU I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OU I South Boundary (RA V)</td>
<td>VOCs</td>
<td>Operational</td>
<td>Pump and Treat (P&T) with Air Stripping (AS)</td>
<td>2013 (Actual)</td>
<td>Petition for system shutdown was approved by the regulators and system placed on standby in July 2013.</td>
</tr>
<tr>
<td>Current Landfill</td>
<td>VOCs, tritium</td>
<td>Long Term Monitoring & Maintenance</td>
<td>Landfill capping</td>
<td>NA</td>
<td>Groundwater continues slow improvement. VOCs and tritium stable or slightly decreasing.</td>
</tr>
<tr>
<td>Former Landfill</td>
<td>VOCs, Sr-90 tritium</td>
<td>Long Term Monitoring & Maintenance</td>
<td>Landfill capping</td>
<td>NA</td>
<td>No longer a continuing source of contaminants to groundwater.</td>
</tr>
<tr>
<td>Former HWMF</td>
<td>Sr-90</td>
<td>Long Term Monitoring & Maintenance</td>
<td>Monitoring</td>
<td>NA</td>
<td>Periodic increases in Sr-90 concentrations from wells adjacent to former source area continue. Characterization of Sr-90 indicate elevated groundwater levels.</td>
</tr>
<tr>
<td>OU III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical/Animal Holes</td>
<td>Sr-90</td>
<td>Operational</td>
<td>P&T with ion exchange (IE)</td>
<td>2016</td>
<td>Characterization of source area indicates that peak Sr-90 concentrations continue to decline.</td>
</tr>
<tr>
<td>Carbon Tetrachloride source control</td>
<td>VOCs (carbon tetrachloride)</td>
<td>Decommissioned</td>
<td>P&T with carbon</td>
<td>2009 (Actual)</td>
<td>Treatment system was decommissioned in 2010.</td>
</tr>
<tr>
<td>Building 96 source control</td>
<td>VOCs</td>
<td>Operational</td>
<td>Recirculation wells with AS for 3 of 4 wells. RTW-1 is P&T with AS.</td>
<td>2018</td>
<td>PCE in source area monitoring wells continued declining in 2014. RTW-1 also captures leading edge of Bldg. 452 Freon-11 plume.</td>
</tr>
<tr>
<td>Building 452</td>
<td>VOCs (Freon-11)</td>
<td>Operational</td>
<td>P&T with AS</td>
<td>2017</td>
<td>System effectively remediating Freon 11 plume. Source area monitoring wells exhibiting significant reductions in Freon-11 concentrations. Maintain pulsed pumping.</td>
</tr>
<tr>
<td>South Boundary</td>
<td>VOCs</td>
<td>Operational</td>
<td>P&T with AS</td>
<td>2017</td>
<td>Additional extraction well EW-17 is capturing deep VOCs at site boundary.</td>
</tr>
<tr>
<td>Middle Road</td>
<td>VOCs</td>
<td>Operational</td>
<td>P&T with AS</td>
<td>2025</td>
<td>Trailing edge of higher concentrations appears to be just south of Weaver Drive. No indication of a continuing source for the deep VOCs.</td>
</tr>
</tbody>
</table>
Project Target Mode Type Highlights

<table>
<thead>
<tr>
<th>Project</th>
<th>Target</th>
<th>Mode</th>
<th>Treatment Type</th>
<th>Expected System Shutdown</th>
<th>Highlights</th>
</tr>
</thead>
<tbody>
<tr>
<td>OU III (cont.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western South Boundary VOCs</td>
<td>Operational (Pulse WSB-2)</td>
<td>P&T with AS</td>
<td>2019</td>
<td></td>
<td>System operating as planned.</td>
</tr>
<tr>
<td>Industrial Park VOCs</td>
<td>EW-8 and EW-9 Operational (UVB-1 through UVB-7 on standby)</td>
<td>In-well stripping and P&T with carbon</td>
<td>2019</td>
<td></td>
<td>Installed new deep extraction wells.</td>
</tr>
<tr>
<td>Industrial Park East VOCs</td>
<td>Decommissioned</td>
<td>P&T with carbon</td>
<td>2009 (Actual)</td>
<td></td>
<td>Treatment system was decommissioned in 2014.</td>
</tr>
<tr>
<td>North Street VOCs</td>
<td>Standby, restarted in late 2014</td>
<td>P&T with carbon</td>
<td>2013 (Actual)</td>
<td></td>
<td>System restarted due to rebound in VOCs.</td>
</tr>
<tr>
<td>North Street East VOCs</td>
<td>Standby</td>
<td>P&T with carbon</td>
<td>2014 (Actual)</td>
<td></td>
<td>All VOC concentrations below capture goal. Petition for Shutdown approved in April 2014.</td>
</tr>
<tr>
<td>HFBR Tritium Tritium</td>
<td>Standby</td>
<td>Pump and recharge</td>
<td>2012 (Actual)</td>
<td></td>
<td>Source area tritium concentrations continue to decline.</td>
</tr>
<tr>
<td>BGRR/Waste Concentration Facility (WCF) Sr-90</td>
<td>Operational (Pulse Sr-4, Sr-5, and Sr-6)</td>
<td>P&T with IE</td>
<td>2026</td>
<td></td>
<td>Sr-90 concentrations in BGRR/Building 701 source area monitoring wells demonstrated significant rebound during 2014 (as anticipated) in response to historic high water table levels in 2010. Characterization of downgradient portion of the WCF plume indicates a slight eastward shift.</td>
</tr>
</tbody>
</table>

OU IV

<table>
<thead>
<tr>
<th>Project</th>
<th>Target</th>
<th>Mode</th>
<th>Treatment Type</th>
<th>Expected System Shutdown</th>
<th>Highlights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building 650 sump outfall Sr-90</td>
<td>Long Term Monitoring</td>
<td>Monitored Natural Attenuation (MNA)</td>
<td>NA</td>
<td></td>
<td>Sr-90 plume continues to slowly migrate south and attenuate.</td>
</tr>
</tbody>
</table>

OU V

<table>
<thead>
<tr>
<th>Project</th>
<th>Target</th>
<th>Mode</th>
<th>Treatment Type</th>
<th>Expected System Shutdown</th>
<th>Highlights</th>
</tr>
</thead>
<tbody>
<tr>
<td>STP VOCs, tritium</td>
<td>Completed</td>
<td>MNA</td>
<td>NA</td>
<td></td>
<td>VOC concentrations in all wells now below AWQS. Monitoring completed.</td>
</tr>
<tr>
<td>Project</td>
<td>Target</td>
<td>Mode</td>
<td>Treatment Type</td>
<td>Expected System Shutdown</td>
<td>Highlights</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>OU VI</td>
<td>EDB</td>
<td>Operational</td>
<td>P&T with carbon</td>
<td>2019</td>
<td>The EDB plume continues to attenuate. The extraction wells are capturing the plume.</td>
</tr>
<tr>
<td>Ethylene Dibromide (EDB)</td>
<td>EDB</td>
<td>Operational</td>
<td>P&T with carbon</td>
<td>2019</td>
<td>The EDB plume continues to attenuate. The extraction wells are capturing the plume.</td>
</tr>
<tr>
<td>g-2 and BLIP</td>
<td>Tritium</td>
<td>Long Term Monitoring & Maintenance</td>
<td>MNA</td>
<td>NA</td>
<td>Tritium concentrations in source area continue to decline. Small tritium plume segment located south of Brookhaven Avenue is attenuating as expected.</td>
</tr>
<tr>
<td>g-2 Tritium Plume</td>
<td>Tritium</td>
<td>Long Term Monitoring & Maintenance</td>
<td>MNA</td>
<td>NA</td>
<td>Tritium concentrations in source area continue to decline. Small tritium plume segment located south of Brookhaven Avenue is attenuating as expected.</td>
</tr>
<tr>
<td>BLIP Tritium Plume</td>
<td>Tritium</td>
<td>Long Term Monitoring & Maintenance</td>
<td>MNA</td>
<td>NA</td>
<td>Tritium concentrations less than DWS.</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION AND OBJECTIVES

The mission of Brookhaven National Laboratory’s Groundwater Protection Program is to protect and restore the aquifer system at Brookhaven National Laboratory (BNL). The program is built on four key elements:

- Pollution prevention–preventing the potential pollution of groundwater at the source
- Restoration–restoring groundwater that has been affected at the BNL site
- Monitoring–monitoring the effectiveness of pollution-prevention efforts, as well as progress in restoring the quality of affected groundwater
- Communication–communicating the findings and results of the program to regulators and stakeholders

The BNL 2014 Groundwater Status Report is a comprehensive summary of groundwater data collected in calendar year 2014 that provides an interpretation of information on the performance of the Groundwater Protection Program. This is the 19th annual groundwater status report issued by BNL. This document examines performance of the program on a project-by-project (facility-by-facility) basis, as well as comprehensively.

How To Use This Document. This document is a detailed technical report that includes analytical laboratory data, as well as data interpretations conducted by BNL’s Groundwater Protection Group. This document can also be obtained through BNL’s website. Data are presented in four key subject areas:

- Improvements to the understanding of the hydrogeologic environment and surrounding areas
- Progress in cleaning contaminated groundwater
- Identification of any new impacts to groundwater quality due to BNL’s active operations
- Proposed changes to the groundwater protection program

This document satisfies BNL’s requirement to report groundwater data under the Interagency Agreement and partially fulfills the commitment of the Groundwater Protection Program to communicate the program’s findings and progress to regulators and stakeholders.

Section 1 discusses the regulatory requirements of the data collection work in 2014, the site’s groundwater classification, and the objectives of groundwater monitoring. Section 2 discusses the hydrogeologic environment at BNL and its surrounding area. It also summarizes the dynamics of the groundwater flow system in 2014. In Section 3, the groundwater cleanup data and progress towards achieving the site’s cleanup goals are described. Section 4 outlines the groundwater surveillance data used to verify that operational and engineered controls are preventing further contamination from BNL’s active experimental and support facilities. Section 5 is a summary of the proposed recommendations to the Groundwater Protection Program identified in Sections 3 and 4.

Appendices A and B include hydrogeologic data that support the discussions in Section 2. Appendix C contains the analytical results for each sample obtained under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) program. Appendix D contains analytical results for each sample obtained under the Facility Monitoring program. Due to the volume of these data, all of the report appendices are included on a CD-ROM, which significantly reduces the size of this report in printed format. The CD-ROM has a contents table with active links; by selecting the specific project and analytical suite, the user will be directed to the associated table of results. The groundwater results are arranged by specific monitoring project and analytical group: volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), metals, general
chemistry, pesticides/polychlorinated biphenyls (PCBs), and radionuclides. The data are organized further by well identification (ID) and the date of sample collection. Chemical/radionuclide concentrations, detection limits, and uncertainties are reported, along with a data verification, validation, and/or usability qualifier (if assigned), and/or a laboratory data qualifier. If a data verification/validation qualifier was not assigned, the laboratory data qualifier is shown. Results exceeding the corresponding groundwater standard or guidance criteria (Section 1.1.2) are identified by bold text. Including the complete results enables the reader to analyze the data in detail. Appendix E contains information on sample collection, analysis, and Quality Assurance/Quality Control (QA/QC). Appendix F consists of data supporting the remediation system discussions in Section 3, and Appendix G is a compilation of data usability report forms.

1.1 Groundwater Monitoring Program

1.1.1 Regulatory Requirements

Activities at BNL are driven by federal and state regulations as well as Department of Energy (DOE) Orders.

Comprehensive Environmental Response, Compensation and Liability Act (CERCLA)

On December 21, 1989, BNL was included as a Superfund Site on the National Priorities List (NPL) of contaminated sites identified for priority cleanup. DOE, the United States Environmental Protection Agency (EPA), and the New York State Department of Environmental Conservation (NYSDEC) created a comprehensive Federal Facility Agreement (FFA) that integrated DOE’s response obligations under CERCLA, the Resource Conservation and Recovery Act (RCRA), and New York State hazardous waste regulations. The FFA, also known as the Interagency Agreement (IAG), was finalized and signed by these parties in May 1992, and includes a requirement for groundwater monitoring (USEPA 1992).

New York State Regulations, Permits, and Licenses

The monitoring programs for the Current Landfill and Former Landfill are designed in accordance with post-closure Operation and Maintenance requirements specified in 6 NYCRR (New York Code of Rules and Regulations) Part 360, Solid Waste Management Facilities.

BNL’s Major Petroleum Facility (MPF) is operated under NY SDEC Bulk Petroleum Storage License No. 01-1700. This license requires BNL to routinely monitor the groundwater. Together with approved engineering controls, the groundwater monitoring program verifies that storage operations for bulk fuel have not degraded the quality of the groundwater. The engineered controls and monitoring program for the MPF are described in the BNL Spill Prevention, Control and Countermeasures Plan (BNL 2011a).

BNL’s Waste Management Facility (WMF) is a hazardous waste storage facility operated under NY SDEC RCRA Part B Permit No. 1-4722-00032/00102-0. The permit requires groundwater monitoring as a secondary means of verifying the effectiveness of the facility’s administrative and engineered controls.

DOE Orders

BNL conducts groundwater monitoring at active research and support facilities in accordance with the environmental surveillance requirements defined in DOE Order 458.1, Radiation Protection of the Public and the Environment and DOE Order 436.1, Departmental Sustainability. Groundwater monitoring is conducted to: characterize pre-operational conditions; to detect, characterize, and respond to contaminant releases from site operations and activities; evaluate dispersal and attenuation patterns; and to characterize the potential pathways of exposure to members of the public.
1.1.2 Groundwater Quality and Classification

In Suffolk County, drinking water supplies are obtained exclusively from groundwater aquifers (e.g., the Upper Glacial aquifer, the Magothy aquifer, and, to a limited extent, the Lloyd aquifer). In 1978, EPA designated the Long Island aquifer system as a sole source aquifer pursuant to Section 1424(e) of the Safe Drinking Water Act (SDWA). Groundwater in the sole source aquifers underlying the BNL site is classified as “Class GA Fresh Groundwater” by the State of New York (6 NYCRR Parts 700–705); the best usage of Class GA groundwater is as a source of potable water. Accordingly, in establishing the goals for protecting and remediating groundwater, BNL followed federal Drinking Water Standards (DWS), New York State (NYS) DWS, and NYS Ambient Water Quality Standards (AWQS) for Class GA groundwater.

For drinking water supplies, the applicable federal maximum contaminant levels (MCLs) are set forth in 40 CFR (Code of Federal Regulations) 141 (for primary MCLs) and 40 CFR 143 (for secondary MCLs). In New York State, the SDWA requirements relating to the distribution and monitoring of public water supplies are promulgated under the NYS Sanitary Code (10 NYCRR Part 5), enforced by the Suffolk County Department of Health Services (SCDHS) as an agent for the New York State Department of Health (NYSDOH). These regulations apply to any water supply that has at least five service connections or that regularly serves at least 25 individuals. BNL supplies water to approximately 3,500 employees and visitors, and therefore must comply with these regulations. In addition, DOE Derived Concentration Guides (DCGs) are used for radionuclides not covered by existing federal or state regulations (DOE 2011).

BNL evaluates the potential impact of radiological and nonradiological levels of contamination by comparing analytical results to NYS and DOE reference levels. Nonradiological data from groundwater samples collected from surveillance wells usually are compared to NYS AWQS (6 NYCRR Part 703.5). Radiological data are compared to the DWS for tritium, strontium-90 (Sr-90), gross beta; gross alpha, radium-226, and radium-228; and the 40 CFR 141/DOE DCGs for determining the 4 millirem per year (mrem/yr) dose for other beta- or gamma-emitting radionuclides. Tables 1-1, 1-2, 1-3, and 1-4 show the regulatory and DOE “standards, criteria, and guidance” used for comparisons to BNL’s groundwater data.

1.1.3 Monitoring Objectives

Groundwater monitoring is driven by regulatory requirements, DOE Orders, best management practice, and BNL’s commitment to environmental stewardship. BNL monitors its groundwater resources for the following reasons:

Groundwater Resource Management

- To support initiatives in protecting, managing, and remediating groundwater by refining the conceptual hydrogeologic model of the site and maintaining a current assessment of the dynamic patterns of groundwater flow and water-table fluctuations.
- To determine the natural background concentrations for comparative purposes. The site’s background wells provide information on the chemical composition of groundwater that has not been affected by BNL’s activities. These data are a valuable reference for comparison with the groundwater quality data from affected areas. The network of wells also can warn of any contaminants originating from potential sources that may be located upgradient of the BNL site.
- To ensure that potable water supplies meet all regulatory requirements.

Groundwater Facility Monitoring

- Determine pre-operational/baseline groundwater quality at new facilities.
- To verify that administrative and engineered controls effectively prevent groundwater contamination.
To demonstrate compliance with applicable DOE and regulatory requirements for protecting groundwater resources.

Groundwater - CERCLA Monitoring

- To track a dynamic groundwater cleanup problem when designing, constructing, and operating treatment systems.
- To measure the performance of the groundwater remediation efforts in achieving cleanup goals.
- To protect public health and the environment during the cleanup period.
- To define the extent and degree of groundwater contamination.
- To provide early warning of the arrival of a leading edge of a plume, which could trigger contingency remedies to protect public health and the environment.

The details of the monitoring are described in the BNL 2014 Environmental Monitoring Plan (BNL 2014a). This plan includes a description of the source area, description of groundwater quality, criteria for selecting locations for groundwater monitoring, and the frequency of sampling and analysis. **Figure 1-1** highlights BNL’s operable unit (OU) locations designated as part of the CERCLA program, and key site features. Details on the sampling parameters, frequency, and analysis by well are listed in **Tables 1-5** and **1-6.** Screen zone, total depth, and ground surface elevations have been summarized in **Table 1-7.** **Figure 1-2** shows the locations of wells monitored as part of the Laboratory’s groundwater protection program. Detailed groundwater monitoring rationale can be found in the BNL 2014 Environmental Monitoring Plan. BNL’s CERCLA groundwater monitoring has been streamlined into five general phases (**Table 1-8):**

Start-up Monitoring
A quarterly sampling frequency is implemented on all wells for a period of two years. This increased sampling frequency provides sufficient data while the system operation is in its early stages.

Operations and Maintenance (O&M) Monitoring
This is a period of reduced monitoring during the time when the system is in a routine operational state. The timeframe for each system varies. This phase is also utilized for several plume monitoring programs not requiring active remediation.

Shutdown Monitoring
This is a two-year period of monitoring implemented just prior to petitioning for system shut down. The increased sampling frequency provides the necessary data to support the shutdown petition.

Standby Monitoring
This is a period of reduced monitoring, up to a five-year duration, to identify any potential rebounding of contaminant concentrations. If concentrations remain below MCLs, the petition for closure and decommissioning of the system is recommended.

Post Closure Monitoring
This is a monitoring period of varying length for approximately 20 percent of the key wells in a given project following system closure. Monitoring continues until the Record of Decision (ROD) goal of meeting MCLs for VOCs in the Upper Glacial aquifer is reached. This is expected to occur by 2030. This phase is considerably longer for the Magothy and Sr-90 cleanups due to greater length of the time to reach MCLs required for those projects.
Since 2001, BNL uses a structured Data Quality Objective (DQO) process to continually review and refine the groundwater monitoring and remediation projects. The results of the DQO reviews are documented annually in updates to the BNL 2014 Environmental Monitoring Plan (BNL 2014a).

Table 1-8. CERCLA Groundwater Monitoring Program – Well Sampling Frequency.

<table>
<thead>
<tr>
<th>Project Activity Phase</th>
<th>Well Type</th>
<th>Phase Duration (yrs.)</th>
<th>Sampling Freq. (events/yr.)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start-up Monitoring</td>
<td>Plume Core</td>
<td>2</td>
<td>4x</td>
</tr>
<tr>
<td></td>
<td>Plume Perimeter</td>
<td>2</td>
<td>4x</td>
</tr>
<tr>
<td></td>
<td>Sentinel/Bypass</td>
<td>2</td>
<td>4x</td>
</tr>
<tr>
<td>Operations & Maintenance</td>
<td>Plume Core</td>
<td>End Start-up to Shutdown*</td>
<td>2x</td>
</tr>
<tr>
<td>(O&M) Monitoring</td>
<td>Plume Perimeter</td>
<td>End Start-up to Shutdown*</td>
<td>2x</td>
</tr>
<tr>
<td></td>
<td>Sentinel/Bypass</td>
<td>End Start-up to Shutdown*</td>
<td>4x</td>
</tr>
<tr>
<td>Shutdown Monitoring</td>
<td>Plume Core</td>
<td>2</td>
<td>4x</td>
</tr>
<tr>
<td></td>
<td>Plume Perimeter</td>
<td>2</td>
<td>4x</td>
</tr>
<tr>
<td></td>
<td>Sentinel/Bypass</td>
<td>2</td>
<td>4x</td>
</tr>
<tr>
<td>Standby Monitoring</td>
<td>Key Plume Core</td>
<td>5</td>
<td>2x</td>
</tr>
<tr>
<td></td>
<td>Plume Perimeter</td>
<td>5</td>
<td>1x</td>
</tr>
<tr>
<td></td>
<td>Sentinel/Bypass</td>
<td>5</td>
<td>2x</td>
</tr>
<tr>
<td>Post Closure Monitoring***</td>
<td>20% of key wells</td>
<td>Up To 2030**</td>
<td>1x</td>
</tr>
</tbody>
</table>

Notes:
* - Varies by project, see Table 1-5.
*** - Verification monitoring for achieving MCLs.
**** - Sr-90 monitoring projects use approximately half the defined sampling frequency.

The groundwater monitoring well networks for each program are organized into background, core, perimeter, bypass, and sentinel wells. The wells are designated as follows:
- **Background** - water quality results will be used to determine upgradient water quality
- **Plume Core** - utilized to monitor the high concentration or core area of the plume
- **Perimeter** - used to define the outer edge of the plume both horizontally and vertically
- **Bypass** - used to determine whether plume capture performance is being met
- **Sentinel** - an early warning well to detect the leading edge of a plume.
1.2 Private Well Sampling

During 2014, there were seven known homeowners in the residential area overlying the plumes who continue to use their private wells for drinking water purposes. In accordance with the OU III and OU VI RODs, DOE formally offers these homeowners free testing of their private drinking water wells on an annual basis. SCDHS coordinates and performs the sampling and analysis. During 2014, two of the homeowners who were offered the free testing accepted this service. With the exception of iron and manganese in one well, all parameters were below the DWS. The iron and manganese detections are not related to BNL.
This section briefly describes the hydrogeologic environment at BNL and the surrounding area. It also summarizes the dynamics of the groundwater flow system in 2014, along with on-site pumping rates and rainfall recharge.

Detailed descriptions of the aquifer system underlying BNL and the surrounding areas are found in the U.S. Geological Survey (USGS) report by Scorca and others (1999), Stratigraphy and Hydrologic Conditions at the Brookhaven National Laboratory and Vicinity, Suffolk County, New York, 1994-97, and the USGS report by Wallace deLaguna (1963), Geology of Brookhaven National Laboratory and Vicinity, Suffolk County, New York. The stratigraphy below BNL consists of approximately 1,300 feet of unconsolidated deposits overlying bedrock (Figure 2-1). The current groundwater monitoring program focuses on groundwater quality within the Upper Pleistocene deposits (Upper Glacial aquifer), and the upper portions of the Matawan Group-Magothy Formation (Magothy aquifer).

Figure 2-1. Generalized Geologic Cross Section in the Vicinity of Brookhaven National Laboratory.

The Pleistocene deposits are about 100-200 feet thick and are divided into two primary hydrogeologic units: undifferentiated sand and gravel outwash and moraine deposits, and the finer-grained, more poorly sorted Upton Unit. The Upton Unit makes up the lower portion of the Upper Glacial aquifer beneath several areas of the site. It generally consists of fine- to medium-grained white to greenish sand with interstitial clay. In addition to these two major hydrogeologic units, there are several other distinct hydrogeologic units within the Upper Glacial aquifer. They include localized, near-surface clay layers in the vicinity of the Peconic River (including the Sewage Treatment Plant [STP] area), and reworked Magothy deposits that characterize the base of the aquifer in several areas. The Gardiners Clay is a regionally defined geologic unit that is discontinuous beneath BNL and areas to the south. Typically, it is characterized by variable amounts of green silty clay, sandy and gravelly green clay, and clayey silt.
Where it exists, the Gardiners Clay acts as a confining or semi-confining unit that impedes the vertical flow and migration of groundwater between the Upper Glacial aquifer and the underlying Magothy aquifer.

The Magothy aquifer is composed of Cretaceous aged continental deltaic deposits. The Magothy aquifer at BNL is approximately 800 feet thick, and because it is composed of fine sand interbedded with silt and clay, it is generally less permeable than the Upper Glacial aquifer. The Magothy aquifer is highly stratified. Of particular importance at BNL is that the upper portion of the Magothy contains extensive, locally continuous layers of grey-brown clay (referred to herein as the Magothy Brown Clay). Regionally, the Magothy Brown Clay is not interpreted as being continuous; however, beneath BNL and adjacent off-site areas, it acts as a confining unit (where it exists), impeding the vertical flow and movement of groundwater between the Upper Glacial and Magothy aquifers.

Regional patterns of groundwater flow near BNL are influenced by natural and artificial factors. Figures 2-2 and 2-3 show the locations of pumping wells and recharge basins. Under natural conditions, recharge to the regional aquifer system is derived solely from precipitation. A regional groundwater divide exists immediately north of BNL near Route 25. It is oriented roughly east-west, and appears to coincide with the centerline of a regional recharge area. Groundwater north of this divide flows northward, ultimately discharging to the Long Island Sound (Figure 2-1). Shallow groundwater in the BNL area generally flows to the south and east. During high water-table conditions, that groundwater can discharge into local surface water bodies such as the Peconic River and adjacent ponds. The BNL site is within a regional deep-flow recharge area, where downward flow helps to replenish the deep sections of the Upper Glacial aquifer, the Magothy aquifer, and the Lloyd aquifer. South of BNL, groundwater flow becomes more horizontal and ultimately flows upward as it moves toward regional discharge areas such as the Carmans River and Great South Bay. Superimposed on the natural regional field of groundwater flow are the artificial influences due to pumping and recharge operations.

2.1 Hydrogeologic Data

Various hydrogeologic data collection and summary activities were undertaken as part of the 2014 Groundwater Protection Program to evaluate groundwater flow patterns and conditions. This work is described in the following sections and includes the results of groundwater elevation monitoring, information on pumping and recharging activities on-site and off-site, and precipitation data.

2.1.1 Groundwater Elevation Monitoring

Synoptic water levels are obtained from a network of on-site and off-site wells screened at various depths within the Upper Glacial aquifer and upper portions of the Magothy aquifer. These data are used to characterize the groundwater flow-field (direction and rate) and to evaluate seasonal and artificial variations in flow patterns. Additional water-level data from off-site wells are obtained from the USGS.

The synoptic water-level measurement events comprising the complete network of on-site and off-site wells were conducted during December 1-5, 2014 with data collected from approximately 750 wells. Smaller scale synoptic measurement using wells located only in the central part of the BNL site were conducted in September 2014, with data collected from approximately 90 shallow Upper Glacial aquifer wells. Water levels were measured with electronic water-level indicators following the BNL Environmental Monitoring Standard Operating Procedure EM-SOP-300. Appendix A provides the depth-to-water measurements and the calculated groundwater elevations for these measurements. Monitoring results for long-term and short-term hydrographs for select wells are discussed in Section 2.2.

2.1.2 Pumpage of On-Site Water Supply and Remediation Wells

BNL has six water supply wells to provide potable and process cooling water, and 63 treatment wells used for the remediation of contaminated groundwater. All six water supply wells are screened entirely within the Upper Glacial aquifer. During 2014, 18 of the 63 treatment wells were in standby mode.
Figures 2-2 and 2-3 show the locations of the water supply and remediation wells. The effects that the groundwater withdrawals have on the aquifer system are discussed in Section 2.2.

Table 2-1 provides the monthly and total water usage for 2014 for the five active on-site potable supply wells (4, 6, 7, 10, and 11). It includes information on each well’s screened interval and pumping capacity. The variation in monthly pumpage reflects changes in water demand, and maintenance schedules for the water supply system. The western potable well field includes wells 4, 6, and 7; and the eastern field currently includes wells 10 and 11. Eastern supply well 12 has been out of service since October 2008. Supply well 10 has been maintained in standby mode since 2000 due to the impacts it might have on contaminant plume flow directions in the central portion of the site (specifically on the g-2 tritium plume and the Waste Concentration Facility Sr-90 plume). However, with the loss of well 12, well 10 is periodically used for short periods of time.

The water supply operating protocols, which have been established by the BNL Water and Sanitary Planning Committee, currently require that the western well field be used as the primary source of water, with a goal of obtaining 75 percent or more of the site-wide water supply from that well field. Using the western well field minimizes the groundwater flow direction effects of supply well pumping on several segments of the groundwater contaminant plumes located in the center of the BNL site. Figure 2-4 below summarizes monthly pumpage for the eastern and western well fields.

Figure 2-4.

Since 1999, the implementation of effective water conservation measures has resulted in a significant reduction in the amount of water pumped from the aquifer. During 2014, a total of 423 million gallons of water were withdrawn from the aquifer by BNL’s potable supply wells. Because of maintenance activities at the BNL Water Treatment Plant during the summer of 2014, water withdrawals from the western well field had to be curtailed. Water obtained from the western well field contains elevated levels of naturally occurring iron, and must be treated prior to distribution. As a result, BNL was not able to
meet its goal of obtaining more than 75 percent of its total water supply from the western well field, which supplied approximately 70 percent of the water for 2014. **Table 2-2** summarizes the 2014 monthly water pumpage for the groundwater remediation systems. Additional details on groundwater remediation system pumping are provided in **Section 3** of this report.

2.1.3 Off-Site Water Supply Wells

Several Suffolk County Water Authority (SCWA) well fields are located near BNL. The William Floyd Parkway Well Field is west/southwest of BNL (**Figures 2-2 and 2-3**), and consists of three water supply wells that withdraw groundwater from the mid Upper Glacial aquifer and the upper portion of the Magothy aquifer. The Country Club Drive Well Field is south/southeast of BNL, and consists of three water supply wells that withdraw groundwater from the mid section of the Upper Glacial aquifer. Pumpage information for 1989 through 2014 is provided as **Figure 2-5**. In 2014, the William Floyd Parkway (Parr Village) and Country Club Drive Well Fields produced 401 and 369 million gallons for the year, respectively. The Lambert Avenue Well Field, located south of BNL, has two wells that produced 299 million gallons for the year.

2.1.4 Summary of On-Site Recharge and Precipitation Data

This section summarizes artificial (i.e., on-site recharge basins) and natural recharge from precipitation. **Table 2-3** summarizes the monthly and total flow of water through 10 on-site recharge basins during 2014. Their locations are shown on **Figures 2-2 and 2-3**. **Section 2.2** (Groundwater Flow) provides a discussion on the effects associated with recharge. Seven of the basins (HN, HO, HS, HT-W, HT-E, HX, and HZ) receive stormwater runoff and cooling water discharges. Flow into these basins is monitored monthly per NYSDEC State Pollutant Discharge Elimination System (SPDES) permit requirements. Generally, the amount of water recharging through the groundwater system to these basins reflects supply well pumpage. Annual water supply flow diagrams show the general relationships between recharge basins and the supply wells, and are published in Volume I of the annual Site Environmental Report (Chapter 5, Water Quality).

The remaining three basins (Removal Action V [RA V], OU III, and Western South Boundary) were constructed to recharge water processed through several of the groundwater remediation systems. Until September 2001, treated groundwater from the OU III South Boundary Pump and Treat System was discharged solely to the OU III basin along Princeton Avenue. After September 2001, groundwater from that system and the OU III Middle Road system was discharged equally to the OU III and RA V basins. Until 2013, water from the OU I South Boundary and the High Flux Beam Reactor (HFBR) system was discharged to the RA V basin. The HFBR and OU I treatment systems met their cleanup objectives, and their extraction wells were shut down in May and July 2013, respectively. Because reductions in water discharges to the RA V basin could have cause significant changes in local groundwater flow patterns, groundwater modeling was used to best divide the remaining treated water discharges toward the OU III and RA V basins in order to maintain stable groundwater flow directions (PW Grosser, 2013). Monitoring of groundwater flow patterns during 2014 demonstrated that this effort was successful. **Table 2-3** provides estimates of flow to the recharge basins. Other important sources of artificial recharge, not included on **Table 2-3**, include a stormwater retention basin referred to as HW (on Weaver Drive), and the sand filter beds and recharge basins at the STP. Until October 2014, treated water from the STP was discharged to sand filter beds, which caused localized mounding of the water table. Of the approximately 300,000 gallons of wastewater treated at the STP each day, about 20 percent of the treated effluent seeped directly to the underlying water table beneath the filter beds tile-drain collection system, and the remaining treated effluent was discharged to the Peconic River. Most of the water released to the Peconic River recharged to the aquifer before it reached the BNL site boundary, except during times of seasonally high water levels. Starting in October 2014, the STP discharge was re-directed to newly
constructed groundwater recharge basins. These discharges are expected to cause localized mounding of the water table below the basins. Precipitation provides the primary recharge of water to the aquifer system at BNL. Under long-term conditions in undeveloped areas of Long Island, about 50 percent of precipitation is lost through evapotranspiration and direct runoff to streams; the other 50 percent infiltrates the soil and recharges the groundwater system (Aronson and Seaburn 1974; Franke and McClymonds 1972). For 2014, it is estimated that the recharge at BNL was approximately 27 inches. Table 2-4 summarizes monthly and annual precipitation results from 1949 to 2014 collected on site by BNL Meteorology Services. Variations
in the water table generally can be correlated with seasonal precipitation patterns. As shown on Table 2-4, total annual precipitation in 2014 was 54.25 inches, which was above the long-term yearly average of 48.96 inches. Eight of the past 10 years have featured above-normal annual average precipitation at BNL.

2.2 Groundwater Flow

BNL routinely monitors horizontal and vertical groundwater flow directions and rates within the Upper Glacial aquifer and uppermost Magothy aquifer by using water-level data collected from a large network of on-site and off-site monitoring wells. Short-term and long-term seasonal fluctuations of water levels are also evaluated using hydrographs for select wells, and trends in precipitation.

2.2.1 Water-Table Contour Map

Figure 2-2 is a groundwater elevation contour map representing the configuration of the water table for December 1-5, 2014. The contours were generated from the water-level data from shallow Upper Glacial aquifer wells. Localized hydrogeologic influences on groundwater flow were considered, including on-site and off-site pumping wells, and on-site recharge basins (summarized in Section 2.1).

Groundwater flow in the Upper Glacial aquifer is generally characterized by a southeasterly component of flow in the northern portion of the site, with a gradual transition to a more southerly direction at the southern boundary and beyond. Flow directions in the eastern portion of BNL are predominately to the east and southeast (Figure 2-2). The general groundwater flow pattern for 2014 was consistent with historical flow patterns. As described in Section 2.1.2, the water supply operating protocols established by BNL in 2005 require that the western well field be used as the primary source of water, with a goal of obtaining 75 percent or more of the site's water supply from these wells. This protocol has resulted in a more stable south-southeast groundwater flow direction in the central portion of the site.

Localized man-made disturbances to groundwater flow patterns are evident on the groundwater contour maps. They result primarily from active on-site and off-site well pumpage and the discharge of water to on-site recharge basins. Influences from the pumping wells can be seen as cones of depressions, most notably near potable supply wells 4 and 7, and near the groundwater treatment wells along the southern boundary (Figure 2-2).

Influences from water recharge activities can be observed as localized mounding of the water table, particularly around recharge basin OU III and the RA V basin (in the center of the site), and the STP. The degree of mounding is generally consistent with the monthly flows to recharge basins summarized in Section 2.1.

Other noteworthy features are the influence that surface water bodies have on groundwater flow directions. Figure 2-2 shows groundwater flowing towards the Carmans River in areas south/southwest of BNL. This pattern is consistent with the fact that the Carmans River is a significant regional discharge boundary.

2.2.2 Deep Glacial Contour Map

Figure 2-3 shows the potentiometric surface contour map of the deep zone of the Upper Glacial aquifer for December 1-5, 2014. The contours were generated in the same manner as the water-table contours, but using water-level data from wells screened only within the deep sections of the Upper Glacial aquifer.

The 2014 patterns for groundwater flow in the deep Upper Glacial are similar to those in the shallow (or water-table) zone. They are characterized by a southeasterly component in the northern portion of the site, with a gradual transition to a more southerly flow at the southern site boundary and beyond. In areas south/southwest of BNL, the deep glacial contour map also indicates flow toward the Carmans River. The localized influences of pumping on the potentiometric surface configurations are evident as cones of depression. As with the water-table configurations, variations in these localized hydrogeologic effects are attributed to the monthly variations in pumpage.

Although the localized influences of recharging on the potentiometric surface configurations are evident for the deep Upper Glacial aquifer, they are not as pronounced as those observed at the water table. Such
hydrogeologic effects generally decrease with depth in the aquifer. Furthermore, mounding is not present beneath the STP sand filter beds because mounding is controlled by shallow, near-surface clay layers. Finally, the surface water/groundwater interactions that take place along the Peconic River in the vicinity of BNL do not influence the deep glacial zone.

2.2.3 Well Hydrographs

Groundwater hydrographs are useful in estimating recharge rates and the location of the water table relative to contaminant sources. Long-term (typically 1950-2014) well hydrographs were constructed from water-level data that were obtained for select USGS and BNL wells. These hydrographs track fluctuations in water level over time. Precipitation data also were compared to natural fluctuations in water levels. Appendix B contains the well hydrographs, together with a map depicting the locations of these wells.

The long-term hydrographs indicate that typical seasonal water-table elevation fluctuations are on the order of 4 to 5 feet. Some of the water-table elevation changes have occurred during prolonged periods of low precipitation, where a maximum fluctuation of nearly 14 feet was observed during the regional drought of the early 1960s. Generally, the highest groundwater elevations can be observed during the March-May time period in response to snow melt and spring rains. Normally, the position of the water table drops through the summer and into the fall.

A long-term hydrograph was constructed from historical water-level data from BNL well 065-14 (NY SDEC # S-5517.1; USGS Site Number 405149072532201). This well was installed by the USGS for the DOE in the late 1940s. The well is located near the BNL Brookhaven Center building, and is screened in the Upper Glacial aquifer close to the water table. The USGS has collected monthly water-level information from this well from 1948 through 2005. In 2006, the USGS installed a real time continuous water-level recorder in the well. Data from this monitoring station can be accessed on the World Wide Web at: http://groundwaterwatch.usgs.gov/AWL_Sites.asp?S=405149072532201&ncd=rttn.

2.2.4 Groundwater Gradients and Flow Rates

Evaluation of the horizontal hydraulic gradients provides information on the driving force behind groundwater flow. These gradients can be used with estimates of aquifer parameters such as hydraulic conductivity (175 feet per day [ft/day]) and effective porosity (0.24) to assess the velocities of groundwater flow. The horizontal hydraulic gradient at the BNL site is typically 0.001 feet per foot (ft/ft), but in recharge and pumping areas it can steepen to 0.0024 ft/ft or greater. The natural groundwater flow velocity in most parts of the site is estimated to be approximately 0.75 ft/day, but flow velocities in recharge areas can be as high as 1.45 ft/day, and those in areas near BNL supply wells can be as high as 28 ft/day (Scorca et al. 1999).

2.3 New Geologic Data

Although a number of new wells were drilled at the BNL site during 2014, the geologic information obtained during their installation was consistent with previous investigations.
2.4 Monitoring Well Maintenance Program

BNL has a program to maintain its groundwater monitoring wells which includes maintaining the protective casings, concrete pads and sample pumps. During 2014, BNL performed minor repairs to four monitoring wells.
3.0 CERCLA GROUNDWATER MONITORING AND REMEDIATION

Chapter 3 gives an overview of groundwater monitoring and remediation efforts at BNL during 2014. The chapter is organized first by Operable Unit, and then by the specific groundwater remediation system and/or monitoring program. Figure 1-2 shows the locations of monitoring wells throughout the site by project. Monitoring well location maps specific to particular monitoring programs are included throughout Section 3.

Report and Data on CD

Appendices C and D contain the analytical results for each sample. Due to the large volume of data, these appendices are included on a CD-ROM; this significantly reduces the size of the hardcopy of this report. The CD-ROM has a table of contents with active links, such that, by selecting the specific project and analytical suite, the user will be directed to the associated table of results. The groundwater results are arranged by specific monitoring project and then by analytical group (e.g., VOCs, SVOCs, metals, chemistry, pesticides/PCBs, and radionuclides). The data are further organized by well ID and the collection date of the sample. Chemical/radionuclide concentrations, detection limits, and uncertainties are reported, along with a data verification, validation, and/or usability qualifier (if assigned), and/or a laboratory data qualifier. If a data verification/validation qualifier was not assigned, the laboratory data qualifier is presented. Results that exceed the corresponding groundwater standard or guidance criteria (Section 1.1.1 [Regulatory Requirements]) are in bold text. The complete analytical results are included to allow the reader the opportunity for detailed analysis. In addition, this entire report is included on the CD-ROM with active links to tables and figures.

About the Plume Maps

Maps are provided that depict the areal extent and magnitude of the contaminant plumes. In most cases, the VOC plumes were simplified by using the total VOC (TVOC) values for drawing the contours, except for those plumes that consist almost exclusively of one chemical, such as the OU III Trichlorofluoromethane (Freon-11) plume and the OU VI Ethylene Dibromide (EDB) plume. TVOC concentrations are a summation of the individual concentrations of VOCs analyzed by EPA Method 524.2.

The extent of plumes containing VOC contamination was contoured to represent concentrations that were greater than the typical NYS AWQS of 5 micrograms per liter (µg/L) for most compounds. Radionuclide plumes were contoured to their appropriate DWS. Figure 3.0-1 shows the VOC and radionuclide plumes as well as the locations and groundwater capture zones for each of the treatment systems.

Following the capping of the landfill areas and the beginning of active groundwater remediation systems in 1997, there have been significant changes in the size and concentrations of several of the VOC plumes. These changes can be attributed to the following:

- The beneficial effects of active remediation systems
- Source control and removal actions
- The impacts of BNL pumping and recharge on the groundwater flow system
- Radioactive decay, biological degradation, and natural attenuation
Additionally, BNL’s ability to accurately depict these plumes has been enhanced over the years by:

- installation of additional permanent monitoring wells to the existing well networks
- installation of temporary wells that helped to fill in data gaps

During 2014, the contaminant plumes were tracked by collecting 1,514 groundwater samples obtained from 631 on-site and off-site monitoring wells. **Figure 3.0-2** below provides a summary of the number of analyses performed, arranged by analytical method. Unless otherwise noted, the extent of contamination for a given plume is depicted by primarily using 2014 data from permanent monitoring wells. Contaminant plumes associated with Building 96, Chemical/Animal Holes, Middle Road, Industrial Park, HFBR, BGRR, and g-2 Tritium Plume projects were further defined in 2014 using temporary wells (i.e., direct push Geoprobes® or vertical profiles).

A single representative round of monitoring data was usually chosen for each plume, typically from the last quarter of the year because it includes the most comprehensive sampling round for the year. This report also serves as the fourth quarter operations report for the remediation systems. Contaminant concentration trend plots for key monitoring wells in each plume are provided to identify significant changes. Data from monitoring wells sampled under BNL’s Facility Monitoring Program are evaluated in **Section 4.0**.

Figure 3.0-2.
Summary of Laboratory Analyses Performed for the CERCLA Monitoring Well Program in 2014.
History and Status of Groundwater Remediation at BNL

Groundwater remediation systems have operated at BNL since 1997 beginning with the OU I South Boundary Pump and Treat System. The goal of groundwater remediation, as defined by the OU III Record of Decision, is to prevent or minimize plume growth and not to exceed MCLs in the Upper Glacial aquifer within 30 years or less (by 2030). Based on additional information obtained during the Strontium-90 Pilot Study, the OU III Explanation of Significant Differences (BNL 2005a) identified changes to the cleanup goal timeframes for the Sr-90 plumes. For the BGRR/WCF and Chemical Holes Sr-90 plumes, MCLs must be reached by 2070 and by 2040, respectively. In addition, cleanup of the Magothy aquifer VOC contamination must meet MCLs by 2065.

There are currently 12 groundwater remediation systems in operation. Three systems have met their cleanup goals and have been decommissioned: the OU IV, Area of Concern (AOC) 5, Air Sparging/Soil Vapor Extraction System (OU IV AS/SVE), the Carbon Tetrachloride Pump and Treat System and the Industrial Park East Treatment System. Figure 3.0-1 shows the locations and groundwater capture zones for each of the treatment systems. In addition to the groundwater treatment systems, two landfill areas (Current and Former) were capped, which minimizes the potential for further groundwater contamination.

BNL’s Facilities and Operations personnel perform routine maintenance checks on the treatment systems in addition to their routine and non-routine maintenance. BNL’s Environmental Protection Division (EPD) collects the treatment system performance samples. In 2014, 833 treatment system samples were obtained from 103 sampling points. The data from the treatment system sampling is available in Appendix F tables. Full details of the maintenance checks are recorded in the system’s operation and maintenance daily inspection logs. The daily logs are available at the treatment facility, or in the project files.

In general, BNL uses two types of groundwater remediation systems to treat VOC contamination: pump and treat with air stripping or carbon treatment, or recirculation wells with air stripping or carbon treatment. Pump and treat remediation consists of pumping groundwater from the plume up to the surface and piping it to a treatment system, where the contaminants are removed by either air stripping or granular activated carbon. Treated water is then introduced back into the aquifer via recharge basins, injection wells, or dry wells. BNL utilizes pump and treat using ion-exchange treatment for remediating Sr-90. Pump and recharge (without treatment) is utilized to hydraulically contain the HFBR tritium plume. In 2008 and 2009 BNL also used ion-exchange treatment for localized hexavalent chromium groundwater contamination at Building 96.

Table 3.0-1 summarizes the operating remediation systems. Groundwater remediation at BNL is proceeding as projected. As discussed in the following sections, groundwater modeling is also used as a tool to help determine if remediation of the plumes is proceeding as planned to meet the overall groundwater cleanup goals. When modifications to the remediation systems are necessary, the groundwater model is also used as a tool to aid in the design.
Table 3.0-1. 2014 Summary of Groundwater Remediation Systems at BNL.

<table>
<thead>
<tr>
<th>Operable Unit System</th>
<th>Type</th>
<th>Target Contaminant</th>
<th>No. of Wells</th>
<th>Years in Operation</th>
<th>Recharge Method</th>
<th>Pounds VOCs Removed in 2014/Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operable Unit I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Boundary</td>
<td>P&T, AS</td>
<td>VOC</td>
<td>2</td>
<td>Operated: 16</td>
<td>Basin</td>
<td>0/369</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Standby: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operable Unit III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Boundary</td>
<td>P&T, (AS)</td>
<td>VOC</td>
<td>8</td>
<td>17</td>
<td>Basin</td>
<td>33/2989</td>
</tr>
<tr>
<td>HFBR Pump and Recharge</td>
<td>Pump and Recirculate</td>
<td>Tritium</td>
<td>4</td>
<td>Operate: 8.0</td>
<td>Basin</td>
<td>0/180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Standby: 9.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial Park</td>
<td>Recirculation/In-Well (AS/Carbon)</td>
<td>VOC</td>
<td>7</td>
<td>14.5</td>
<td>Recirculation Well</td>
<td>2/1,063</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>***Building 96</td>
<td>Recirculation Well (AS/Carbon)</td>
<td>VOC</td>
<td>4</td>
<td>Operate: 11</td>
<td>Recirculation Well</td>
<td>7/134</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Standby: 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle Road</td>
<td>P&T (AS)</td>
<td>VOC</td>
<td>7</td>
<td>13</td>
<td>Basin</td>
<td>58/1140</td>
</tr>
<tr>
<td>Western South Boundary</td>
<td>P&T (AS)</td>
<td>VOC</td>
<td>2</td>
<td>12</td>
<td>Basin</td>
<td>6/122</td>
</tr>
<tr>
<td>Chemical Holes</td>
<td>P&T (IE)</td>
<td>Sr-90</td>
<td>3</td>
<td>12</td>
<td>Dry Well</td>
<td>0.09**/4.8</td>
</tr>
<tr>
<td>North Street</td>
<td>P&T (Carbon)</td>
<td>VOC</td>
<td>2</td>
<td>10</td>
<td>Wells</td>
<td>24/333</td>
</tr>
<tr>
<td>North Street East</td>
<td>P&T (Carbon)</td>
<td>VOC</td>
<td>2</td>
<td>10</td>
<td>Wells</td>
<td>1/44</td>
</tr>
<tr>
<td>LIPA/Airport</td>
<td>P&T and Recirc. Wells (Carbon)</td>
<td>VOC</td>
<td>10</td>
<td>10</td>
<td>Wells and Recirculation Well</td>
<td>24/387</td>
</tr>
<tr>
<td>Industrial Park East</td>
<td>P&T (Carbon)</td>
<td>VOC</td>
<td>2*</td>
<td>Shutdown Operate: 5</td>
<td>Wells</td>
<td>0/37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Standby: 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGRR/WCF Building 452</td>
<td>P&T (IE)</td>
<td>Sr-90</td>
<td>9</td>
<td>9</td>
<td>Dry Wells</td>
<td>1.1**/25.12</td>
</tr>
<tr>
<td>Freon-11</td>
<td>P&T (AS)</td>
<td>Freon-11</td>
<td>1</td>
<td>3</td>
<td>Basin</td>
<td>8/96</td>
</tr>
</tbody>
</table>

Operable Unit VI

| EDB | P&T (Carbon) | EDB | 2 | 10 | Wells | NA*** |

Notes:
- AS = Air Stripping
- AS/SVE = Air Sparging/Soil Vapor Extraction
- EDB = ethylene dibromide
- IE = Ion Exchange
- LIPA = Long Island Power Authority
- NA = Not Applicable
- * Wells abandoned in 2014
- ** Sr-90 removal is expressed in mCi.
- *** No cumulative EDB calculations are performed based on the low concentrations detected.
- **** Well RTW-1 was modified from a recirculation well to surface discharge in May 2008. At the same time, hexavalent chromium treatment via ion-exchange resin was also added to RTW-1.
3.1 OPERABLE UNIT I

The two sources of groundwater contamination contained within the OU I project are the former Hazardous Waste Management Facility (HWMF) and the Current Landfill. The former HWMF was BNL’s central RCRA receiving facility for processing, neutralizing, and storing hazardous and radioactive wastes for off-site disposal until 1997, when a new Waste Management Facility was constructed along East Fifth Avenue. Several hazardous materials spills were documented at the former HWMF. A soil remediation program was completed for this facility in September of 2005.

The plumes from the Current Landfill and former HWMF became commingled south of the former HWMF. The commingling was partially caused by the pumping and recharging effects of a spray aeration system, which operated from 1985 to 1990. This system was designed to treat VOC-contaminated groundwater originating from the former HWMF. The remnants of the VOC plume are depicted on Figure 3.1-1.

The on-site segment of the Current Landfill/former HWMF plume was remediated by a groundwater pump and treat system consisting of two wells screened in the deep portion of the Upper Glacial aquifer at the site property boundary (OU I South Boundary Treatment System). The extracted groundwater was treated for VOCs by air stripping, and recharged to the ground at the RA V basin, located northwest of the Current Landfill. A second system (North Street East System) was built to treat the off-site portion of the plume. The off-site groundwater remediation system began operations in June 2004 and was included under the Operable Unit III Record of Decision (Section 3.2.10). A Petition for Shutdown of the OU I South Boundary Treatment System was approved by the regulatory agencies in July 2013 as the conditions for shutdown were satisfied as described in the OU III ROD (BNL, 2000a) and the Operations and Maintenance Manual for the OU I South Boundary Treatment Facility (BNL 2005b). The system was placed in standby mode in July 2013.

3.1.1 OU I South Boundary Treatment System

This section summarizes the operational and monitoring well data for 2014 from the OU I South Boundary Groundwater Treatment System. This system began operating in December 1996.

Discharge Monitoring Reports for treated effluent water from the air-stripping tower were submitted to EPA and NYSDEC each month. A Petition for Shutdown of this system was submitted to the regulatory agencies in May 2013 and approved in July 2013.

3.1.2 System Description

For a complete description of the OU I South Boundary Treatment System, see the Operations and Maintenance Manual for the OU I South Boundary Treatment Facility (BNL 2005b).

3.1.3 Groundwater Monitoring

Well Network

The OU I South Boundary monitoring program uses a network of 49 monitoring wells (Figure 1-2) to assess the groundwater treatment system and its effects on the plume.

Sampling Frequency and Analysis

The wells are monitored for VOCs, tritium, and/or Sr-90 as per the schedule provided on Table 1-5.

3.1.4 Monitoring Well VOC Results

Figure 3.1-1 shows the areal extent of VOC contamination from the Current Landfill/former HWMF area based on the samples collected in the third and fourth quarters of 2014. The primary VOCs detected in the on-site segment of this plume include chloroethane and 1,1-dichloroethane (DCA), which originated from the Current Landfill. The VOCs prevalent in the off-site segment of
the plume (North Street East) are 1,1,1-trichloroethane (TCA), 1,1-dichloroethylene (DCE), trichloroethylene (TCE), and chloroethane.

Monitoring well 088-109 is the only remaining Current Landfill source area well consistently exhibiting TVOC concentrations above 5 µg/L. In 2014, TVOC concentrations in this well ranged from 12 µg/L to 102 µg/L. The landfill was capped in November 1995. A detailed discussion of the landfill monitoring well data is provided in the 2014 Environmental Monitoring Report, Current and Former Landfill Areas (BNL 2015a). The OU I South Boundary plume (as defined by TVOC concentrations greater than 5 µg/L) has largely diminished due to active pump and treat groundwater remediation and natural attenuation (Figure 3.1-2). The off-site portion of the plume is discussed in Section 3.2.10, the North Street East Treatment System.

Figure 3.1-3 shows the vertical distribution of VOCs. The transect line for cross-section A–A' is shown on Figure 3.1-1.

The plume remains bounded by the current network of wells. Figure 3.1-5 gives the historical trends in VOC concentrations for key plume core and bypass wells. Appendix C has a complete set of 2014 analytical results. Significant findings for 2014 include:

- Monitoring well 088-109 is located immediately east of the Current Landfill, and approximately 3,500 feet north of the BNL site boundary (Figure 3.1-1). This well is sampled at a quarterly frequency and typically shows TVOC concentrations below 50 µg/L; however, there have been occasional spikes in TVOC concentrations (up to 133 µg/L) over the past several years. The spikes in concentration appear to be due to continuing releases of residual VOCs from the Current Landfill to the water table. The groundwater travel time from the Current Landfill to the BNL site boundary is approximately 12-15 years. The peak VOC concentration values observed in well 088-109 migrating from the Current Landfill to the BNL site boundary will attenuate to levels below the capture goal prior to reaching the extraction wells located near the site boundary.

- The last remaining downgradient monitoring well above the capture goal was 53 µg/L in well 107-40 during the first quarter 2013. Subsequently, TVOC concentrations in this well have remained below 50 µg/L for seven consecutive sampling rounds with a 26 µg/L result observed most recently in December 2014. The plume in this area is located within the Upton Unit. The lower hydraulic conductivity of this unit (in comparison to the Upper Glacial aquifer sands) appears to reduce the plume migration rate.

- Monitoring well 115-51 was installed approximately 100 feet north of EW-2 in early 2011. This well is located to monitor the VOC concentrations immediately upgradient of the extraction wells. TVOC concentrations in this well have declined from 43 µg/L in March 2011 to less than 2 µg/L from June 2013 through the fourth quarter of 2014 (Figure 3.1-4).

- There were no detections of VOCs above AWQS in perimeter monitoring wells.

3.1.5 Radionuclide Monitoring Results

A subset of the OU I Monitoring Program wells is analyzed for tritium and Sr-90 semiannually, and gamma spectroscopy annually. The complete results for these wells are provided in Appendix C.

The tritium concentration in the sampled wells continues to decline and is significantly below the 20,000 pCi/L DWS. The highest tritium concentration during 2014 was in monitoring well 116-06 at 514 pCi/L. This is one of only two results from 2014 observed above the minimum detectable activity. A plot of historical tritium results for select OU I South Boundary program wells is shown on Figure 3.1-5.

40 permanent wells are monitored for Sr-90 contamination from the former HWMF (Table 1-5). The highest Sr-90 detected in 2014 was 26.5 pCi/L in well 98-30 during February (the Sr-90 DWS is 8 pCi/L). A transect of six temporary wells was installed and sampled in April 2015 as recommended in the 2013 Groundwater Status Report and the locations are shown on Figure 3.1-6 (The data is
included in Table 3.1-2). This characterization was designed to determine the magnitude and extent of Sr-90 concentrations exceeding the DWS that have been observed periodically in monitoring wells 088-26 and 098-30. The southernmost location, OU I-Sr-90-GP-30, contained a detection of Sr-90 of 148 pCi/L. A additional characterization is necessary to determine the extent and potential source of this elevated result. This result confirms that there is residual contamination in the source area being released to groundwater (Figure 3.1-6).

Detectable levels of Sr-90 have been very slowly increasing in sentinel monitoring well 108-45 since it was installed in 2011. The initial result in this well was 1 pCi/L in 2011. The Sr-90 concentration increased to 4.6 pCi/L in August 2014. This sentinel well is located approximately 700 feet upgradient of the site boundary. The location of monitoring wells and the extent of Sr-90 concentrations is shown on Figure 3.1-6. Sr-90 concentration trends for key monitoring wells are provided on Figure 3.1-7.

3.1.6 System Operations

The extraction wells are currently sampled quarterly as the system was in standby mode for 2014. The influent and effluent of the air-stripper tower were sampled monthly for VOCs and weekly for pH prior to the system being placed in standby mode in July 2013. Table 3.1-1 provides the effluent limitations for meeting the requirements of the SPDES equivalency permit.

The following is a summary of the OU I operations for 2014:

January–December 2014

The system remained in standby mode for the year. There was no increase in VOC concentrations observed in the monitoring well network that required the extraction wells to resume pumping.

3.1.7 System Operational Data

Extraction Wells

During 2014, the extraction wells did not operate. The wells were sampled quarterly during the year. Table 2-2 shows no monthly pumping data for the two extraction wells as they were on standby for the year. VOC and tritium concentrations in samples from EW-1 and EW-2 are provided in Table F-1. Tritium was not detected in the extraction wells during 2014. VOC levels in EW-2 continued a decreasing trend (Figure 3.1-8).

System Influent and Effluent

There were no influent or effluent samples as the system was in standby mode during 2014.

Table 3.1-1

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Permit Level (µg/L)</th>
<th>Max. Measured Value (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.0 – 9.0 SU</td>
<td>NS</td>
</tr>
<tr>
<td>benzene</td>
<td>0.8</td>
<td>NS</td>
</tr>
<tr>
<td>chloroform</td>
<td>7.0</td>
<td>NS</td>
</tr>
<tr>
<td>chloroethane</td>
<td>5.0</td>
<td>NS</td>
</tr>
<tr>
<td>1,2-dichloroethane</td>
<td>5.0</td>
<td>NS</td>
</tr>
<tr>
<td>1,1-dichloroethene</td>
<td>5.0</td>
<td>NS</td>
</tr>
<tr>
<td>1,1,1-trichloroethane</td>
<td>5.0</td>
<td>NS</td>
</tr>
<tr>
<td>carbon tetrachloride</td>
<td>5.0</td>
<td>NS</td>
</tr>
<tr>
<td>1,2-dichloropropane</td>
<td>5.0</td>
<td>NS</td>
</tr>
<tr>
<td>methylene chloride</td>
<td>5.0</td>
<td>NS</td>
</tr>
<tr>
<td>trichloroethylene</td>
<td>5.0</td>
<td>NS</td>
</tr>
<tr>
<td>vinyl chloride</td>
<td>2.0</td>
<td>NS</td>
</tr>
<tr>
<td>1,2-xylene</td>
<td>5.0</td>
<td>NS</td>
</tr>
<tr>
<td>sum of 1,3- & 1,4-xylene</td>
<td>10.0</td>
<td>NS</td>
</tr>
</tbody>
</table>

Notes:
SU = Standard Units
NS = Not Sampled as the system was not operating
Cumulative Mass Removal
Approximately 369 pounds of VOCs were removed from the aquifer during system operation from 1996 through 2013.

Air Discharge
There were no air emissions as the system was in standby in 2014. Table 3.1-3 contains no data for VOC air emissions as the system was on standby during 2014.

3.1.8 System Evaluation
Although the system remains in standby, groundwater monitoring is ongoing to determine whether there is any rebound in VOC concentrations. The OU I South Boundary Pump and Treat system performance can be evaluated based on the major decisions identified by applying the Data Quality Objectives (DQO) process.

1. Is there a continuing source of contamination? If present, has the source area been remediated or controlled?
Recent temporary well data indicates that there is some residual elevated Sr-90 in groundwater in the FHWMF yard. Occasional observations of Sr-90 exceeding the DWS occur in well 088-26 which is also located inside the FHWMF yard. VOCs leaching out from the Current Landfill are attenuating to levels below DWS south of the landfill.

2. Were unexpected levels or types of contamination detected?
Sr-90 concentrations up to 148 pCi/L were observed in temporary wells located in the southeast corner of the FHWMF during early 2015.

3. Has the downgradient migration of the plume been controlled?
Monitoring results indicate that the OU I onsite VOC plume has been largely remediated as VOC concentrations have been steadily decreasing.

The leading edge of an area of elevated Sr-90 contamination is being detected in monitoring well 108-45, which is approximately 700 feet north of the site boundary. The maximum Sr-90 concentration in this area during 2014 was 26.5 pCi/L.

Table 3.1-3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Allowable ERP* (lb/hr)</th>
<th>Actual** ERP* (lb/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>carbon tetrachloride</td>
<td>0.016</td>
<td>SB</td>
</tr>
<tr>
<td>chloroform</td>
<td>0.0086</td>
<td>SB</td>
</tr>
<tr>
<td>1,1-dichloroethane</td>
<td>10**</td>
<td>SB</td>
</tr>
<tr>
<td>1,2-dichloroethane</td>
<td>0.011</td>
<td>SB</td>
</tr>
<tr>
<td>1,1-dichloroethylene</td>
<td>0.194</td>
<td>SB</td>
</tr>
<tr>
<td>chloroethane</td>
<td>10**</td>
<td>SB</td>
</tr>
<tr>
<td>1,1,1-trichloroethane</td>
<td>10**</td>
<td>SB</td>
</tr>
<tr>
<td>trichloroethylene</td>
<td>0.119</td>
<td>SB</td>
</tr>
</tbody>
</table>

ERP = Emissions Rate Potential, stated in pounds per hour (lb/hr).
* ERP is based on NYSDEC Air Guide 1 Regulations.
** Actual rate reported is the average for the year.
*** 6 NYCRR Part 212 restricts emissions of VOCs to a maximum of 10 lb/hr without controls.
SB = Standby

3.1.8 System Evaluation
3a. Are TVOC/Sr-90 concentrations in plume core wells above or below 50 µg/L or 8 pCi/L, respectively?
Monitoring well 088-109, located immediately southeast of the Current Landfill, has shown occasional spikes in TVOC concentrations (up to 133 µg/L) over the past several years. Based on plume core well data TVOC concentrations throughout

4a. Can individual extraction wells or the entire treatment system be shut down or placed in pulse pumping operation?
Yes, the system was placed in standby mode in July 2013 following regulatory approval of the Petition for Shutdown.

4a. Are TVOC/Sr-90 concentrations in plume core wells above or below 50 µg/L or 8 pCi/L, respectively?
Monitoring well 088-109, located immediately southeast of the Current Landfill, has shown occasional spikes in TVOC concentrations (up to 133 µg/L) over the past several years. Based on plume core well data TVOC concentrations throughout
Chapter 3: CERCLA Groundwater Monitoring and Remediation

The dowgradient portion of the plume are now less than the system capture goal of 50 µg/L. Monitoring well 107-40 was the last well displaying TVOC concentrations above the capture goal and has now contained levels below 50 µg/L since January 2013. This well is located approximately 600 feet north of the south boundary extraction wells. TVOC concentrations in the remainder of the plume core wells have been below 50 µg/L since 2011 (Figure 3.1-10). There are presently four monitoring wells containing Sr-90 concentrations above the 8 pCi/L DWS. In addition recent temporary well data from the FHWMF yard shows Sr-90 concentrations up to 148 pCi/L.

4b. Is there a significant concentration rebound in core wells and/or extraction wells following shutdown?
No significant rebound of VOCs has been observed in either monitoring or extraction wells since the system was shutdown in July 2013.

5. Has the groundwater cleanup goal of meeting MCLs by 2030 been achieved?
No. MCLs have not been achieved for individual VOCs in plume core wells. Groundwater modeling predicts that MCLs will be achieved by 2030. A comparison of groundwater quality conditions are shown on Figure 3.1-2 which compares the VOC plume from 1997 to 2014.

3.1.9 Recommendations
The following recommendations are presented for the OU I South Boundary Treatment System and groundwater monitoring program:

- Maintain the extraction wells in standby mode. Groundwater monitoring will continue as detailed in Table 1-5 and one or both extraction wells can be restarted if TVOC concentrations rebound significantly above capture goals. Analyze the wells extraction quarterly for Sr-90.
- Continue the groundwater characterization of the Sr-90 observed in temporary well OU I-SR-90 GP-30 and determine both the extent and whether a continuing source area can be isolated. This characterization will utilize temporary wells and be supplemented by permanent monitoring wells if warranted.
- Use the groundwater model to predict the attenuation of VOCs observed in well 088-109.
This Page Intentionally Left Blank.
3.2 OPERABLE UNIT III

There were several VOC, Sr-90, and tritium plumes addressed under the OU III Remedial Investigation/Feasibility Study (RI/FS). The VOC plumes originated from a variety of sources, including Building 96, various small sources in the north-central developed portion of the site, the Former Landfill, OU IV, and the former carbon tetrachloride underground storage tank (UST). Figure 3.2-1 is a representation of the plumes using TVOC concentrations. The eastern portion of Figure 3.2-1 also includes the North Street (OU I/IV) plumes. Figure 3.2-2 is cross-section B-B2 which is drawn through the north-south center-line of the primary OU III VOC plumes, as shown in Figure 3.2-1.

The primary chemical contaminants found in OU III groundwater are TCA, tetrachloroethylene (PCE), and carbon tetrachloride. These three chemicals are the primary VOCs detected in the OU III on-site monitoring wells. Off site, carbon tetrachloride and PCE are the main contaminants detected. Figure 3.2-3 presents a comparison of the OU III plumes between 1997 and 2014. Several changes in the plumes can be observed in this comparison:

- The extent of the higher concentration segments of the plumes both on and off-site has decreased over the 17-year period. This is due primarily to the groundwater remediation that has been implemented, along with the effects of natural attenuation.
- Hydraulic control of the plumes by the OU III South Boundary Treatment System at the site boundary and the LIPA system is evidenced by the break in the plumes in these areas.
- Concentrations have been significantly reduced in the vicinity of the Industrial Park East System.
- The attenuation of the on-site portion of the North Street VOC plume.

Three radiological plumes were addressed under OU III. The HFBR tritium plume had travelled several thousand feet south from the HFBR spent fuel pool. The downgradient, higher concentration slug was captured by EW-16. This slug has been fully remediated and the treatment system placed in stand-by mode. Sr-90 plumes are present downgradient of the former WCF and several sources related to the BGRR. A Sr-90 plume is also present downgradient of the Chemical/Animal Holes area.

Sections 3.2.1 through 3.2.18 summarize and evaluate the groundwater monitoring and system operations data for the OU III VOC and radiological plumes, including both operational groundwater treatment systems and the monitoring-only programs.
3.2.1 Carbon Tetrachloride Post Closure Monitoring

This section summarizes the data from the location of the former OU III Carbon Tetrachloride Pump and Treat System and offers conclusions and recommendations for monitoring. This plume originated from a former 1,000-gallon UST that had been used to store carbon tetrachloride used for a research project. The tank was removed in 1998, and several gallons of carbon tetrachloride were released to the groundwater during this removal. The groundwater treatment system began operating in October 1999, and was formally shut down and placed in standby mode in August 2004. Final regulatory approval for decommissioning was received in October 2009. Decommissioning work was completed in 2010. The scope of work included the abandonment of specific monitoring wells and all three extraction wells. All of the equipment in building TR 829 and the building itself was removed.

Groundwater was monitored as part of the Carbon Tetrachloride Post Closure Monitoring Program through 2013. Based on the recommendation in the 2013 Groundwater Status Report, monitoring for this program was ended. Several monitoring wells continue to be sampled as part of other programs. Wells 085-236 and 085-237, 085-17 are monitored by the On-Site Service Station monitoring program (Section 4.6). Wells 104-11, 104-36, 105-23, 105-42 are monitored as part of the Middle Road monitoring program (Section 3.2.4).
3.2.2 Building 96 Treatment System

This section summarizes the 2014 operational data from the OU III Building 96 Treatment System, which consists of three recirculation wells and one pumping well with air stripping and vapor-phase carbon treatment. It also presents conclusions and recommendations for future operation of the system. The system began operation in February 2001. For a history of the operation of these wells over the last 13 years, refer to previous Groundwater Status Reports. Starting in 2012, treatment well RTW-1 was used to treat the low level downgradient portion of the Building 452 Freon-11 plume (Section 3.2.3 for further discussion of the Building 452 Freon-11 plume).

3.2.2.1 System Description

For the recirculation wells, contaminated groundwater is drawn from the aquifer via a submersible well pump in a lower well screen, 48 to 58 feet b.s.l., near the base of the contaminant plume. The groundwater then is pumped into a stripping tray adjacent to each of the three wells. After treatment, the clean water is recharged in wells RTW-2 through RTW-4 back to the upper screen, 25 to 35 feet b.s.l. In May 2008, well RTW-1 was modified from a recirculation well to a pumping well with air stripping and hexavalent chromium ion exchange treatment, with discharge to the nearby surface drainage culvert. The contaminated air stream from the air stripper from the four treatment wells is routed to a treatment and control building, where it is passed through two vapor-phase granular activated carbon (GAC) units in series to remove the VOCs. Treated air is then discharged to the atmosphere. A complete description of the system is included in the Operations and Maintenance Manual Building 96 Groundwater Treatment System (BNL 2009a).

3.2.2.2 Source Area Remediation

In addition to the excavation of VOC contaminated soil in 2010, operation of the RTW-1 groundwater treatment system will continue until the capture goal is attained, which was expected within three to six years of the soil excavation (by 2016). Excavation of the soil is expected to reduce the number of years of treatment to allow the cleanup goal of the ROD for this groundwater plume (i.e., meeting drinking water standards by 2030) to be met.

Figure 3.2.2-1 shows the location of the excavated soil contamination area in relation to the 2014 VOC groundwater plume. Figure 3.2.2-3 shows a cross section of the area.

3.2.2.3 Groundwater Monitoring

A network of 35 wells is used to monitor the VOC plume and the effectiveness of the Building 96 groundwater remediation system (Figure 3.2.2-1). The majority of the wells are sampled quarterly and analyzed for VOCs in accordance with Table 1-5. The frequency of monitoring for total chromium and hexavalent chromium in the monitoring wells is annual.

3.2.2.4 Monitoring Well Results

Complete VOC results are provided in Appendix C. The fourth quarter 2014 plume is shown on Figure 3.2.2-1 and trends for several wells are presented on Figure 3.2.2-2. A summary of key monitoring well data for 2014 follows:

Former Source Area to RTW-1:

- The highest TVOC concentration seen in 2014 was 390 µg/L in core well 095-84 during the fourth quarter sampling round. This is significantly lower than the historical maximum TVOC concentration in this well of 18,000 µg/L in 1998. As noted on the trend Figure 3.2.2-2, since 2010, TVOC concentrations have significantly declined. This declining trend since 2010 is also evident in core well 095-306. TVOC concentrations in this well declined to 97 µg/L in 2014. These levels should continue to drop off as the tail end of the plume passes through this area and...
is captured by RTW-1. These wells are located approximately 70 to 200 feet downgradient of the former soil excavation area and are upgradient of RTW-1.

- Since detecting a maximum TVOC concentration of 2,435 µg/L in 2011, monitoring well 085-379 has steadily dropped to less than 200 µg/L in 2014. This well is located within the downgradient portion of the former excavation area. This well straddles the water table with a 20 foot screen in order to ensure that any residual groundwater contamination from the former source area is identified during fluctuations in the water table.

- TVOC concentrations in core monitoring well 095-305 continue to increase every couple of years following a spike up to 3,013 µg/L in 2011. TVOC concentrations in 2014 remained relatively low, but increased to 380 µg/L in January 2015. This well is located adjacent to well 095-306, but screened 12 feet shallower.

- Monitoring well 095-313 was added to the Building 96 monitoring program in 2012. This well is located northwest of RTW-1 to monitor the western perimeter of the Building 452 Freon-11 plume. This well detected PCE up to 144 µg/L in 2012, but did not detect Freon-11. The maximum PCE detected in this well in 2014 was 66 µg/L in the first quarter, and then concentrations dropped off to 16 µg/L in the fourth quarter. This well is screened slightly deeper than the adjacent Building 96 monitoring wells with the screen interval at 45 to 60 feet bgs.

- Well 095-307, located to the west of the main plume, detected PCE at 150 µg/L in the fourth quarter. The previous spike in this well was in 2010 with a PCE concentration of 270 µg/L, while the maximum PCE concentration was 970 µg/L in 2005. This contamination will not be captured by the Bldg. 96 treatment wells.

RTW-1 to Downgradient Recirculation Wells RTW-2 through RTW-4:

- Elevated TVOC concentrations continue to be detected in two monitoring wells downgradient of RTW-1. Maximum TVOC concentrations of 70 µg/L and 30 µg/L were detected in the first quarter 2014 in plume core wells 095-159 and 095-172, respectively. VOCs in these wells have been slowly declining over the last several years. This contamination will be captured by RTW-2 and RTW-3.

In December 2014, a temporary well (B452-GP-49) was installed approximately 50 feet southwest of extraction well RTW-1 to determine whether RTW-1 was effectively capturing the downgradient segment of the Freon-11 plume (Figure 3.2.2-1). Freon-11 was not detected in any of the samples collected from B452-GP-49, however PCE was detected up to 298 µg/L at the shallowest interval of 40 feet bgs. Table 3.2.2-4 presents the detections from this temporary well.

Wells Downgradient of RTW-2 through RTW-4:

- The bypass monitoring wells immediately downgradient of extraction wells RTW-2, RTW-3, and RTW-4 generally showed reduced TVOC concentrations since 2007. The reduced concentrations are consistent with the downgradient extraction wells being placed back in service in late 2007 and early 2008. In 2014, the bypass wells did not detect any VOCs above standards.

- Sentinel monitoring well 095-318, located along Weaver Drive, identified TVOC concentrations up to 10 µg/L in 2014. The primary VOC was PCE at 9 µg/L. TVOC concentrations in this well have declined since the well was installed in 2010 and detected 143 µg/L. This contamination will be addressed by the Middle Road treatment system.

- A new monitoring well (MR-MW02-2014) was installed along Weaver Drive in July 2014 to monitor the northern edge of the Middle Road VOC plume. Maximum TVOC concentrations were 58 µg/L in the fourth quarter. PCE was the primary contaminant detected at 27 µg/L.
Hexavalent Chromium Monitoring:

- The frequency of monitoring for total chromium and hexavalent chromium in the monitoring wells was annual in 2014. None of the Building 96 monitoring wells detected hexavalent chromium above the SPDES discharge limit of 100 µg/L or the AWQS of 50 µg/L from 2010 through 2014. The well with the highest hexavalent chromium value in 2014 was 085-352 with a value of 14 µg/L in October 2014. The last detection that exceeded 100 µg/L of hexavalent chromium was in one monitoring well in 2009. The drop in concentrations over the last few years indicates that the hexavalent chromium has converted back to the trivalent form, which is less toxic. The hexavalent chromium monitoring well data for 2014 is posted on Figure 3.2.2-4.

Freon-11:

- As further described in Section 3.2.3, remediation of the Freon-11 plume is being performed in accordance with an Explanation of Significant Differences to the OU III ROD. In addition to the installation of a new extraction well in 2012 to remediate the majority of the Freon-11 plume, Building 96 extraction well RTW-1 is also being used to address the low level downgradient portion of the plume. The maximum Freon-11 concentration detected in RTW-1 in 2014 was 16 µg/L in the second quarter.

- Freon-11 continues to be detected in several of the Building 96 monitoring wells at low levels. Freon-11 did not exceed the AWQS in these wells in 2014. The maximum Freon-11 concentration detected in 2014 was 4.4 µg/L in plume perimeter well 095-85 in the first quarter. This is a significant decrease from the maximum Freon-11 concentration in this well of 430 µg/L in 2013. This appeared to be a discrete slug of Freon-11 moving through the area. A second well, 095-162 located downgradient of RTW-1 detected Freon-11 up to 120 µg/L in the second quarter 2013. Concentrations subsequently dropped to below 1.0 µg/L in 2014. This detection is consistent with the Freon-11 concentrations identified in two temporary wells installed in January 2012 about 50 feet upgradient of RTW-2 and RTW-3. The contamination that passed through well 095-162 will be captured by RTW-2 and RTW-3.

3.2.2.5 System Operations

Operating Parameters

- Treatment wells RTW-1 through RTW-3 operated full time during 2014. Treatment well RTW-4 has been in stand-by mode since October 2012.

January - September 2014

- During this period the system was off for approximately 10 days. In January well RTW-2 was off to replace the pump and motor. In February the system was off sporadically due to a faulty pressure switch. From April through May well RTW-1 ran intermittently due to the faulty pressure switch. During June through September individual wells were off a total of 19 days due to electrical problems. During this period the system treated approximately 31 million gallons of water.

October - December 2014

- In October, well RTW-1 was off for approximately six days due to electrical issues. During this period the system treated approximately 10.5 million gallons of water.

During 2014, the system treated approximately 41.5 million gallons of water (Table F-7).
3.2.2.6 System Operational Data

Recirculation/Treatment Well Influent and Effluent

Table F-5 lists the monthly influent and effluent TVOC concentrations for the two active recirculation wells, and treatment well RTW-1. The highest TVOC concentration from the influent of these wells was 160 µg/L in RTW-1 in the second quarter of 2014. The maximum TVOC concentration in the influent of the downgradient wells was 3.6 µg/L in RTW-3, also in the second quarter. This consisted of primarily Freon-11 at 3 µg/L. Figure 3.2.2-5 shows the TVOC concentrations in the treatment wells over time. Table 3.2.2-1 shows the maximum measured effluent contaminant concentrations compared to the SPDES equivalency permit for well RTW-1. The system met all equivalency parameters for operation in 2014.

As recommended in the 2013 Groundwater Status Report, starting in October 2014 the frequency of analysis for total chromium and hexavalent chromium in the effluent of RTW-1 was reduced from two times per month to monthly. The maximum hexavalent chromium level detected in the effluent in RTW-1 in 2014 was 7.0 µg/L in September. Since January 2010, the resin treatment was bypassed and remains in standby mode.

Air Treatment System

In 2014, quarterly air sampling was performed from the GAC vessels before treatment (influent), between the two vessels (midpoint), and after the second vessel (effluent). The analytical data are available on Table F-6, and the VOC emission rates are summarized on Table 3.2.2-2. The findings are utilized to monitor the efficiency of the GAC units and to determine when a carbon change-out is required. Airflow rates, measured for each air-stripping unit inside the treatment building, show that they typically range between 250 and 450 cubic feet per minute (cfm) for each of the four wells. Assuming a total airflow rate of 1,200 cfm, all compounds detected in the carbon effluent during the operating year were much lower than the New York State DAR-1 Air Toxics Assessment limits for the worst-case potential impacts to the public.

Cumulative Mass Removal

Table 3.2.2-3 shows the monthly extraction well pumping rates. The annual average pumping rate for the system was 77 gpm. The pumping and mass removal data are summarized on Table F-7. In 2014, approximately 7 pounds of VOCs were removed. Since February 2001, the system has removed approximately 134 pounds of VOCs.

3.2.2.7 System Evaluation

The Building 96 Treatment System performance can be evaluated based on the major decisions identified by applying the DQO process.
1. Is there a continuing source of contamination? If present, has the source area been remediated or controlled?

As noted in Section 3.2.2.2 above, the previously identified high PCE concentrations in soil were excavated in the summer of 2010. Over the last three years, TVOC concentrations in well 085-379 (located in the former source area) have slowly declined from 2,435 µg/L in 2011 to 170 µg/L in October 2014. The selected remedy for the PCE soil source area also included continued groundwater treatment. Well 085-379 and other source area monitoring wells will continue to be sampled to evaluate the effectiveness of the source area soil remediation.

It appears that the periodic VOC spikes in well 095-307 may be the result of residual contamination to the west of the original soil excavation. Further investigation in this area is needed.

2. Were unexpected levels or types of contamination detected?

As noted in Section 3.2.2.4 above, PCE detected in monitoring well 095-313 in 2011 continued to be identified during 2014 up to 66 µg/L in the first quarter. The PCE concentrations dropped to 15 µg/L in the fourth quarter indicating a discrete slug of contamination passed through this area. PCE was not expected in this area at this depth. In addition, the four temporary wells installed in this area in early 2014 did not detect PCE above 66 µg/L.

Freon-11 was detected in Building 96 perimeter monitoring well 095-85 at 430 µg/L in 2013. This well is screened at 95 feet bgs and the Freon-11 was detected deeper than expected. Since the concentrations dropped off over the past year with a maximum detection of 4.4 µg/L in 2014, it appears to be a discrete slug of Freon-11 moving through the area.

3. Has the downgradient migration of the plume been controlled?

Yes, the downgradient portion of the PCE plume has been controlled. Following the modification of extraction well RTW-1 as a pumping well, it has demonstrated effective capture of the plume source area (Figure 3.2.2-6). A small area of PCE located near well 095-159 will be captured by downgradient extraction well RTW-2. Based on the low concentrations of VOCs in recirculation wells RTW-2, RTW-3, and RTW-4 and the nearby monitoring wells, it appears that RTW-1 is effectively capturing the PCE migrating from the source area. Although a small, lower concentration zone of Freon-11 could not be captured by extraction well RTW-1, some of this contamination is being treated by recirculation wells RTW-2 and RTW-3. See Section 3.2.3 for further discussion.

Table 3.2.2-2
Building 96 Area
2014 Average VOC Emission Rates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Allowable ERP* (lb/hr)</th>
<th>Actual** ER (lb/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dichlorodifluoromethane</td>
<td>0.0000187</td>
<td>0.00000193</td>
</tr>
<tr>
<td>acetone</td>
<td>0.000674</td>
<td>ND</td>
</tr>
<tr>
<td>methylene chloride</td>
<td>0.000749</td>
<td>ND</td>
</tr>
<tr>
<td>2-butanone</td>
<td>0.000187</td>
<td>ND</td>
</tr>
<tr>
<td>benzene</td>
<td>0.000112</td>
<td>0.0000154</td>
</tr>
<tr>
<td>tetrachloroethylene</td>
<td>0.000165</td>
<td>0.0000522</td>
</tr>
<tr>
<td>m,p-xylene</td>
<td>0.0000116</td>
<td>ND</td>
</tr>
<tr>
<td>isopropylbenzene</td>
<td>0.000243</td>
<td>ND</td>
</tr>
<tr>
<td>n-propylbenzene</td>
<td>0.0000599</td>
<td>ND</td>
</tr>
<tr>
<td>1,3,5-trimethylbenzene</td>
<td>0.000375</td>
<td>ND</td>
</tr>
<tr>
<td>1,2,4-trimethylbenzene</td>
<td>0.000225</td>
<td>0.0000120</td>
</tr>
<tr>
<td>4-isopropyltoluene</td>
<td>0.00000749</td>
<td>ND</td>
</tr>
<tr>
<td>naphthalene</td>
<td>0.0000225</td>
<td>ND</td>
</tr>
<tr>
<td>carbon disulfide</td>
<td>0.0000487</td>
<td>ND</td>
</tr>
<tr>
<td>styrene</td>
<td>0.0000637</td>
<td>ND</td>
</tr>
<tr>
<td>trans-1,3-dichloropropane</td>
<td>0.0000157</td>
<td>ND</td>
</tr>
</tbody>
</table>

Notes:
ER = Emissions Rate
ERP = Emissions Rate Potential, stated in lb/hr.
* ERP is based on NYSDEC Air Guide 1 Regulations.
** Actual rate reported is the average for the year.
ND = Analyte not detected
As noted in response to DQO Decision 1 above, the VOC contamination in well 095-307, located to the west of the main plume will not be controlled by the Building 96 extraction wells. This contamination may be addressed by the Middle Road Treatment System and natural attenuation.

4. Can individual extraction wells or the entire treatment system be shut down or placed in pulsed pumping operation?
The system has not met all shutdown requirements. Groundwater modeling also determined that following some “tailing” effect from the vadose zone source area after it is excavated, well RTW-1 was projected to operate until approximately 2016. However, based on current data the system will need to run longer. Influent TVOC concentrations in downgradient recirculation wells RTW-2 through RTW-4 have been below 50 µg/L since 2008. However, based on elevated VOCs in the 2012 temporary and monitoring wells, elevated TVOCs greater than 50 µg/L exist immediately upgradient of RTW-2 and RTW-3. Extraction well RTW-4 remains in standby mode.

4a. Are TVOC concentrations in plume core wells above or below 50 µg/L?
TVOC concentrations in 14 of 22 core wells were above 50 µg/L in 2014.

4b. Is there a significant concentration rebound in core wells and/or extraction wells following shutdown?
The system remains in operation with the exception of RTW-4. There has been no rebound of VOCs in RTW-4 or adjacent monitoring wells since it was placed in standby mode in 2012.

5. Has the groundwater cleanup goal of meeting MCLs been achieved?
MCLs have not been achieved for individual VOCs in all plume core wells. However, MCLs are expected to be achieved by 2030.

3.2.2.8 Recommendations
The following are recommendations for the OU III Building 96 Groundwater Remediation System and monitoring program:

- Maintain full time operation of treatment wells RTW-1, RTW-2, and RTW-3. Maintain a monthly sampling frequency of the influent and effluent for each well.
- Maintain treatment well RTW-4 in standby mode, and maintain a monthly sampling frequency of the influent. Restart the well if extraction or monitoring well data indicate that TVOC concentrations exceed 50 µg/L.
- Due to the elevated VOCs located to the west of the main plume, perform a soil vapor survey upgradient of well 095-307 to determine any residual source areas.
- Install additional temporary wells (Geoprosbes) between wells 095-159 and 095-162 to further delineate the extent of PCE contamination identified in Geoprobe B452-GP-49. Samples will be obtained up to the water table.
- Continue to maintain the RTW-1 resin treatment in standby mode, and if concentrations of hexavalent chromium in the effluent increase to over 50 µg/L (an administrative limit established that is half of the S PDES limit of 100 µg/L), treatment would resume. The maximum hexavalent chromium detected in the effluent in 2014 was 7.0 µg/L.
- Due to significant reduction of hexavalent chromium in the monitoring wells over the last several years, further sampling will be eliminated.
3.2.3 Building 452 Freon-11 Treatment System

This section summarizes the 2014 operational data from the Building 452 Freon-11 Treatment System, which consists of one pumping well with air stripping treatment. It also presents conclusions and recommendations for future operation of the system. The system began operation in March 2012.

In April 2011, BNL detected the refrigerant Freon-11 in Building 96 area groundwater monitoring well 085-378. From April through early August, 2011, temporary groundwater monitoring wells were installed to characterize the vertical and horizontal extent of Freon-11 in the groundwater. The plume was found to extend from the site maintenance facility Building 452 area approximately 600 feet downgradient to former Building 96 groundwater extraction well RTW-1 (Figure 3.2.3-1). Twelve new monitoring wells were installed for long-term surveillance of the source area and plume. The maximum Freon-11 concentration detected during 2011 was 38,000 µg/L in well 085-382, located approximately 100 feet downgradient of Building 452.

Following the characterization of the plume, the Building 452 Freon-11 Source Area and Groundwater Plume were designated Area of Concern 32. Remedial actions for the plume were documented as an Explanation of Significant Differences (ESD) under the OU III ROD (BNL 2012a).

3.2.3.1 System Description

Due to the high levels of Freon-11 detected in groundwater and the extent of the plume, it was determined that active remediation of the plume was required to ensure that the OU III ROD cleanup objectives are met. To achieve the cleanup objectives, operation of new extraction well EW-18 and the use of existing Building 96 Groundwater Treatment System extraction well RTW-1 are being used to remediate the main portion of the Freon-11 plume. The Building 452 treatment system began full-time operation in April 2012. Groundwater from extraction well EW-18 is treated using an air stripper tray system located in a treatment building located adjacent to the treatment building for RTW-1 (Figure 3.2.3-1). Groundwater from extraction well RTW-1 is also treated using tray air stripper system (see Section 3.2.2). The treated water from extraction wells EW-18 and RTW-1 is discharged to a nearby stormwater culvert which leads to BNL Recharge Basin HS. The discharges are regulated under two NYSDEC SPDES equivalency permits. Review of the potential atmospheric emissions following the New York State air emissions modeling (DAR-1) process showed that the release of Freon-11 from this system will not pose short-term or long-term impacts. A complete description of the system is included in the Operations and Maintenance Manual Building 452 Groundwater Treatment System (BNL 2012b).

3.2.3.2 Source Area

The groundwater monitoring wells located immediately downgradient of the source area are used to verify expected reductions in Freon-11 concentrations over time. Additional source controls/remediation may be implemented if they are deemed necessary to meet the cleanup objectives.

3.2.3.3 Groundwater Monitoring

Well Network

The monitoring well network for the Building 452 program consists of 14 wells, all of which are screened in the shallow portion of the Upper Glacial aquifer. Seven of the wells (085-43, 085-73, 085-380, 085-381, 085-382, 085-383, and 085-384) monitor the Building 452 source area. The remaining seven wells (085-385, 085-386, 085-387, 085-388, 095-313, 095-314 and 095-315) monitor the downgradient portions of the plume (Figure 3.2.3-1). In December 2014, three temporary wells were installed to verify the observed reduction of Freon-11 concentrations in source area monitoring wells,
and to determine whether Building 96 extraction well RTW-1 is effectively capturing the segment of the Freon-11 plume that migrated past EW-18.

Sampling Frequency and Analysis
During 2014, Building 452 monitoring wells were sampled quarterly, and the samples were analyzed for VOCs (Table 1-6).

3.2.3.4 Monitoring Well Results
Complete VOC results are provided in Appendix C. The fourth quarter 2014 plume is shown on Figure 3.2.3-1. The cross section view of the plume is shown on Figure 3.2.3-2. A summary of key monitoring well data for 2014 follows:

Building 452 Source Area:
- Compared to 2011 when Freon-11 concentrations in source area wells reached 38,000 µg/L, monitoring results for 2014 indicate significant reductions in Freon-11 concentrations, with a maximum concentration of 32 µg/L detected in well 085-380 during the fourth quarter (Figure 3.2.3-3). In December 2014, two temporary wells (B452-GP-6 and B452-GP-17) were installed to verify the reduction of Freon-11 concentrations observed in the permanent wells. The maximum Freon-11 concentration was 28 µg/L detected in B452-GP-17.

Plume Core Wells:
- Freon-11 concentrations in plume core wells 085-385 and 085-386 decreased from a high of 9,860 µg/L in February 2012 to less than 11 µg/L by the fourth quarter 2014 (Figure 3.2.3-3). These wells are located within the capture zone of EW-18.
- Freon-11 concentrations in core well 085-387 decreased throughout the year, from a maximum concentration of 260 µg/L in February to 77 µg/L in November 2014. This well is located downgradient of EW-18. In January and March 2014, three temporary wells were installed upgradient of well 085-387 as part of the Building 96 plume monitoring program. Freon-11 was detected in one of the temporary wells (B96-GP-01-2014), with a maximum concentration of 800 µg/L (see 2013 BNL Groundwater Status Report Figure 3.2.3-1).

Bypass Wells:
- Freon-11 was not detected in bypass wells 095-314 and 095-315, and a trace level (0.5 µg/L) of Freon-11 was detected in one sample from well 095-162. The monitoring results indicate that extraction well RTW-1 is effectively capturing the downgradient portion of the plume not captured by EW-18.
- In December 2014, a temporary well (B452-GP-49) was installed approximately 50 feet southwest of extraction well RTW-1 to determine whether RTW-1 was effectively capturing the downgradient segment of the Freon-11 plume (Figure 3.2.3-1). Freon-11 was not detected in any of the samples collected from temporary well B452-GP-46 (Table 3.2.3-3).
- Only low levels of Freon-11 (<3 µg/L) were detected in Building 96 treatment wells RTW-2 and RTW-3 during the first three quarters of 2014. Freon-11 dropped to non-detectable levels during the fourth quarter of 2014.
3.2.3.5 System Operations

Operating Parameters
During 2014, extraction well EW-18 operated for the entire year except for the maintenance periods noted below. Operating conditions for Building 96 extraction well RTW-1 and recirculation wells RTW-2 and RTW-3 are presented in Section 3.2.2.

January – September 2014
The system was off for five days in July and seven days in August due to power interruptions. The system operated normally the remainder of the time. During this period the system treated approximately 27 million gallons of groundwater.

October – December 2014
The system operated normally for this period and treated approximately 9.6 million gallons of groundwater.

During 2014, the Building 452 Freon-11 groundwater treatment system treated approximately 36.6 million gallons of groundwater (Table 2-2).

3.2.3.6 System Operational Data

Treatment Well Influent and Effluent
Table F-8 lists the monthly influent and Table F-9 lists the monthly effluent VOC concentrations for extraction well EW-18. The highest Freon-11 influent concentration was 23 µg/L. Figure 3.2.3-4 shows the Freon-11 concentrations in the treatment well over time.

Table 3.2.3-1 shows the maximum measured effluent contaminant concentrations compared to the SPDES equivalency permit for the treatment system. The treated effluent met all SPDES equivalency permit parameters during 2014.

During 2014, the maximum Freon-11 influent concentration in extraction well RTW-1 was 16 µg/L, and 3 µg/L in treatment wells RTW-3. Freon was not detected in well RTW-2 (Section 3.2.2). The treated effluent from the RTW-1 treatment system met all SPDES equivalency permit parameters during 2014.

Cumulative Mass Removal
Table 3.2.3-2 shows the monthly extraction well pumping rates. The annual average pumping rate for EW-18 was 74 gpm. The pumping and mass removal data for the Building 452 Treatment System are summarized on Table F-10. During 2014, approximately eight pounds of Freon-11 were removed from the aquifer. Since the start of treatment operations in April 2012, approximately 93 pounds of Freon-11 have been removed from the aquifer.

Table 3.2.3-1
Building 452 EW-18 Treatment Well
2014 SPDES Equivalency Permit Levels

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Permit Level (µg/L)</th>
<th>Max. Measured Value (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH range</td>
<td>5.0–8.5 SU</td>
<td>6.1–8.2 SU</td>
</tr>
<tr>
<td>benzene</td>
<td>1.0</td>
<td><0.5</td>
</tr>
<tr>
<td>bromodichloromethane</td>
<td>50.0</td>
<td><0.5</td>
</tr>
<tr>
<td>carbon tetrachloride</td>
<td>5.0</td>
<td><0.5</td>
</tr>
<tr>
<td>chloroform</td>
<td>7.0</td>
<td><0.5</td>
</tr>
<tr>
<td>dichlorodifluoromethane</td>
<td>5.0</td>
<td><0.5</td>
</tr>
<tr>
<td>1,1-dichloroethylene</td>
<td>5.0</td>
<td><0.5</td>
</tr>
<tr>
<td>4-isopropyltoluene</td>
<td>5.0</td>
<td><0.5</td>
</tr>
<tr>
<td>methyl chloride</td>
<td>5.0</td>
<td><0.5</td>
</tr>
<tr>
<td>methylene chloride</td>
<td>5.0</td>
<td>0.6</td>
</tr>
<tr>
<td>tetrachloroethylene</td>
<td>5.0</td>
<td><0.5</td>
</tr>
<tr>
<td>toluene</td>
<td>5.0</td>
<td><0.5</td>
</tr>
<tr>
<td>1,2,3-trichlorobenzene</td>
<td>5.0</td>
<td><0.5</td>
</tr>
<tr>
<td>1,1,1-trichloroethane</td>
<td>5.0</td>
<td><0.5</td>
</tr>
<tr>
<td>trichlorofluoromethane</td>
<td>5.0</td>
<td><0.5</td>
</tr>
<tr>
<td>1,2,4-trimethylbenzene</td>
<td>5.0</td>
<td><0.5</td>
</tr>
<tr>
<td>xylenes (m+p)</td>
<td>5.0</td>
<td><0.5</td>
</tr>
</tbody>
</table>

Note: Required effluent sampling frequency is monthly following a period of 24 consecutive weekly with no exceedances. Weekly for pH.
3.2.3.7 System Evaluation

The Building 452 Treatment System performance can be evaluated based on the major decisions identified by applying the DQO process.

1. Is there a continuing source of contamination? If present, has the source area been remediated or controlled?
 Yes. However, there has been a significant reduction in Freon-11 concentrations in source area monitoring wells, from a maximum of 38,000 µg/L in 2011 to less than 32 µg/L during the fourth quarter of 2014. Although Freon-11 is still entering the groundwater from the vadose zone at concentrations above the NY SAWQS of 5 µg/L, the observed concentrations are below the 50 µg/L TVOC cleanup goal. Figure 3.2.3-5 shows a comparison of the plume in 2011 and 2014.

2. Were unexpected levels or types of contamination detected?
 No unexpected levels of Freon-11 were detected during 2014. Freon-11 concentrations in most areas of the plume declined to levels below the 50 µg/L TVOC cleanup goal.

3. Has the downgradient migration of the plume been controlled?
 The downgradient migration of the main portion of the Freon-11 plume has been controlled. Extraction wells EW-18 and RTW-1 are effectively capturing the portion of the Freon-11 plume that contains the highest Freon-11 concentrations. Lower concentrations of Freon-11 that could not be captured by extraction well RTW-1, were at least partially treated by recirculation wells RTW-2 and RTW-3. Any Freon-11 that could not be treated by the recirculation wells will undergo natural attenuation and ultimately be captured by the Middle Road groundwater treatment system.

4. Can individual extraction wells or the entire treatment system be shut down or placed in pulsed pumping operation?
 The system has not met all shutdown requirements. However, based upon the observed reduction in Freon-11 concentrations to below the 50 µg/L TVOC cleanup goal in all source area monitoring wells and all but one downgradient monitoring well, extraction well EW-18 went into a pulsed-pumping mode (one month on, one month off) starting in February 2015. It is anticipated that at least one more year of combined pulsed-pumping of EW-18 and full-time operation of Building 96 treatment well RTW-1 is required to meet the cleanup goal. As defined in the O&M manual, a cleanup goal of 50 µg/L TVOC will be the basis for determining shutdown of extraction well EW-18. Decisions on the continued operation of RTW-1 will be based upon the Building 96 Treatment System shut down criteria.

 4a. Are Freon-11 concentrations in plume core wells above or below 50 µg/L?
 During 2014, only plume core well 085-387 had Freon-11 concentrations that exceed the 50 µg/L TVOC cleanup goal.

 4b. Is there a significant concentration rebound in core wells and/or extraction wells following shutdown?
 The system was not shut down during 2014.

5. Has the groundwater cleanup goal of meeting MCLs been achieved?
 The 5 µg/L MCL for Freon-11 has not been achieved in all source area and plume core wells. Based upon the observed reduction in Freon-11 concentrations in source area and downgradient monitoring wells, it is anticipated that at least one more year of active treatment system operation is required to reduce all Freon-11 concentrations to below the 50 µg/L TVOC cleanup goal, which will be followed by a period of monitored natural attenuation to allow the Freon-11 concentrations to decrease less than the MCL.
3.2.3.8 Recommendations

The following are recommendations for the Building 452 Freon-11 remediation system and monitoring program:

- Starting in February 2015, begin pulsed-pumping operation (one month on, one month off) of the Building 452 Treatment System extraction well EW-18. Maintain Building 96 treatment well RTW-1 in full-time operation. Prepare a petition for shutdown when Freon-11 concentrations decrease to below the 50 µg/L cleanup goal in all wells.

- Maintain a quarterly monitoring frequency for source area, plume core, and bypass wells.
This Page Intentionally Left Blank.
3.2.4 Middle Road Treatment System
The Middle Road Treatment System began operating in October 2001. This section summarizes the operational data from the Middle Road system for 2014, and presents conclusions and recommendations for future operation. The analytical data from the monitoring wells are also evaluated in detail.

3.2.4.1 System Description
The Middle Road Treatment system has seven extraction wells and air-stripping treatment to remove VOCs from the groundwater. In September 2003, extraction wells RW-4 and RW-5 were placed in standby mode due to low concentrations of VOCs. In September 2006, well RW-6 was also placed in standby mode due to low VOC concentrations. A new extraction well (RW-7) was installed and began operations in November 2013. The system is currently operating utilizing wells RW-1, RW-2, RW-3, and RW-7 at a total pumping rate of approximately 500 gpm. A complete description of the system is included in the Operation and Maintenance Manual for the OU III Middle Road and South Boundary Groundwater Treatment Systems, Revision 2 (BNL 2014b).

3.2.4.2 Groundwater Monitoring
The Middle Road Monitoring Program consists of a network of 39 monitoring wells located between the Princeton Avenue firebreak road and the OU III South Boundary Pump and Treat System (Figure 1-2). The locations of these wells are shown on Figure 3.2.4-1. One new monitoring well (105-68) was also installed. The 39 Middle Road wells are sampled and analyzed for VOCs (Table 1-5).

3.2.4.3 Monitoring Well Results
The complete VOC results are provided in Appendix C. The highest plume concentrations are found in the areas between extraction wells RW-7 and RW-3 (Figure 3.2.4-1). TVOC concentrations in monitoring wells east of RW-3 are well below the 50 µg/L capture goal for this system. The highest TVOC concentration in Middle Road monitoring wells during 2014 was 609 µg/L in well 105-68 located approximately 500 feet north of extraction well RW-7 during the second quarter sampling.

Figure 3.2.4-2 shows the vertical distribution of contamination running along an east-west line through the extraction wells; the location of this cross section (E-E’) is given on Figure 3.2.1. VOC contamination in the western portion of the remediation area (RW-7 through RW-3) extends to the deep Upper Glacial aquifer/Magothy aquifer interface. Figure 3.2.4-3 shows plots of the VOC concentrations versus time for key monitoring wells associated with the Middle Road Treatment system.

Results for key monitoring wells are as follows:

- Plume core well 104-37 (screened in the deep Upper Glacial aquifer) is approximately 2,000 feet upgradient of RW-7, just south of Princeton Avenue. The TVOC concentration in October 2014 for this well was 179 µg/L. TVOC concentrations have generally been between 100 µg/L and 400 µg/L since the well was installed in 2008.

- Well 105-68 was installed approximately 500 feet north of the new extraction well RW-7 in May 2013. This well showed elevated TVOC concentrations with the highest concentration of 609 µg/L in April 2014. The data from this location along with data from monitoring well 104-37 and 121-49 indicate that there is a zone of VOC contamination, primarily PCE, in the deep Upper Glacial aquifer extending from Princeton Avenue to the South Boundary (Figure 3.2.4-2 and Figure 3.2.4-4).
- Plume core monitoring wells 105-66 and 105-67 continued to show elevated TVOC concentrations with 179 µg/L and 188 µg/L respectively, reported during the fourth quarter of 2014.
- TVOC concentrations in monitoring wells in the vicinity of extraction wells RW-4, RW-5, and RW-6 were below the system capture goal of 50 µg/L in 2014.
- Wells 095-322 and 095-323 were installed along Weaver Drive in 2014 (Figure 3.2.4-1). These wells were installed to monitor the northern edge of the Middle Road VOC plume. Well 095-323 had a TVOC concentration of 40 µg/L in September 2014 and well 095-322 had a TVOC concentration of 58 µg/L in November 2014.

3.2.4.4 System Operations
The effluent sampling parameters for pH and VOCs follow the requirements for monthly sampling, as per the SPDES equivalency permit (Table 3.2.4-1). The effluent concentrations from the treatment system during this period of operation were below equivalency permit levels. Except for one pH reading that was slightly below the permit level of 6.5. This was due to the naturally occurring pH of the water. Approximately 249 million gallons of water were treated in 2014 by the Middle Road Treatment System. The following is a summary of the Middle Road System operations for 2014.

January – September 2014
The system was down for three days in February, March, and April for maintenance of the blower and airflow meter. In April RW-2 was off for five days for electrical repairs. In May the system was off for several days to replace the flow meter on well RW-2 and RW-3. In July well RW-1 was off approximately two weeks two replace a flow meter. Approximately 179 million gallons of water were treated.

October – December 2014
The system operated normally for the final quarter of 2014. During the fourth quarter the system pumped and treated approximately 70 million gallons of water.

3.2.4.5 System Operational Data

System Influent and Effluent
Figure 3.2.4-6 plots the TVOC concentrations in the extraction wells versus time. Results of the extraction well samples are found on Table F-11. The influent VOC concentrations showed an increase over the reporting period. The average TVOC concentration in the influent during 2014 was 18 µg/L. In 2013 new extraction well RW-7 became operational. The results of the influent and effluent sampling are summarized on Tables F-12 and F-13, respectively.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Permit Limit (µg/L)</th>
<th>Max. Observed Value (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH range (SU) 6.5–8.5</td>
<td>6.5–8.5</td>
<td>6.2 – 7.9</td>
</tr>
<tr>
<td>carbon tetrachloride</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>chloroform</td>
<td>7</td>
<td><0.5</td>
</tr>
<tr>
<td>dichlorodifluoromethane</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>1,1-dichloroethane</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>1,1-dichloroethylene</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>methyl chloride</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>tetrachloroethylene</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>toluene</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>1,1,1-trichloroethane</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>1,1,2-trichloroethane</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>trichloroethylene</td>
<td>10</td>
<td><0.5</td>
</tr>
</tbody>
</table>

Notes: SU = Standard Units
Required sampling frequency is monthly for VOCs and pH.
Cumulative Mass Removal

Mass balance was calculated for the period of operation to determine the mass removed from the aquifer by the pumping wells. Averaged flow rates for each monthly monitoring period were used, in combination with the TVOC concentration in the air-stripper influent, to determine the pounds removed. Flow averaged 476 gpm during 2014 (Table 3.2.4-3, and Table F-14), and approximately 58 pounds of VOCs were removed. Approximately 1140 pounds of VOCs have been removed since the system began operations in October 2001. The cumulative total of VOCs removed vs. time is plotted on Figure 3.2.4-5.

Air Discharge

Table 3.2.4-2 shows the air emissions data from the system for the OU III Middle Road air stripper tower during 2014, and compares the values to levels stipulated in NY SDEC Air Guide 1 regulations. Emission rates are obtained through mass-balance calculations for the water treated during that time (Table F-13). The concentration of each constituent was averaged for 2014, and those values were used in determining the emissions rate. The air emissions for the Middle Road system were below permitted limits.

Extraction Wells

Extraction wells RW-4 and RW-5 were shut down in September 2003 and placed on standby due to low concentrations of VOCs. The extraction wells are sampled quarterly. RW-6 was shut down in September 2006. RW-5 and RW-6 were turned back on in the fourth quarter of 2012 as a precautionary measure due to the elevated TVOC concentrations in the third quarter samples that were just below the 50 µg/L system capture goal. TVOC concentrations have remained well below the capture goal of 50 µg/L in 2014 with a maximum of 9 µg/L in well RW-5 and 19 µg/L in well RW-6. Well RW-7 had the highest concentration of all the extraction wells for the year with a peak concentration of 59 µg/L in December 2014. Quarterly sampling of the wells will continue except for well RW-7 which will continue on a monthly schedule. See Figure 3.2.4-5 for a plot of the TVOC concentrations for the seven extraction wells. Table 3.2.4-3 shows the monthly extraction well pumping rates.

3.2.4.6 System Evaluation

The Middle Road Treatment System performance can be evaluated based on the major decisions identified for this system from the groundwater DQO process. The known source areas for contamination at the Middle Road are the Building 96 area and the former carbon tetrachloride plume and they have been remediated or controlled. Based upon the recent characterization and monitoring program in the area of Weaver Drive we are evaluating whether the trailing edge of the deeper VOCs is passing through this area.

Table 3.2.4-2
Middle Road Air Stripper
2014 Average VOC Emission Rates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Allowable ERP* (lb/hr)</th>
<th>Actual** (lb/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>carbon tetrachloride</td>
<td>0.022</td>
<td>0.0002</td>
</tr>
<tr>
<td>chloroform</td>
<td>0.0031</td>
<td>0.0000</td>
</tr>
<tr>
<td>1,1-dichloroethene</td>
<td>10***</td>
<td>0.0000</td>
</tr>
<tr>
<td>1,2-dichloroethene</td>
<td>0.008</td>
<td>0</td>
</tr>
<tr>
<td>1,1-dichloroethylene</td>
<td>0.034</td>
<td>0.0002</td>
</tr>
<tr>
<td>cis-1,2-dichloroethylene</td>
<td>10***</td>
<td>0</td>
</tr>
<tr>
<td>trans-1,2-dichloroethylene</td>
<td>10***</td>
<td>0</td>
</tr>
<tr>
<td>tetrachloroethylene</td>
<td>0.387</td>
<td>0.0031</td>
</tr>
<tr>
<td>1,1,1-trichloroethane</td>
<td>10***</td>
<td>0.0005</td>
</tr>
<tr>
<td>trichloroethylene</td>
<td>0.143</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Notes:
ERP = Emission Rate Potential. Reported in lb/hr.
*ERP based on NY SDEC Air Guide 1 Regulations.
** Rate reported is the average rate for the year.
*** 6 NYCRR Part 212 restricts emissions of VOCs to a maximum of 10 lb/hr without controls.
2. Has the downgradient migration of the plume been controlled?
Yes, the western edge of this area in the deep Upper Glacial aquifer is now being captured by newly installed extraction well RW-7.

3. Can individual extraction wells or the entire treatment system be shut down or placed in pulsed pumping operation?
Extraction wells RW-4, RW-5 and RW-6 will remain in standby. Extraction wells RW-1, RW-2, RW-3 and RW-7 will continue operations. Low VOC concentrations well below the 50 µg/L capture goal continued to be observed in the vicinity of wells RW-4, RW-5 and RW-6.

3a. Are TVOC concentrations in plume core wells above or below 50 ug/L?
Several of the core wells have TVOC concentrations above the capture goal of 50 µg/L.

3b. Is there a significant concentration rebound in core wells and/or extraction wells following shutdown?
There has been no rebound in the wells that are shutdown.

4. Has the groundwater cleanup goal of meeting MCLs been achieved?
No, the cleanup goal has not been met but is expected to be met by 2030.

3.2.4.7 Recommendations
The following recommendations are made for the Middle Road Treatment System and groundwater monitoring program:

- Maintain extraction wells RW-4, RW-5 and RW-6 in standby mode. Restart the well(s) if extraction or monitoring well data indicate that TVOC concentrations exceed the 50 µg/L capture goal.
- Shut down well RW-1 as the VOC concentrations in this well were below 5 µg/L during 2014. In addition, all of the characterization and monitoring data upgradient of this well show the high concentrations of VOCs are deeper than this well and being captured by the other extraction wells.
- Increase sampling in well 105-23 from semi-annual to quarterly to monitor for the deeper VOCs in this area.
3.2.5 OU III South Boundary Treatment System

This section summarizes the operational data from the South Boundary Treatment System for 2014, and gives conclusions and recommendations for future operation. Also included within this section is an evaluation of the extraction and monitoring well sampling data.

3.2.5.1 System Description

This system began operation in June 1997. It utilizes air-stripping technology for treatment of groundwater contaminated with chlorinated solvents. There are eight extraction wells. The system is currently operating at a pumping rate of approximately 500 gpm, utilizing four extraction wells. Extraction wells EW-12 and EW-8 were placed on standby in October 2003 and October 2006, respectively, due to low VOC concentrations. Wells EW-6 and EW-7 were placed in standby mode in November and December 2007, respectively. Extraction well EW-17 was added to the system during 2012. A complete description of the system is included in the Operation and Maintenance Manual for the OU III Middle Road and South Boundary Groundwater Treatment Systems, Revision 2 (BNL 2014b).

3.2.5.2 Groundwater Monitoring

The monitoring well network consists of 45 wells and was designed to monitor the VOC plume(s) in this area of the southern site boundary, as well as the efficiency of the groundwater remediation system (Figure 3.2.5-1). The South Boundary wells are sampled and analyzed for VOCs at frequencies detailed on Table 1-5. A number of OU III South Boundary wells are also analyzed for radionuclides as detailed in Section 3.2.15.

3.2.5.3 Monitoring Well Results

The south boundary segment of the OU III VOC plume continued to be bounded by the existing monitoring well network. VOCs were detected in the deep Upper Glacial aquifer in the vicinity of the site boundary, as depicted on Figure 3.2-2, Figure 3.2.4-4, Figure 3.2.5-1, and Figure 3.2.5-2. Appendix C has the complete groundwater monitoring results for 2014.

The plume core wells continued to show the same trend of decreasing VOC concentrations that were observed following the start-up of the treatment system in 1997 except for several key wells located in the deep Upper Glacial aquifer in the vicinity of wells EW-4 and EW-17. The bulk of the VOC contamination in this area is currently located immediately upgradient of wells EW-4 and EW-17, as can be seen on Figure 3.2.5-2, which is a cross section (F–F’) drawn along the south boundary. The VOC concentration trends for specific key wells are shown on Figure 3.2.4-3. Results for key monitoring wells are as follow:

- Western perimeter well 121-08 had a TVOC concentration of 17 µg/L in November and eastern perimeter well 114-07 had a concentration of 1 µg/L in November. Individual VOC concentrations in the remaining plume perimeter wells were less than 5 µg/L in November 2014. This is below the capture goal of the system of 50 µg/L for TVOC concentrations.
- Bypass detection well 121-43 located several hundred feet south of extraction wells EW-4 and EW-17 had shown elevated levels of VOCs. In April, 2011 the level was 338 µg/L and, had steadily declined to 5 µg/L in November 2014.
- Extraction well EW-17 was installed to address the high VOC concentrations observed in well 121-43 (Figure 3.2.5-1) and began operations in July 2012. Three new monitoring wells were also installed in 2012 in this area. They are 121-47 a western perimeter well, 121-48 an eastern perimeter well and 121-49 located upgradient of extraction well EW-17 (Figure 3.2.5.4). The upgradient monitoring well 121-49 showed high TVOC concentrations in 2014 with the highest concentration in July, of 1,112 µg/L.
- Monitoring well 121-45 was installed to monitor the higher VOC concentrations present at wells 113-17 and 113-11. This well is located between the Middle Road and South Boundary systems. TVOC concentrations were at 39 µg/L in November. This continues a downward trend in TVOC concentrations in this monitoring well.

- Plume core well 121-11 is upgradient of EW-3. TVOC concentrations ranged from 37 µg/L in May 2014 to 16 µg/L in November.

- Plume core well 122-05 is a Magothy monitoring well west of EW-8. TVOC concentrations have been showing a decreasing trend with a concentration of 11 µg/L in November 2014.

3.2.5.4 System Operations

The individual extraction wells are sampled quarterly and analyzed for VOCs. The effluent sampling parameters of pH and VOCs are done monthly, in accordance with SPDES equivalency permit requirements (Table 3.2.5-1). In addition, samples are analyzed for tritium with each system-sampling event. Tritium from these samples continues to remain below analytical reporting limits. Effluent VOC concentrations from the treatment system during this period of operation were below equivalency permit requirements.

System Operations

In 2014, approximately 267 million gallons of water were treated by the South Boundary System. Well EW-12 has not been sampled since April 2012. This is because the installation of well EW-17 utilized some of the electrical equipment from this well. In the unlikely event this well is needed, an electrical modification could be made to make this well operational. This determination will be made based on the monitoring well data in the vicinity of EW-12.

Table 3.2.5-1.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Permit Limit* (µg/L)</th>
<th>Max. Observed Value (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH range (SU)</td>
<td>6.5 – 8.5</td>
<td>6.9–7.9</td>
</tr>
<tr>
<td>carbon tetrachloride</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>chloroform</td>
<td>7</td>
<td><0.5</td>
</tr>
<tr>
<td>dichlorodifluoromethane</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>1,1-dichloroethane</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>1,1-dichloroethylene</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>methyl chloride</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>tetrachloroethylene</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>toluene</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>1,1,1-trichloroethane</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>1,1,2-trichloroethene</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>trichloroethylene</td>
<td>10</td>
<td><0.5</td>
</tr>
</tbody>
</table>

Notes:
*Maximum allowed by requirements equivalent to a SPDES permit. Required sampling frequency is monthly for VOCs and pH.

January – September 2014

Approximately 193 million gallons of water were pumped and treated. The system operated normally during this time period with 18 days planned shut down for system maintenance and repairs. EW-5 was down for most of May for repairs.

October – December 2014

The OU III South Boundary System pumped and treated approximately 74 million gallons of water. EW-3 was off for most of November for repairs.

3.2.5.5 System Operational Data

System Influent and Effluent

Figure 3.2.5-3 plots the TVOC concentrations in the extraction wells versus time. The overall influent water quality and the individual extraction wells show a general declining trend in concentrations. System influent and effluent sampling results are summarized on Tables F-16 and F-17, respectively.
Cumulative Mass Removal

Average flow rates for each monthly monitoring period were used, in combination with the TVOC concentration in the air-stripper influent, to calculate the mass removal (Table F-18). The cumulative total of VOCs removed by the treatment system versus time is plotted on Figure 3.2.5-4. The 2014 total was approximately 33 pounds. Cumulatively, the system has removed approximately 2,989 pounds since it was started in June 1997.

Air Discharge

Table 3.2.5-2 shows the air emissions data from the OU III South Boundary system for 2014, and compares the values to levels stipulated in NYSDEC Air Guide 1 regulations. Emission rates are obtained through mass-balance calculations for water treated during that time (Table F-16). The concentration of each constituent was averaged for the year, and that value was used in the calculation. System air emissions were below allowable levels.

Extraction Wells

There are four extraction wells that are currently operating. Well EW-4 continued to show slowly decreasing TVOC concentrations in 2014 (25 µg/L in January to 19 µg/L in October). EW-17 showed TVOC concentrations ranging from 32 µg/L in January to 28 µg/L in December. This well is located slightly downgradient of well EW-4. Wells EW-3 and EW-5 had VOC concentrations below the AWQS in 2014 (Figure 3.2.5-3). Table F-15 summarizes the data for the extraction wells. Table 3.2.5-3 shows the monthly extraction well pumping rates.

3.2.5.6 System Evaluation

The OU III South Boundary Treatment System performance can be evaluated based on the major decisions identified for this system resulting from the groundwater DQO process.

1. Were unexpected levels or types of contamination detected?
 No, unexpected levels were not identified in 2014.

2. Has the downgradient migration of the plume been controlled?
 Yes, the new extraction well EW-17 is now capturing the higher concentrations that were migrating beneath well EW-4. This is evident by the reduced VOC concentrations present in the bypass well 121-43.

3. Can individual extraction wells or the entire treatment system be shut down or placed in pulsed pumping operation?
 Four of the eight extraction wells have been shut down as they have achieved the capture goals for this system. The other four wells continue to operate to capture VOCs in this area.
4. Are TVOC concentrations in plume core wells above or below 50 µg/L?
There are still several plume core wells above 50 µg/L in the vicinity of the western extraction wells.

5. Is there a significant concentration rebound in core wells and/or extraction wells following shutdown?
The wells that have been shut down along the eastern segment of this system have not shown a concentration rebound in the monitoring or extraction wells. The four westernmost wells are still operating.

6. Has the groundwater cleanup goal of meeting MCLs been achieved?
No, the system is still operating and MCLs have not been achieved, although they are expected to be achieved by 2030.

3.2.5.7 Recommendations
The following are recommendations for the OU III South Boundary Pump and Treat System and groundwater monitoring program:

- Maintain wells EW-6, EW-7, EW-8, and EW-12 in standby mode. The system’s extraction wells will continue to be sampled on a quarterly basis except well EW-12. The wells will be restarted if extraction or monitoring well data indicate TVOC concentrations exceed the 50 µg/L capture goal.

- Place wells EW-3 and EW-5 in standby mode as VOC concentrations have been below AWQS during 2014. If the extraction or monitoring wells show an increase in TVOC concentrations above the 50 µg/L capture goal in the vicinity of wells EW-3 and EW-5 evaluate the need to restart them. The wells will remain in an operationally ready state and will continue to be sampled on a quarterly basis.

- Continue to operate wells EW-4 and EW-17 on a full time basis.

- Maintain the routine O&M monitoring frequency implemented last year.

- Reduce sampling of well EW-17 from monthly to quarterly.
3.2.6 Western South Boundary Treatment System

The Western South Boundary Treatment System was designed to capture VOCs in the Upper Glacial aquifer along portions of the BNL western south boundary. The capture goal for the system is TVOC concentrations exceeding 20 µg/L. The system reduces additional off-site migration of the contamination, and potential impacts of the VOC plume to the Carmans River. The system began operating in September 2002 and was changed to pulsed pumping mode in late 2005, one month on and two months off. Based on increasing VOC concentrations in an upgradient monitoring well, extraction well WSB-1 was put back into full-time operation starting in November 2008, and has continued through 2014. Extraction well WSB-2 remains in a pulsed pumping mode.

3.2.6.1 System Description

A complete description of the Western South Boundary Treatment System is contained in the Operations and Maintenance Manual for the Western South Boundary Treatment System (BNL 2002a).

3.2.6.2 Groundwater Monitoring

A network of 18 wells is used to monitor this plume. The well locations are shown on Figure 3.2.6-1. The wells are sampled at the O&M phase frequency (Table 1-5 for details).

3.2.6.3 Monitoring Well Results

The primary VOCs associated with this plume are dichlorodifluoromethane (Freon-12), TCA, TCE, DCE, and chloroform. VOC contamination is located in the mid to deep Upper Glacial aquifer. Figure 3.2.6-1 presents fourth-quarter 2014 monitoring well concentrations. Figure 3.2.6-2 provides trend graphs for key monitoring wells. A summary of key monitoring well data for 2014 follows:

- The maximum TVOC concentration in the plume was 64 µg/L in core well 126-17 during the first quarter of 2014. This well is located approximately 700 feet north of WSB-1 to provide a data point between this extraction well and well 119-06. The primary compounds detected were TCA and DCE at 32 µg/L and 30 µg/L, respectively. This well has shown a steady decline in TVOC concentrations from a high of 388 µg/L when it was installed in February 2011 to 36 µg/L in the fourth quarter 2014. The higher concentration VOCs are located upgradient of extraction well WSB-1.

- Plume core well 103-15 exceeded the 20 µg/L TVOC capture goal in 2014 with a maximum concentration of 50 µg/L. This well was installed in the deep Upper Glacial aquifer in 2009 between Middle Road and East Princeton Avenue. It is located approximately 4,000 feet upgradient of WSB-1. VOCs exceeding the 5 µg/L AWQS were Freon-12 and TCE, with maximum concentrations of 38 µg/L and 5 µg/L, respectively in May 2014. Core monitoring well 119-10, located at Middle Road to monitor VOCs migrating past 103-15, identified TVOC concentrations up to 17 µg/L in July 2014. Freon-12 was detected up to 9 µg/L.

- Core monitoring well 119-06 had TVOC concentrations up to 170 µg/L in December 2008, with TCA (100 µg/L) as the primary compound. Since 2010, this well has remained below AWQS. This drop off indicates that the trailing edge of high concentrations have passed through the vicinity of the Middle Road.

- TVOC concentrations in plume core wells 121-42, 127-04, and 127-06, located immediately upgradient of extraction well WSB-2, have remained less than AWQS since 2005.

- VOC concentrations in core wells 126-11 and 126-13 remained below the AWQS since 2011.
Well 130-03, located west of extraction well WSB-1, had a maximum TVOC concentration of 18 µg/L in May 2014. TVOC concentrations in this well have been below the 20 µg/L capture goal since 2012. The capture zone of the Western South Boundary extraction well WSB-1 was not intended to include this area.

3.2.6.4 System Operations

During 2014, the extraction wells were sampled quarterly and the influent and effluent of the air stripping tower were sampled twice per month. Extraction well WSB-1 continued full-time operation through 2014 due to increasing TVOC concentrations greater than the capture goal of 20 µg/L in upgradient core wells. System samples were analyzed for VOCs. In addition, the effluent was analyzed for pH twice a month. Table 3.2.6-1 provides the effluent limitations for meeting the requirements of the SPDES equivalency permit. The system’s effluent discharges met the SPDES equivalency permit requirements during 2014. The system operations are summarized below.

January - September 2014

The WSB-2 extraction well schedule was one month on and two months off. The system was off for two weeks in September for maintenance. During the first three quarters, the system treated approximately 83 million gallons of water.

October - December 2014

The system was down in October for approximately two weeks for maintenance. The system was down for the majority of December for the replacement of wiring that power the extraction wells. The system treated approximately 17 million gallons of water this quarter.

3.2.6.5 System Operational Data

Extraction Wells

During 2014, the Western South Boundary System treated approximately 100 million gallons of water, with an average flow rate of approximately 190 gpm. Table 3.2.6-2 gives monthly pumping data for the two extraction wells. Table 3.2.6-2 shows the monthly extraction well pumping rates. VOC concentrations for extraction wells WSB-1 and WSB-2 are provided in Table F-19. TVOC concentrations for extraction wells WSB-1 and WSB-2 have remained below the capture goal of 20 µg/L since 2006. Most of the individual VOC compounds were either below or slightly above the AWQS in 2014. VOC levels in both wells have remained relatively constant since system start-up in 2002. Figure 3.2.6-3 provides a graph of extraction well trends over time.

Table 3.2.6-1
Western South Boundary Treatment System
2014 SPDES Equivalency Permit Levels

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Permit Level (µg/L)</th>
<th>Max. Measured Value (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH range</td>
<td>6.5–8.5 SU</td>
<td>6.6–7.9 SU</td>
</tr>
<tr>
<td>carbon tetrachloride</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>chloroform</td>
<td>7</td>
<td><0.5</td>
</tr>
<tr>
<td>dichlorodifluoromethane</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>1,1-dichloroethane</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>1,1-dichloroethylene</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>methyl chloride</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>tetrachloroethylene</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>toluene</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>1,1,1-trichloroethane</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>1,1,2-trichloroethane</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>trichloroethylene</td>
<td>10</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Note: Required effluent sampling frequency is 2x/month for VOCs and monthly for pH.
Influent TVOC concentrations continued to remain below 20 µg/L. Individual VOC concentrations slightly exceeded the AWQS during the year, with a maximum TCA value of 6.6 µg/L in November 2014 (Table F-20). These levels are consistent with the historical influent concentrations.

The air stripping system effectively removed the contaminants from the influent groundwater. The system’s effluent data were below the analytical method detection limit and below the regulatory limit specified in the equivalency permit conditions (Table F-21) except for one detection of TCE in October of 2.4 µg/L. There were no confirmed detections of tritium in the effluent in 2014.

Cumulative Mass Removal

Average flow rates for each monthly monitoring period were used, in combination with the TVOC concentration in the influent, to calculate the pounds of VOCs removed per month (Table F-22). The cumulative mass of VOCs removed by the treatment system is provided on Figure 3.2.6-4. During 2014, six pounds of VOCs were removed. A total of 122 pounds have been removed since the start-up of the system in 2002.

Air Discharge

Table 3.2.6-3 presents the VOC air emission data for 2014 and compares the values to levels stipulated in NYSDEC Air Guide 1 regulations. Emission rates are calculated through mass balance for water treated during operation. The VOC air emissions were well below allowable levels.

3.2.6.6 System Evaluation

The Western South Boundary Treatment System performance can be evaluated based on decisions identified for this system from the groundwater DQO process.

1. Were unexpected levels or types of contamination detected?
No.

2. Has the downgradient migration of the plume been controlled?
The system is effectively capturing the higher concentration segments of the plume. VOC concentrations in the plume perimeter wells (except 130-03) remained below the AWQS during 2014, indicating that the plume is being controlled by the extraction wells. TVOC concentrations in well 130-03 have slowly decreased since late 2004. The capture zone of WSB-1 was not intended to include this area. The capture zone for the treatment system is depicted on Figure 3.0-1.

3. Can individual extraction wells or the entire treatment system be shut down or placed in pulsed pumping operation?
The system has not met all shutdown requirements of reducing contamination to less than the 20 µg/L capture goal. Three core monitoring wells upgradient of WSB-1 still exceed the capture goal. Pulsed pumping continued for WSB-2 (one month on and two months off).
3a. Are TVOC concentrations in plume core wells above or below 20 µg/L?
Three of the eleven core wells exceed the 20 µg/L capture goal. One of these wells (103-15) is approximately 4,000 feet upgradient of WSB-1 (about a 13 year travel time to WSB-1). It is expected that the VOCs in this well will attenuate to less than AWQS before they reach the site boundary. TVOC concentrations in the other two core wells have been declining in the last few years to just above the capture goal.

3b. Is there a significant concentration rebound in core wells and/or extraction wells following pulsed pumping or shutdown?
No significant rebound was observed due to pulsed pumping of extraction well WSB-2.

4. Has the groundwater cleanup goal of meeting MCLs been achieved?
MCLs have not been achieved for individual VOCs in all plume core wells. However, MCLs are expected to be achieved by 2030.

3.2.6.7 Recommendations
The following are recommendations for the OU III Western South Boundary Treatment System and groundwater monitoring program:

- Continue full-time operation of extraction well WSB-1, and pulsed pumping of WSB-2 at the schedule of one month on and two months off. If TVOC concentrations greater than 20 µg/L are observed in WSB-2 or the adjacent core monitoring wells, extraction well WSB-2 may be put into full time operation.

- Install two temporary wells to monitor the VOCs (Freon-12) between monitoring wells 103-15 and 119-10.

- Maintain the routine O&M monitoring frequency for the monitoring wells.
3.2.7 Industrial Park Groundwater Treatment System

This section summarizes the operational data from the Industrial Park Groundwater Treatment System for 2014 and presents conclusions and recommendations for its future operation. The system began operation in September 1999. A Petition for Shutdown was submitted to the regulators in February 2013 (BNL, 2013b). After receiving approval from the regulators the system was shutdown on May 1, 2013. In March 2014 wells UVB-3 through UVB-6 were returned to full time operation due to a rebound of VOC concentrations. The Industrial Park system was designed to contain and remediate a portion of the OU III plume between BNL’s southern boundary and the southern boundary of the Industrial Park. Figure 3.2.7-1 illustrates the extent of the OU III contaminant plume in the vicinity of the Industrial Park. The primary VOCs associated with this portion of the OU III plume are TCA, PCE, and carbon tetrachloride.

3.2.7.1 System Description

The original Industrial Park system consists of a line of seven in-well air stripping treatment wells. Each treatment well is constructed with two well screens separated by an inflatable packer. Contaminated groundwater is withdrawn from the aquifer via submersible pump through a lower screen (extraction) set at the base of the treatment well. The groundwater is pumped to a stripping tray located in a below ground vault over the wellhead. After passing through the stripping tray, treated groundwater flows back down the well and is recharged to a shallower portion of the aquifer through an upper screen (recharge). Some of the treated groundwater that is recharged through the upper screen recirculates through the cell and is drawn back into the extraction screen for further treatment, while the balance flows in the direction of regional groundwater flow.

A closed-loop air system through a single blower keeps the vault under a partial vacuum. This vacuum draws air from below the stripping tray as contaminated groundwater is discharged on top. VOCs are transferred from the liquid phase to the vapor phase as contaminated groundwater passes through the stripping tray. The contaminated air stream is carried from the vault to a treatment and control building, where it is passed through two GAC units in series to remove the VOCs. Treated air is then recirculated back to the wellhead. The carbon units, system blower, and system control panel are all housed in a one-story masonry treatment building. A complete description of the system is included in the Operations and Maintenance Manual for the OU III Offsite Removal Action (BNL 2000b).

During 2014 two new groundwater extraction wells were installed in the Industrial Park. They are shown on Figure 3.2.7-1 as IP-EW-8 and IP-EW-9. These wells became operational in January 2015 so no operational data is included in this report. The wells are screened deeper than the adjacent UVB wells to capture deeper VOC contamination identified just upgradient of this area (Figure 3.2.7-2). These wells are utilizing liquid phase carbon to treat the water rather than in-well air stripping. A complete description of the Industrial Park Modification is included in the Operations and Maintenance Manual for the OU III Modification to The Industrial Park Groundwater Treatment System (BNL 2015b).

3.2.7.2 Groundwater Monitoring
Well Network

The monitoring well network consists of 52 wells and is designed to monitor the VOCs in the vicinity of the industrial park south of the site, and the effectiveness of the groundwater treatment system.

Sampling Frequency and Analysis

Wells are sampled for VOCs as per the schedule in Table 1-5.

During 2014 eight new monitoring wells were added as part of the above referenced Industrial park modification. These eight wells shown on Figure 3.2.7-1 and were added to monitor the deeper
portion of the VOC plume in this area. They are identified as 000-537 through 000-544. The first seven wells will be considered core wells and the eighth well, 000-544, is located on Carleton Drive as a bypass well.

3.2.7.3 Monitoring Well Results

The complete analytical results are included in Appendix C. VOC concentrations in the plume perimeter wells that monitor the width of the plume (000-245 and 000-272) remained below AWQS during 2014. Based on this data, the plume is effectively bounded by the current well network. Figure 3.2.7-1 shows the plume distribution based on fourth-quarter 2014 data. The vertical extent of contamination is shown on Figure 3.2.7-2. The location of this cross section (G–G’) is illustrated on Figures 3.2-1 and 3.2.7-1.

Based on the results observed in MW 121-43 an investigation of deeper VOCs in the industrial park was initiated (Figure 3.2-2) Vertical profile borings IP-VP01-2014 through IP-VP08-2014 were installed in April 2014 through June 2014 to evaluate the extent of downgradient migration of the deep VOC plume beneath the Industrial Park area. The locations are shown on Figure 3.2.7-1. These were installed to evaluate the extent of the deeper VOC contamination in this area.

Table 3.2.7-2 has the results from all eight vertical profile borings. A summary of the temporary well analytical results are as follows:

- Elevated TVOC concentrations above 50 µg/L were observed in five vertical profile wells in the deep Upper Glacial aquifer/Magothy aquifer interface at 268 µg/L in IP-VP03, and 158 µg/L in IP-VP02, 134 µg/L in IP-VP04, 74 µg/L in IP-VP06 and 64 µg/L in IP-VP05. The depths of these higher concentrations are observed at approximately 225 feet below land surface except for VP05 were the higher concentrations were observed at the 185 to 190 foot interval. The data from these five locations indicate that there is a zone of VOC contamination, primarily PCE, carbon tetrachloride and TCA, in the deep Upper Glacial aquifer/Magothy aquifer interface extending from south of the BNL site boundary to the Industrial Park area.

- TVOC concentrations were observed in the three additional vertical profile wells in the deep Upper Glacial aquifer below 50 µg/L. They are 32 µg/L in IP-VP01-2014, 6 µg/L in IP-VP07-2014 and 7 µg/L in IP-VP08-2014.

The results of the Industrial Park characterization work confirmed that the deeper contamination is beyond than the capture zone of the current Industrial Park UVB recirculation treatment wells. The data indicates that the leading edge of the deeper VOCs is presently north of the new extraction wells.

The 2014 results for key monitoring wells are:

Plume Core Wells

- Wells 000-253 (just east of UVB-1) and 000-256 (between UVB-1 and UVB-2), which both contained TVOC concentrations over 1,000 µg/L in 2001, have continued to show low VOC concentrations. In 2014 well 000-253 had a maximum TVOC concentration of 13µg/L and well 000-256 had a high TVOC concentration of 6 µg/L.

- A steady decline in TVOC concentrations has been observed in well 000-112 (immediately upgradient of UVB-1 and UVB-2) since 1999, when concentrations were approximately 2,000 µg/L. TVOC concentrations were 10 µg/L in November 2014 (Figure 3.2.7-3).

- Well 000-259 is located between UVB-2 and UVB-3. In 2014 this well was sampled quarterly, and had TVOC concentrations ranging from 37 µg/L in February to not detectable in August. Concentrations rebounded back to 29 µg/L in November.
- **Well 000-262** is located between UVB-4 and UVB-5. In 2014 the TVOC concentrations ranged from a low of 5 µg/L in August to 46 µg/L in February.

- Monitoring wells 000-528 and 000-529, are to track VOC concentrations in the Industrial Park south of well 121-43. Well 000-528 contained a TVOC concentration of 164 µg/L in November and well 000-529 had concentrations ranging from 43 µg/L in February to 8 µg/L in November.

- **Well 000-530** is located between extraction wells UVB-3 and UVB-4 and well 000-531 is located between wells UVB-5 and UVB-6. The 2014 sampling results for well 000-530 showed TVOC concentrations ranging from 44 µg/L to 57 µg/L. The sampling for well 000-531 showed TVOC concentrations ranging from 89 µg/L to 45 µg/L. Based upon these results wells UVB-3, UVB-4, UVB-5 and UVB-6 were restarted in March 2014.

- Eight new monitoring wells were installed in 2014 to support the installation of the two new extraction wells. The information below summarizes the well IDs, screen intervals and rationale of each monitoring well:

<table>
<thead>
<tr>
<th>Monitoring Well ID</th>
<th>Screen Interval (ft below ground surface)</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>000-537</td>
<td>240’ – 250’</td>
<td>Plume Core</td>
</tr>
<tr>
<td>000-538</td>
<td>210’ – 220’</td>
<td>Plume Core</td>
</tr>
<tr>
<td>127-08</td>
<td>235’ – 245’</td>
<td>Plume Core</td>
</tr>
<tr>
<td>127-09</td>
<td>220’ – 230’</td>
<td>Plume Core</td>
</tr>
<tr>
<td>000-541</td>
<td>230’ – 240’</td>
<td>Plume Core</td>
</tr>
<tr>
<td>000-542</td>
<td>230’ – 240’</td>
<td>Plume Core</td>
</tr>
<tr>
<td>000-543</td>
<td>225’ – 235’</td>
<td>Plume Core</td>
</tr>
<tr>
<td>000-544</td>
<td>220’ – 240’</td>
<td>Bypass Monitoring</td>
</tr>
</tbody>
</table>

- The most recent data from the wells is posted on Figure 3.2.7-1. The data from these wells shows that the higher VOC concentrations are still located to the north of the two new extraction wells. The highest concentration was 215 µg/L located in well IP-MW-04-2014. This is approximately 1000 feet upgradient of the new extraction wells.

- The new extraction well screen intervals are shown below:

<table>
<thead>
<tr>
<th>Extraction Well ID</th>
<th>Screen Interval (ft below ground surface)</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP-EW-8</td>
<td>230’ – 250’</td>
<td>Capture deeper high VOC concentrations at the westerly Industrial Park area</td>
</tr>
<tr>
<td>IP-EW-9</td>
<td>220’ – 240’</td>
<td>Capture deeper high VOC concentrations at the easterly Industrial Park area</td>
</tr>
</tbody>
</table>

Plume Bypass Wells

- **TVOC concentrations** in the wells located near Carleton Drive were stable or decreasing during 2014. Wells 000-431 and 000-432 serve as bypass monitoring points downgradient of UVB-2. TVOC concentrations in 000-431 and 000-432 were below AWQS during 2014. VOC concentrations in bypass wells 000-275, 000-276, and 000-277 were below AWQS during 2014, indicating that the system has been effective in capturing the plume. Well 000-278 is directly downgradient of well UVB-4 and in 2014 had TVOC concentrations below AWQS.

- Well 000-274 had a maximum TVOC concentration of 8 µg/L in November. These wells are
located immediately downgradient of well UVB-1, which was shut down in October 2005. These concentrations are well below the capture goal for TVOC concentrations of 50 µg/L.

Perimeter Wells
VOC concentrations for individual constituents remained below AWQS in each of the shallow wells which are screened to monitor above the UVB effluent well screens.

3.2.7.4 System Operations
In 2014, approximately 68 million gallons of groundwater were treated by the Industrial Park In-Well Air Stripping System. The system was in standby until March when wells UVB-3 through UVB-6 were put back into full time operation. Well UVB-1, UVB-2 and UVB-7 remained in standby mode throughout the year.

Operating Parameters
Water samples are obtained monthly from each of the seven extraction wells before air stripping in each UVB tray and after treatment. The samples are analyzed for VOCs. These sample results determine the wells’ removal efficiency and performance. Based on these results, operational adjustments are made to optimize the system’s performance.

System Operations
System extraction well pumping rates are included on Table 3.2.7-1. The following summarizes the system operations for 2014.

January – September 2014
The system was in stand-by mode until March when wells UVB-3 through UVB-6 were put back into full time operation due to increasing VOC concentration in the adjacent monitoring wells. Well UVB-4 was off from May 6 to May 22 for development. Well UVB-3 was off from May 22 to June 3 for development. The system was off from June 17 to June 24 due to high water levels in two of the well vaults. Wells UVB-1, UVB-2 and UVB-7 remained in standby. The system pumped and treated a total of approximately 58 million gallons of water during this period.

October – December 2014
The system was shut down on October 31 due to high water levels in several of the operating wells and remained shut down for the rest of the year. Repairs and maintenance are being done in 2015 to make these wells operational. The operation of the two new extraction wells beginning in January 2015 mitigates the need to operate these wells on a full time basis. The system pumped and treated a total of approximately 10 million gallons of water during this period.

3.2.7.5 System Operational Data
Recirculation Well Influent and Effluent
During 2014, influent TVOC concentrations in the treatment system wells were generally below the capture goal of 50 µg/L. Two exceptions to this were that well UVB-2 had a TVOC concentration of 262 µg/L in April which was due to a detection of 260 µg/L of toluene. This was the result of sample contamination. The next sampling event in July showed toluene at less than 1 µg/L. Well UVB-5 had a TVOC concentration of 51 µg/L in January (Figure 3.2.7-4). The corresponding effluent well concentrations are shown on Figure 3.2.7-5. Well UVB-1, UVB-2 and UVB-7 remained in standby mode for 2014. The removal efficiencies for the air strippers in the extraction wells for 2014 are shown in Table F-23.
Cumulative Mass Removal
Calculations were performed to determine the VOC mass removed from the aquifer by the remediation wells during the year. The average estimated flow rates for each monthly monitoring period were used, in combination with the influent and effluent TVOC concentrations. Table F-24 summarizes these data. During 2014, flow averaged approximately 49 gpm per well for the four operating wells until shut down on October 31. Figure 3.2.7-6 plots the total pounds of VOCs removed by the treatment system vs. time. During 2014, approximately two pounds of VOCs were removed from the aquifer, with a total of 1,064 pounds of VOCs removed since 1999.

Air Treatment System
Air samples were collected quarterly from the GAC vessels prior to treatment, between the two vessels, and after the second vessel (effluent). The samples were used to determine when a GAC change-out was needed. In addition, airflow rates were recorded to optimize the efficiency of individual recirculation wells.
Airflow rates are measured for each in-well air-stripping unit inside the treatment building. (Table F-25).

3.2.7.6 System Evaluation
The Industrial Park Treatment System performance can be evaluated based on the major decisions identified for this system resulting from the groundwater DQO process.

1. Were unexpected levels or types of contamination detected?
No, there were no unusual or unexpected VOC concentrations observed in the monitoring wells or extraction wells associated with the OU III Industrial Park System during 2014.

2. Has the downgradient migration of the plume been controlled?
Yes, an analysis of the plume perimeter and bypass well data reveals that there are no TVOC concentrations above the capture goal of the system in 2014. The capture zone for the OU III Industrial Park System is depicted on Figure 3.0-1. A comparison of the plume from 1997 to 2014 is provided on Figure 3.2.7-7.

3. Can individual extraction wells or the entire treatment system be shut down or placed in pulsed pumping operation?
Approval of the Petition for Shutdown OU III Industrial Park Groundwater Treatment System (BNL, 2013b) was received from the regulators in April 2013 and the system was shut down in May 2013. However the system was restarted in March due to an increase in TVOC concentrations in several core monitoring wells above the capture goal of 50 µg/L. In addition two new extraction wells were added to capture deeper upgradient VOCs that have recently been identified.

4. Are TVOC concentrations in plume core wells above or below 50 µg/L?
There are now eight plume core wells above the 50 µg/L TVOC capture goal in December 2014.

5. Is there a significant concentration rebound in core wells and/or extraction wells following shutdown?
The average TVOC concentration for core monitoring wells is shown on Figure 3.2.7-8. Wells UVB-3 through UVB-6 where restarted due to a rebound in concentrations.

6. Has the groundwater cleanup goal of meeting MCLs been achieved?
No, MCLs have not yet been achieved, but are expected to be by 2030.
3.2.7.7 Recommendations

The following are recommendations for the Industrial Park In-Well Air Stripping System and groundwater monitoring program:

- Begin operation of the two new extraction wells IP-EW8 and IP-EW9 in January 2015.
- Continue monitoring and evaluate the need to operate some of the UVB wells in conjunction with the two new extraction wells.
- Perform additional groundwater characterization in the Industrial Park to evaluate when the higher concentrations observed upgradient of the new extraction wells will reach the new extraction wells.
3.2.8 Industrial Park East Monitoring Program

This section summarizes the 2014 monitoring well data for the Industrial Park East (IPE) plume, and presents conclusions and recommendations for future monitoring. As noted in the 2013 Groundwater Status Report and the Petition for Closure, Industrial Park East Groundwater Treatment System (BNL 2013c), the system has met the criteria established in the Operations and Maintenance Manual for the Industrial Park East Offsite Groundwater Remediation System (BNL 2004a) for system closure. Two extraction wells and four of 16 monitoring wells were abandoned in October 2013. Any remaining contaminants in the downgradient portion of the plume will attenuate to below drinking water standards in the Upper Glacial and Magothy aquifers before the required 2030 and 2065 cleanup timeframes, respectively.

The building, including the carbon units and controls, and the recharge wells are now being used to support the remediation of the deep VOC plume in the Industrial Park. Remediation of the deep VOC plume is further discussed in Section 3.2.7 Industrial Park.

3.2.8.1 Groundwater Monitoring

The post closure monitoring network consists of 11 wells (Figure 1-2) where eight wells are sampled annually and three sampled semi-annually for VOCs (Table 1-5). Wells 000-426, 000-427, and 000-429 were sampled quarterly in 2014. The data from the 11 wells are also evaluated as part of the North Street and Magothy monitoring programs.

3.2.8.2 Monitoring Well Results

The primary VOCs associated with this portion of the OU III plume are TCA, TCE, carbon tetrachloride, and DCE. Fourth-quarter 2014 TVOC well data are posted on Figure 3.2.8-1. Although the TVOC concentrations continue to be greater than 5 µg/L as shown in the figure, individual VOCs are below AWQS except for one well. Figure 3.2.8-2 presents the 2014 individual VOC data compared to the AWQS. The complete analytical results are in Appendix C. Results for key monitoring wells are as follows:

- Well 000-427, which is screened near the interface of the Upper Glacial and Magothy aquifers, had a maximum VOC concentration of 6.1 µg/L of TCA in the fourth quarter 2014. This well has remained near the AWQS of 5 µg/L for several years, as shown on Figure 3.2.8-3. Figure 3.2.8-2 shows a north-south cross section view of the contaminant plume. None of the remaining monitoring wells exceeded the AWQS in 2014.

- Plume core monitoring wells, 122-24 (Magothy) and 122-25 (Magothy) have remained below AWQS since 2007. Plume core well 000-429 (Magothy) detected a maximum concentration up to 5.0 µg/L of carbon tetrachloride in the fourth quarter of 2014. The declining VOC concentration trends for wells 122-24 and 122-25 shown on Figure 3.2.8-3 indicates that the trailing edge of the plume migrated south of these wells in 2005/2006. These wells are also downgradient of the OU III South Boundary treatment system extraction well EW-8, which was designed to capture contamination in the shallow portion of the Magothy aquifer at the south boundary.

- Magothy monitoring well 000-526 was installed in September 2011 to monitor downgradient contamination that had been observed in well 000-494 in 2008. There have been no detections of VOCs in this well since it was installed.
3.2.8.3 Groundwater Monitoring Program Evaluation

This system was designed to achieve the overall OU III ROD objectives of minimizing plume growth and meeting AWQS in the Upper Glacial aquifer by 2030. According to the OU III Explanation of Significant Differences (BNL 2005a), AWQS within the Magothy aquifer must be met by 2065. As noted in the Petition for Closure, the system addressed the highest VOC concentration portion of the plume (above 50 µg/L TVOC).

The Industrial Park East Groundwater Monitoring Program can be evaluated in the context of basic decisions established for the program using the groundwater DQO process:

1. Were unexpected levels or types of contamination detected?
 No. There were no unusual or unexpected VOC concentrations observed in the monitoring wells associated with the Industrial Park East Plume during 2014.

2. Is the plume naturally attenuating as expected?
 Yes.

3. Has the downgradient migration of the plume been controlled?
 VOC concentrations in the plume segment in the Upper Glacial aquifer have been reduced to less than AWQS. The highest remaining VOC contamination was 6.1 µg/L of TCA located in the Upper Glacial/Magothy aquifer interface in well 000-427 in December 2014.

4. Has the groundwater cleanup goal of meeting MCLs been achieved?
 No, however individual VOC concentrations in the core monitoring wells (upgradient of and in the vicinity of the former extraction wells) have been below MCLs in 2014, except for downgradient well 000-427. Natural attenuation can be relied upon to further reduce the VOC concentrations to less than MCLs. Although the cleanup goal is to meet MCLs by 2030 and 2065 for the Upper Glacial and Magothy aquifers, respectively, it is expected that they will be met much sooner.

3.2.8.4 Recommendations

The following is recommended for the Industrial Park East Groundwater Monitoring Program.

- Continue monitoring in accordance with the post closure monitoring requirements.
3.2.9 North Street Treatment System

The North Street Treatment System addresses a VOC plume that originated at the Former Landfill/Chemical Holes area. The VOC plume is presently located south of the site boundary, with the leading edge extending south to Flower Hill Drive (Figure 3.2.9-1). The groundwater treatment system began operating in May 2004. In June 2013 a Petition for Shutdown OU III North Street Groundwater Treatment System (BNL 2013d) was submitted to the regulators for review and approval. The system was shutdown in August 2013 after receiving approval from the regulators. The system was restarted in June 2014 due to a rebound in VOC concentrations in several monitoring wells above the 50 µg/L TVOC concentration capture goal.

Groundwater treatment consists of two extraction wells operating at a combined pumping rate of approximately 400 gpm. The system captures the higher concentration portion of the VOC plume (i.e., TVOC concentrations greater than 50 µg/L) in the Upper Glacial aquifer, and will minimize the potential for additional VOC migration into the Magothy aquifer. The North Street plume has been divided into two segments for remediation purposes. The area to the north of extraction well NS-2 is being addressed by the North Street remediation system, whereas the Airport System handles the area to the south (Figure 3.0-1). The Airport System was constructed in part to address the leading edge of this plume (Section 3.2.11).

3.2.9.1 System Description

The North Street system consists of two extraction wells. Extracted groundwater is piped through two 20,000-pound GAC units located in Building OS-5 on a parcel of land owned by DOE, and discharged to four injection wells located downgradient along North Street. Both the North Street and North Street East systems share the four injection wells. Extraction wells NS-1 and NS-2 operate at a rate of up to 200 gpm each. A complete description of the system is contained in the Operations and Maintenance Manual for the North Street/North Street East Offsite Groundwater Treatment Systems (BNL 2004b).

3.2.9.2 Groundwater Monitoring

Well Network

A network of 20 wells monitors the North Street VOC plume (Figure 1-2). The monitoring program also had addressed radiological contaminants that may have been introduced to groundwater in the OU IV portion of the site (particularly the Building 650 and 650 sump outfall areas), as well as the Former Landfill/Chemical Holes. Wells sampled under the Airport program are also utilized for tracking the North Street VOC plume.

Sampling Frequency and Analysis

Sampling of the 20 monitoring wells was changed in 2013 following system shutdown from quarterly to semi-annual. They are analyzed for VOCs according to the schedule on Table 1-5. All wells, except for 000-343, were also sampled and analyzed annually for tritium. Tritium sampling was stopped in 2014, as per a recommendation in the 2013 Groundwater Status Report.

3.2.9.3 Monitoring Well Results

The primary VOCs associated with this plume are carbon tetrachloride, TCE, TCA, and chloroform. Figure 3.2-1 and Figure 3.2.9-1 depict the TVOC plume distribution. The complete groundwater monitoring well data for 2014 are included in Appendix C. A north-south hydrogeologic cross section (H-H') of the plume is provided on Figure 3.2.9-2. The location for the cross section is shown on Figure 3.2-1. Figure 3.2.9-3 shows plots of the VOC concentrations for key monitoring wells. A summary of key monitoring well data for 2014 follows:
- Plume core well 000-465 is located 100 feet upgradient of extraction well NS-1. This well had historically shown the highest VOC concentrations (primarily carbon tetrachloride) in the North Street area. TVOC concentrations were as high as 1,796 µg/L in 2004. In 2014 the highest TVOC concentration in the plume was 78 µg/L in well 000-465 during July. This core well is located immediately upgradient of extraction well NS-1. The primary VOC detected in this well in 2014 was carbon tetrachloride at 59 µg/L.

- TVOC concentrations in core well 000-474, located approximately 500 feet upgradient of extraction well NS-2, have slowly declined from a high of 76 µg/L in 2004 to 17 µg/L in the fourth quarter of 2014.

- The TVOC concentrations in plume core well 000-463, located approximately 200 feet north of NS-1, have shown a significant variation in 2014 with a high of 51 µg/L in May and a low of 3 µg/L in November.

- Plume core well 000-154 had historically shown high VOC concentrations (primarily carbon tetrachloride). TVOC concentrations of 1,000 µg/L were observed in this well in 1997 and 1998, but have steadily declined since then to 4 µg/L in the fourth quarter 2014. The trailing edge of the higher concentration segment of this plume has migrated south of this location.

- Airport monitoring wells 800-92 and 800-101, located south of the North Street extraction wells have displayed increasing VOC concentrations over the past several years. The leading edge of the higher concentration segment, which had migrated beyond the North Street extraction well locations prior to that systems start-up, has now reached this location. This deeper contamination is being captured by the Airport System’s Magothy treatment well RTW-4A.

- Historically, tritium has been detected in localized off-site areas and within the vicinity of the North Street VOC plume. The maximum historical tritium concentration in monitoring wells for this plume was 4,263 pCi/L in 1997 in well 000-108. Tritium concentrations have not exceeded 1,000 pCi/L in any of the North Street monitoring wells since 2006, and in 2013 all samples were below the detection limit. Based upon this it was recommended that tritium sampling be discontinued in the 2013 Annual Groundwater Status report. The DWS for tritium is 20,000 pCi/L.

- The plume continues to be bounded as indicated on Figure 3.2.9-1 by the perimeter wells

- Figure 3.2.9-6 compares the TVOC plume from 1997 to 2014. The southern portion of the plume that was south of the North Street system prior to start-up is being captured by the Airport Treatment system eastern extraction wells.

3.2.9.4 System Operations

Monthly analyses are performed on influent, midpoint, and effluent samples from the GAC units. All monthly system samples are analyzed for VOCs, and the influent and effluent samples are also analyzed for pH. In addition, the system effluent is analyzed for tritium. Table 3.2.9-1 provides the effluent limitations for meeting the requirements of the SPDES equivalency permit. The extraction wells are sampled quarterly for VOCs and tritium.
January - September 2014
The system treated approximately 23 million gallons of water during the first three quarters. The system was in standby mode with NS-1 being restarted in June. The NS-2 well remained in standby mode September.

October - December 2014
The system treated approximately 52.5 million gallons of water during the fourth quarter 2014.

3.2.9.5 System Operational Data
The system was operational from June to December 2014, with shutdowns due to routine maintenance and repairs.

Extraction Wells
Table F-27 contains the monthly pumping data and mass removal data for the system. Table 3.2.9-2 shows the monthly extraction well pumping rates. The average pumping rates for NS-1 and NS-2 during system operations were 95 gpm and 62 gpm, respectively. Well NS-1 was returned to operation in June 2014. Well NS-2 was returned to operation in September 2014. Figure 3.2.9-4 shows the plot of the TVOC concentrations from the extraction wells over time. VOC concentrations for the extraction wells are provided on Table F-28. TVOC values in well NS-1 have steadily dropped from a high of 599 µg/L in 2004 to approximately 8 µg/L in 2014. Well NS-2 has remained below 9 µg/L. There was no tritium detected in the extraction wells in 2014.

System Influent and Effluent
The 2014 VOC concentrations for the North Street carbon influent and effluent are summarized on Tables F-29 and F-30. The combined influent TVOC concentration declined from 260 µg/L in 2004 to 4 µg/L in December 2014. There was no tritium detected in the effluent in 2014.

The carbon vessels for the system effectively removed the contaminants from the influent groundwater. All 2014 effluent data for this system were below the SPDES Equivalency permit limits.

Cumulative Mass Removal
The mass of VOCs removed from the aquifer by the North Street Treatment System was calculated using the average flow rates for each monthly monitoring period, in combination with the TVOC concentration in the carbon unit’s influent, to calculate the pounds removed per month. The cumulative mass of VOCs removed by the treatment system vs. time is plotted on Figure 3.2.9-5. During 2014, approximately 53 million gallons of groundwater were pumped and treated by the North Street system, and approximately four pounds of VOCs were removed. Since May 2004, the system has removed 337 pounds of VOCs. The mass removal data are summarized on Table F-27.

Figure 3.2.9-6 compares the TVOC plume from 1997 to 2014.

The down gradient portion of the plume that was south of the North Street system prior to start-up is being captured by the Airport Treatment System eastern extraction wells. Further detail on the Airport system is provided in Section 3.2.11.
3.2.9.6 System Evaluation

The North Street Treatment System and Monitoring program can be evaluated from the decision rules identified in the groundwater DQO process.

1. Were unexpected levels or types of contamination detected?
No. There were no unusual or unexpected concentrations of contaminants observed in monitoring wells associated with the North Street plume in 2014. However, a rebound in several monitoring wells located near extraction wells NS-1 and NS-2 in 2014 was slightly above the capture goal of 50 µg/L TVOC concentrations resulted in the restart of these extraction wells.

2. Has the downgradient migration of the plume been controlled?
Yes. The plume perimeter and bypass wells show that there have been no significant increases in VOC concentrations in 2014; therefore the plume continues to be controlled. A segment of the plume passing through the Vita Drive well (800-63) was beyond the capture zone of the North Street extraction well NS-1 at the time of system start-up. As described in Section 3.2.11, this portion of the plume is being addressed by the Airport extraction wells directly downgradient.

The system has been removing VOCs from the deep Upper Glacial aquifer. The system has been operating since 2004 and the system influent TVOC concentrations have steadily declined. TVOC concentrations have been below 10 µg/L in both extraction wells since 2010.

3. Can individual extraction wells or the entire treatment system be shut down or placed in pulsed pumping operation?
The system was restarted during 2014 due to increased VOC concentrations in several core monitoring wells.

3a. Are TVOC concentrations in plume core wells above or below 50 µg/L?
Three of the 11 plume core wells of the North Street system showed TVOC concentrations greater than 50 µg/L during 2014. Well 000-472 had a concentration of 53 µg/L TVOC in May 2014. Well 000-465 had a TVOC concentration of 78 µg/L in July 2014 and 000-463 had a concentration of 51 µg/L in May.

3b. Is there a significant concentration rebound in core wells and/or extraction wells following shutdown?
In 2014 there was a rebound in several wells as noted above so the system was restarted.

4. Has the groundwater cleanup goal of meeting MCLs been achieved?
MCLs have not been achieved for individual VOCs in all North Street plume core wells. During 2014 six of 11 core wells had VOCs above the MCL. Based on the data, groundwater modeling, and current system performance, MCLs are expected to be achieved in all wells by 2030.

3.2.9.7 Recommendations

The following is recommended for the North Street Treatment System and groundwater monitoring program:

- Continue monitoring and if concentrations remain below the 50 µg/L TVOC concentration capture goal in core monitoring wells and extraction wells for at least two sampling rounds, NS-1 and/or NS-2 can be shutdown.
- Continue the current groundwater monitoring well schedule for the North Street system.
- Increase sampling of core monitoring wells to quarterly.
3.2.10 North Street East Treatment System

This section summarizes the 2014 operational and monitoring well data for the OU III North Street East (NSE) Treatment System. The system began operation in June 2004 to provide capture and control of the downgradient portion of the OU I VOC plume, which has migrated beyond the BNL site boundary.

3.2.10.1 System Description

The NSE Treatment System consists of two extraction wells. The water is pumped through two 20,000-gallon GAC units and the treated water is discharged to four injection wells located on North Street. The North Street and NSE carbon treatment units and control systems are located in the same building. The extraction well pump for NSE-1 operates at approximately 200 gpm. Extraction well NSE-2 has been shut down and in standby mode since October 2010. A complete description of the system is contained in the Operations and Maintenance Manual for the North Street/North Street East Offsite Groundwater Treatment Systems (BNL 2004b).

The Petition for Shutdown for the OU III North Street East Groundwater Treatment System (BNL 2014c) was submitted to the regulators for review and approval in April 2014. Following approval from the regulators, the system was shut down in June 2014 and placed in stand-by mode.

3.2.10.2 Groundwater Monitoring

The monitoring network consists of 16 wells (Figure 1-2). The monitoring program was designed to monitor the VOC plume off site, south of the OU I South Boundary Treatment System, as well as the efficiency of the NSE groundwater remediation system. During 2014, the wells were sampled quarterly at the shutdown monitoring frequency that began in 2009. Because there have been no detections of tritium above 1,000 pCi/L in any of the NSE wells since 2005, sampling for tritium was eliminated in 2014. See Table 1-5 for details.

3.2.10.3 Monitoring Well Results

Figure 3.2.10-1 shows the extent of the VOC plume. The plume originated from the Current Landfill and former HWMF (sources in OU I). The plume is approximately 400 feet south of the LIPA right-of-way and extends to extraction well NSE-1.

Figure 3.1-3 depicts the vertical distribution of VOCs within the deep Upper Glacial aquifer. The transect line for cross section A-A’ is shown on Figure 3.1-1. Figure 3.1-4 gives the historical trends in VOC concentrations for key core and bypass wells along the Current Landfill/former HWMF/NSE plume. Appendix C contains a complete set of 2014 analytical results for the 16 NSE program wells. A summary of key monitoring well data for 2014 follows:

- Individual VOCs continue to remain below AWQS in all monitoring wells since 2011. The maximum VOC detected in 2014 was 2.6 µg/L of TCA in core well 000-477.

3.2.10.4 System Operations

Influent, midpoint, and effluent samples from the GAC units were sampled monthly through May in 2014 prior to system shut down in June. The extraction wells were sampled quarterly throughout the year. All NSE system samples were analyzed for VOCs and the effluent was analyzed monthly through May for tritium and pH. During 2014, the extraction wells were also analyzed quarterly for tritium. Table 3.2.10-1 provides the effluent limitations for meeting the requirements of the SPDES equivalency permit.
3.2.10.5 System Operational Data

The system was operational through May 2014 with temporary shutdowns due to a carbon change-out in February and scheduled maintenance. The system was shut down and placed in standby mode in June.

January through September 2014

- The system operated normally through May and was shut down in June. The system treated approximately 44 million gallons of water.

October through December 2014

- The system remained shut down and in standby mode.

Extraction Wells

- Through May 2014, the system treated approximately 44 million gallons of water. Table 3.2.10-2 contains the monthly pumping data for the two extraction wells. Table 3.2.10-2 shows the monthly extraction well pumping rates. NSE-1 continued full time operation through May 2014, while NSE-2 remained in standby mode. Figure 3.2.10-2 plots the TVOC concentrations in the extraction wells. VOC concentrations for NSE-1 and NSE-2 are provided in Table F-31. Steady TVOC concentration trends are noted for both wells during 2014, with concentrations below 8 µg/L in NSE-1 and below 2 µg/L in NSE-2 during the entire year. All individual VOCs were below their AWQS.

System Influent and Effluent

- VOC concentrations for 2014 for the carbon treatment influent and effluent are summarized on Tables F-32 and F-33. Influent TVOC concentrations have been at or below 15 µg/L since 2005. The maximum TVOC concentration in the influent through May was less than 3 µg/L. The carbon treatment system effectively removed VOCs from the influent groundwater resulting in 2014 NSE effluent concentrations being below the regulatory limit specified in the equivalency permit. No tritium has been detected in the system effluent above 600 pCi/L since the system began operating in 2004.

Cumulative Mass Removal

- The cumulative mass of VOCs removed by the treatment system versus time is shown on Figure 3.2.10-3 and the supporting data are presented on Table F-34. During 2014, one pound of VOCs was removed, with a cumulative total of 44 pounds of VOCs removed since system start-up in 2004.

3.2.10.6 System Evaluation

- The system began full operations in 2004 and was predicted to run for approximately 10 years. The system operated as designed and was shut down and placed in standby mode in June 2014. No operating difficulties were experienced beyond normal maintenance, and system effluent concentrations did not exceed SPDES equivalency permit requirements.
The North Street East Treatment System performance can be evaluated based on decisions identified for this system from the groundwater DQO process.

1. Were unexpected levels or types of contamination detected?
 In 2014, there were no unusual or unexpected concentrations of contaminants observed in monitoring or extraction wells associated with the NSE System.

2. Has the downgradient migration of the plume been controlled?
 Yes. The system has been in operation for ten years, and an analysis of the plume perimeter and bypass wells shows that there have been no significant increases in VOC concentrations in 2014, indicating that the plume has not grown and is controlled. TVOC concentrations in the monitoring wells between extraction wells NSE-1 and NSE-2 have been below 5 µg/L since 2007. Figure 3.2.10-4 shows the overall plume size reduction over time.

3. Can individual extraction wells or the entire treatment system be shut down or placed in pulsed pumping operation?
 As noted in Section 3.2.10.1, the system has met all of the criteria established in the operation and maintenance manual for system shutdown. As discussed in more detail in the Petition for Shutdown for the OU III North Street East Groundwater Treatment System (BNL 2014c), the shutdown criteria of reaching less than 50 µg/L TVOCs for at least four consecutive sampling rounds has been met in all plume monitoring and extraction wells. In addition, VOC mass removal over the past several years has been very low. As a result, following regulatory approval, the system was shut down in June 2014 and placed in standby mode.

3a. Are TVOC concentrations in plume core wells above or below 50 ug/L?
 TVOC concentrations in all monitoring wells are below 50 µg/L. The maximum TVOC concentration detected in 2014 was in monitoring well 000-477 at 7 µg/L.

3b. Is there a significant concentration rebound in core wells and/or extraction wells following shutdown?
 Significant rebounding of the VOCs in the monitoring or extraction wells was not evident as a result of the shutdown of NSE-2 in late 2010 or as a result of the entire system shutdown in June 2014.

4. Has the groundwater cleanup goal of meeting MCLs been achieved?
 MCLs have been achieved for individual VOCs in all 16 plume monitoring wells from 2011 through 2014. Individual VOCs in the 2012 and 2013 temporary wells were below MCLs. As a follow-up to the 2012 Groundwater Status Report recommendation, monitoring well 000-525 was sampled quarterly since 2013 and all results were less than MCLs.

3.2.10.7 Recommendations
 The following recommendations are made for the North Street East Treatment System and groundwater monitoring program:
 - Maintain the treatment system in standby mode. The extraction wells will continue to be sampled on a quarterly basis. One or both extraction wells can be restarted if VOC concentrations in the core monitoring wells or extraction wells rebound to concentrations significantly above the capture goal of 50 µg/L.
 - Reduce groundwater monitoring to the standby monitoring frequency (semi-annual for core and bypass wells and annual for perimeter wells).
This Page Intentionally Left Blank.
3.2.11 LIPA/Airport Treatment System

This section summarizes the 2014 operational and monitoring well data for the LIPA/Airport Treatment System, and presents conclusions and recommendations for its future operation. The LIPA system was designed to capture and control of the downgradient portion of the plume of VOCs in the Upper Glacial and Magothy aquifers that had migrated past the Industrial Park System before that system became operational in 1999. The Airport Treatment System was designed to capture the leading edge of the OU III and OU I/IV VOC plumes and to prevent further migration of the plumes, which have migrated past the LIPA extraction wells and the North Street extraction wells.

3.2.11.1 System Description

The three components of the LIPA/Airport Treatment System are as follows:

1. The Magothy extraction well (EW-4L) on Stratler Drive (Figure 3.2.11-1) addresses high-level VOCs identified in the Magothy aquifer immediately upgradient of this well on Carleton Drive. The capture goal for this well is 50 µg/L TVOCs. Groundwater for this area is discussed in Section 3.2.12 as “South of Carlton Drive.”

2. The three LIPA extraction wells (EW-1L, EW-2L, and EW-3L) were installed to address high concentrations of VOCs in the Upper Glacial aquifer that had migrated past the Industrial Park System before that system became operational in 1999. The capture goal for these extraction wells is 50 µg/L TVOC.

3. The six extraction wells in the Airport System were installed to address the leading edge of the plumes which have migrated past the LIPA extraction wells and the North Street extraction wells prior to their installation. The sixth well (RW-6A) was added in 2007 to address VOCs observed to the west of extraction well RTW-1A. The Airport system wells have a capture goal of 10 µg/L TVOC. RTW-4A also addresses Magothy aquifer contamination, as this well is screened in the Magothy aquifer.

The water from the four LIPA wells is pumped to the treatment plant, about one mile south on Brookhaven [Town] Airport property, where it is combined with the water from the six airport extraction wells (RTW-1A through RW-6A) and treated via granular activated carbon. The treated water is released back to the ground via a series of shallow reinjection wells located on Brookhaven Airport and Dowling College property.

A more detailed description of this system is contained in the Operations and Maintenance Manual for the LIPA/Airport Groundwater Treatment System (BNL 2008a).

3.2.11.2 Groundwater Monitoring

Well Network

The monitoring network consists of 49 wells. The Magothy extraction well on Stratler Drive has six monitoring wells associated with its operation. There are 12 wells associated with the LIPA Upper Glacial portion of the plume that were installed to monitor the VOC plume off site, south of the OU III Industrial Park system. The Airport system has 31 monitoring wells, which monitor the portions of the plume south of the LIPA and the North Street systems. All of these wells are used to evaluate the effectiveness and progress of the cleanup associated with these three components of the system. Figures 1-2 and 3.2.11-1 identify the monitoring wells for these plumes.

Sampling Frequency and Analysis

The monitoring wells for LIPA are currently on a quarterly and semiannual sampling schedule for VOCs. The Airport wells are sampled quarterly for VOCs (Table 1-5).
3.2.11.3 Monitoring Results

The primary VOCs associated with these portions of the plume are carbon tetrachloride, TCA, TCE, and DCE. Groundwater monitoring for these systems was initiated in 2004. Fourth-quarter 2014 well data are posted on Figures 3.2-1, 3.2.11-1 and 3.2.11-2. The complete analytical results are in Appendix C. Results for key monitoring wells and extraction wells are as follows:

LIPA Monitoring

- During 2014 TVOC concentrations for the Magothy extraction well EW-4L on Stratler Drive were about 12 µg/L.
- The Magothy monitoring wells located in the vicinity of extraction well EW-4L all detected concentrations below 50 µg/L TVOC during 2014. The highest TVOC concentration observed during 2014 was in well 000-460 during February 2014 at 42 µg/L.
- Two of the three Upper Glacial LIPA extraction wells, EW-1L and EW-3L, were shut down in October 2007. Well EW-2L was shutdown in 2010. All three of the extraction wells remained below 12 µg/L in 2014. This is consistent with monitoring well data associated with the LIPA system. Figure 3.2.11-3 plots the TVOC influent trends for the LIPA extraction wells.

Airport Monitoring

- Upgradient monitoring wells 800-94 and 800-95, approximately 1,500 feet north of wells RTW-1A, RTW-2A, and RW-6A have historically shown concentrations of carbon tetrachloride ranging up to 100 µg/L. The TVOC concentrations in these wells had been showing a generally declining trend. However, in 2014 the levels showed a slight increase with well 800-94 at 84 µg/L and well 800-95 at 39 µg/L TVOC concentrations in the fourth quarter of 2014 (Figure 3.2.11-6).
- Figure 3.2.11-4 plots the TVOC influent trends for the Airport extraction wells. Five of the six airport extraction wells had TVOC concentrations below the capture goal of 10 µg/L in 2014. Extraction well RW-6A showed TVOC concentrations up to 13 µg/L in 2014, and carbon tetrachloride exceeded the AWQS of 5 µg/L. Well RW-6A had a detection of Toluene of 32 µg/L in December. This was attributed to repair work (and associated equipment) that was performed on that well.
- Well 800-96 was installed as a western perimeter monitoring well for extraction well RTW-1A. Sampling of this well began in 2004. No detections of carbon tetrachloride were found in this well until December 2005, when it was detected at 1.6 µg/L. In August 2006 the concentration increased to over 100 µg/L. During 2007 a new extraction well RW-6A was installed to capture the contaminants in the vicinity of well 800-96 (Figure 3.2.11-1). Well 800-96 detected carbon tetrachloride concentrations ranging from 19 µg/L to 51 µg/L in 2014 (Figure 3.2.11-6).
- None of the bypass wells installed downgradient of this area detected VOCs above AWQS.
- Well 800-92, located upgradient of extraction wells RTW-3A and RTW-4A had TVOC concentrations above capture goals for the past several years (Figure 3.2.11-6). In 2014, the TVOC concentration ranged from 32 µg/L to 46 µg/L. This is a slug of contamination that was south of the North Street extraction wells prior to the system start-up. These contaminants will be captured by the Airport extraction wells.
• Well 800-101, located directly upgradient of extraction well RTW-4A, has shown an increasing TVOC concentration trend over the past several years. The concentrations ranged from 17 µg/L to 25 µg/L in 2014. This is above the capture goal of 10 µg/L for the Airport extraction wells.

• Monitoring well (800-138) was installed adjacent to well 800-59 in 2013, and screened about 40 feet deeper than this well from 245 feet to 255 feet b.s.l. This will be used to monitor higher concentrations of VOCs identified in upgradient well 800-92. VOC concentrations in this well are below AWQS.

3.2.11.4 System Operations

In 2014, the Airport extraction wells were sampled once per month and the LIPA extraction wells quarterly. The influent, midpoint, and effluent of the carbon units were sampled two times per month. All system samples were analyzed for VOCs. Several of the Airport extraction wells are on a pulsed pumping schedule (RTW-2A, RTW-3A, RTW-5A), being pumped one week per month. Wells RTW-1A, RTW-4A and RW-6A are pumped on a full-time basis. Only LIPA Magogthy extraction well EW-4L is operating full time. The other three LIPA wells are currently shutdown as they have achieved the cleanup goals.

The following is a summary of the Airport/LIPA Treatment System operations for 2014.

January - September 2014

The Airport/LIPA System was operational in the first three quarters with RTW-1A, RTW-4A, EW-6A and EW-4L operating on a full-time basis. The remainder of the extraction wells at the Airport System, were run one week per month on a pulsed pumping schedule. In the first quarter the system was off for four days in January for maintenance of the carbon vessels and two days for a carbon change-out in March. EW-4L (LIPA) was down for three weeks in May due to a communication issue and Well RTW1A and RW6A was off for the month as a pipe in the vault was being repaired. The remainder of the third quarter the system operated normally.

October – December 2014

The Airport/LIPA system operated normally for the last quarter of 2014, with down time due to scheduled maintenance and one carbon change-out in December.

Extraction Wells Operational Data

During 2014, approximately 231 million gallons of groundwater were pumped and treated by the Airport/LIPA system, with an average flow rate of 446 gpm (Table 3.2.11-2). Table F-35 summarizes the system’s mass removal. VOC concentrations for the Airport and LIPA extractions wells is provided in Table F-36.

3.2.11.5 System Operational Data

System Influent and Effluent

VOC concentrations for the carbon influent and effluent in 2014 are summarized on Tables F-37 and F-38, respectively.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Permit Level (µg/L)</th>
<th>Max. Measured Value (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>5.5–7.5 SU</td>
<td>5.9-7.9 SU</td>
</tr>
<tr>
<td>carbon tetrachloride</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>chloroform</td>
<td>7</td>
<td>1.0</td>
</tr>
<tr>
<td>1,1-dichloroethane</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>1,1-dichloroethylene</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>methylene chloride</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>1,1,1-trichloroethane</td>
<td>5</td>
<td><0.5</td>
</tr>
<tr>
<td>trichloroethylene</td>
<td>10</td>
<td><0.5</td>
</tr>
</tbody>
</table>

Notes:
ND = Not detected above method detection limit of 0.50 µg/L.
Sampling required on a monthly basis
The carbon vessels for the system effectively removed the contaminants from the influent groundwater. System effluent data were below the regulatory limit specified in the SPDES equivalency permit, except for one pH reading that exceeded the upper limit by 0.4 SU in December. This was due to the naturally occurring variation in the pH of the groundwater and not due to the treatment process (Table 3.2.11-1).

Cumulative Mass Removal
The mass of VOCs removed from the aquifer by the Airport/LIPA Treatment System was calculated using the average flow rates for each monitoring period (Table F-35) in combination with the TVOC concentration in the carbon unit’s influent, to calculate the pounds per month removed. The plot of cumulative mass of VOCs removed vs. time (Figure 3.2.11-5) shows that 24 pounds of VOCs were removed during 2014, with a total of 390 pounds removed since system start-up.

3.2.11.6 System Evaluation
The Airport/LIPA system performance can be evaluated based on the major decision rules identified for this system resulting from the groundwater DQO process.

1. Were unexpected levels or types of contamination detected?
No, there were no unusual or unexpected VOC concentrations observed in the monitoring wells for the LIPA/Airport Treatment System during 2014.

2. Has the downgradient migration of the plume been controlled?
Yes, based on the historical analytical data collected from the monitoring wells the plumes are being controlled. The capture zones and the monitoring data clearly show that the capture goal of 50 µg/L TVOC at the LIPA Upper Glacial and Magothy wells is being met (Figure 3.0-1). No TVOC concentrations above 10 µg/L have been detected in the bypass monitoring wells at the Airport. Based upon this data, plume migration is being controlled.

3. Can individual extraction wells or the entire treatment system be shut down or placed in pulsed pumping operation?
Yes, currently three LIPA wells are shut down as they have reached their cleanup goals. Three of the six Airport extraction wells are being pulsed pumped.

4. Are TVOC concentrations in plume core wells above or below 50 µg/L for LIPA and 10 µg/L for the Airport?
TVOC concentrations are below 50 µg/L for the LIPA project. Several Airport core wells are above 10 µg/L. Well 800-96 located in the vicinity of well RW-6A continues to show elevated levels of TVOCs with a concentration of 59 µg/L in December. Upgradient wells 800-94 and 800-95 showed maximum TVOC concentrations of 84 µg/L and 39 µg/L respectively.

4a. Is there a significant concentration rebound in core wells and/or extraction wells following shutdown?
No rebound has been observed at the LIPA wells since they were shut down.

5. Has the groundwater cleanup goal of meeting MCLs been achieved?
No, the cleanup goal has not been met. Based on model results, MCLs are expected to be achieved by 2030 for the Upper Glacial aquifer, and in the Magothy aquifer by 2065, as required by the OU III ROD and ESD.
3.2.11.7 Recommendations
The following recommendations are made for the LIPA/Airport Treatment System and groundwater monitoring program:

- Continue the Airport extraction wells pulsed pumping schedule of pumping one week per month except for wells RTW-1A, RTW-4A and RW-6A, which will continue with full-time operations. If concentrations above the capture goal of 10 µg/L TVOC are observed in any of the extraction wells or the monitoring wells adjacent to them, the well(s) will be put back into full-time operation.

- Maintain LIPA wells EW-1L, EW-2L and EW-3L in standby mode. These extraction wells will be restarted if TVOC concentrations rebound above the 50 µg/L capture goal in either the plume core monitoring wells or the extraction wells. Continue operation of Magothy well EW-4L.
3.2.12 Magothy Aquifer

This section provides a brief summary of the Magothy Aquifer Groundwater Monitoring Program and the remedial approach for addressing VOC contamination. The 50 monitoring wells used to monitor the Magothy are shown on Figure 3.2.12-1.

Detailed descriptions of the monitoring well analytical results and remediation progress are presented in the following sections of this report: Western South Boundary, Middle Road, LIPA/Airport, North Street, North Street East, OU III South Boundary, Industrial Park and Industrial Park East. A brief summary of the results is provided on Table 3.2.12-1.

<table>
<thead>
<tr>
<th>Location</th>
<th>Max. TVOC (in µg/L)</th>
<th>Primary VOCs</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western South Boundary</td>
<td>0.5</td>
<td><5.0</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Magothy not impacted. Two monitoring wells serve as outpost/sentinel wells for Suffolk County Water Authority William Floyd Well Field.</td>
</tr>
<tr>
<td>Middle Road to South Boundary</td>
<td>84</td>
<td>340</td>
<td>PCE, CCl₄</td>
</tr>
<tr>
<td></td>
<td>268</td>
<td>268</td>
<td>VOCs identified in upper 20 to 40 feet of Magothy at Middle Road area where Magothy brown clay is absent. Well 113-09 had 84 µg/L TVOC in October 2014, and well 113-19 had 66 µg/L in November 2014. VOCs not detected at South Boundary beneath the clay.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VOCs identified in the Upper Magothy south of the south boundary system. Two new Magothy extraction wells installed in the Industrial Park in 2014 to capture and treat this contamination. Maximum TVOC concentrations were detected in IP-VP 03-2014 at 268 µg/L at 230 feet bls.</td>
</tr>
<tr>
<td>Industrial Park Modification</td>
<td>12</td>
<td>570</td>
<td>TCA, CCl₄</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>7,200</td>
<td>TVOC concentrations were less than 20 µg/L at the south boundary and off site in the Industrial Park East, where the brown clay is absent. Magothy and Upper Glacial contamination is continuous in the Industrial Park. A TVOC concentration of 11 µg/L was detected in well 122-05 located at the South Boundary in November 2014. This is the highest TVOC concentration identified in this area. The monitoring well located on the corner of Boxwood and Stratler Drives (000-526) has had no levels of VOCs above MCLs.</td>
</tr>
<tr>
<td>North Street East</td>
<td>11</td>
<td>30</td>
<td>DCA, DCE</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>7,200</td>
<td>Historically high VOC concentrations just south of Carleton Drive where the brown clay is absent. Contamination is contiguous between Magothy and Upper Glacial aquifers. Well 000-130 showed a maximum TVOC concentration of 7 µg/L in May. Well 000-460 located on Stratler Drive showed a TVOC concentration of 11 µg/L in May. This should be captured in nearby extraction well EW-4L.</td>
</tr>
</tbody>
</table>

The Magothy remedy identified in the OU III Explanation of Significant Differences (ESD) (BNL, 2005a) document calls for the following:

1. Reaching MCLs in the Magothy aquifer by 2065 by active groundwater treatment and natural attenuation.
2. Continued operation of the five extraction wells until cleanup objectives are met as part of the treatment systems that provide capture of Magothy VOC contamination (Middle Road, South Boundary [Magothy well currently in standby], Airport, Industrial Park East [Decommissioned], and LIPA).

3. Continued evaluation of monitoring well data to ensure protectiveness. Table 3.2.12-2 describes how each of the Magothy investigation areas is addressed by the selected Magothy aquifer remedy.

4. Institutional controls and five-year reviews.

Table 3.2.12-2. Magothy Remedy.

<table>
<thead>
<tr>
<th>Area Investigated</th>
<th>Status of Selected Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western South Boundary</td>
<td>Continue monitoring and evaluate data.</td>
</tr>
<tr>
<td>Middle Road to South Boundary</td>
<td>Continue operation of the Magothy extraction well at Middle Road, as well as the two Upper Glacial systems. Continue to monitor the three Magothy monitoring wells at Middle Road and three at the south boundary until cleanup goals are met.</td>
</tr>
<tr>
<td>North Street</td>
<td>Continue operation of the two existing Upper Glacial extraction wells on Sleepy Hollow Drive and North Street to prevent migration into the Magothy until cleanup objectives are met. The Airport extraction wells will capture contaminants that were past the extraction wells prior to system operation. Continue monitoring and evaluate data.</td>
</tr>
<tr>
<td>North Street East</td>
<td>Continue monitoring and evaluate data.</td>
</tr>
<tr>
<td>Industrial Park East to south boundary</td>
<td>Continue monitoring and evaluate data.</td>
</tr>
<tr>
<td>South of Carlton Drive</td>
<td>Continue operation of the LIPA Magothy extraction well on Stratler Drive until cleanup goals are achieved. This will capture high concentrations of VOCs identified on Carleton Drive.</td>
</tr>
<tr>
<td>Industrial Park Modification</td>
<td>Continue operation of the two new industrial park extraction wells. Continue monitoring and data evaluation.</td>
</tr>
</tbody>
</table>

3.2.12.1 Monitoring Well Results

There are 42 wells in the Magothy monitoring program (Figure 3.2.12-1). Figure 3.2.12-2 shows trend plots of several of the key monitoring wells. Data for all Magothy monitoring wells are presented in Appendix C. A discussion of some of the key wells follows;

Well 000-130: This well is on Carleton Drive and has historically had the highest concentrations of carbon tetrachloride observed off-site related to BNL (over 7,000 µg/L). The higher concentrations of carbon tetrachloride observed in this well are being captured by the LIPA extraction well on Stratler Drive. A more detailed discussion is available in Section 3.2.11.

Wells 000-249 and 000-250: These wells are in the Industrial Park near well UV B-1. Well 000-249 had TVOC concentrations ranging up to 12 µg/L in 2014. Well 000-250 had no VOC concentrations above AWQS in 2014. Any contaminants above the capture goal of 50 µg/L TVOC that migrate beyond this system, will be addressed by the Stratler Drive extraction well.

Wells 000-425 and 000-460: These wells are adjacent to the LIPA Stratler Drive Magothy extraction well. Well 000-425 had TVOC concentrations up to 5 µg/L during 2014. Well 000-460.
located east of the extraction well but within the capture zone, had TVOC concentrations up to 11 µg/L in 2014.

Well 122-05: This well, located at the eastern edge of the OU III South Boundary System, showed TVOC concentrations up to 11 µg/L in 2014. This well had no detections of individual VOCs above AWQS since 2010.

Well 113-09: This well is located at the Middle Road, west of extraction well RW-1. It is screened near the Upper Glacial/Magothy interface. During 2014, TVOC concentrations of 84 µg/L were detected. Concentrations have been stable for the past few years in this well. These contaminants will be captured by new extraction well RW-7.

Well 000-343: Located south of the site boundary and between the North Street and North Street East systems. This well had maximum TVOC concentrations of 11 µg/L in 2014.

Well 115-50: Located at the site boundary and between the OU I and OU III South Boundary systems. This well had individual VOC concentrations below AWQS in 2014.

Wells 000-427 and 000-429: These wells are located just south of the former Industrial Park East System on Carleton Drive. In 2014, well 000-427 had TVOC concentrations up to 9 µg/L and well 000-429 had concentrations up to 6 µg/L.

Well 800-90: This well is located near Moriches-Middle Island Road upgradient of Airport extraction wells RTW-3A and RTW-4A. TVOC concentrations ranged from 33 µg/L to 47 µg/L in 2014. This is indicative of contamination that was already past the North Street extraction wells prior to operation, and will eventually be captured by the Airport extraction wells RTW-3A and RTW-4A. This contamination is also being observed in downgradient wells 800-99 and 800-101. The increasing VOC concentration in 800-101 has triggered the full time operation of the Airport extraction well RTW-4A (Section 3.2.11).

Well 800-138: This is a new monitoring well (2013) and was installed adjacent to well 800-59 and screened about 40 feet deeper than this well (245 feet to 255 feet bls). This well will be used to monitor higher concentrations of VOCs identified in upgradient well 800-92. VOC concentrations in this well were below AWQS in 2014.

3.2.12.2 Recommendations

The following are recommendations for the Magothy groundwater monitoring program:

- Continue the current monitoring schedule for the Magothy monitoring program.
- Continue pumping the Magothy extraction wells at Middle Road, LIPA/Airport and new IP wells. The North Street, North Street East and South Boundary Magothy extraction wells are currently in standby as they have reached the OU III cleanup goals identified for shutdown of these wells. The IPE extraction well was abandoned as it had reached its cleanup goal.
This Page Intentionally Left Blank.
3.2.13 Central Monitoring

The OU III Remedial Investigation (RI) identified several low-level (less than 50 µg/L TVOC) source areas and nonpoint contaminant sources within the developed central areas of the BNL site. Because the sources are not large enough to warrant a dedicated monitoring program, they are monitored under the OU III Central Monitoring Program. In addition, this program includes wells 109-03 and 109-04, located near the BNL western site boundary. These wells were installed by the SCDHS to serve as sentinel wells for the SCWA William Floyd Parkway Well Field.

3.2.13.1 Groundwater Monitoring

Well Network

The monitoring well network is comprised of nine wells (Figure 3.2.13-1). The well locations aid in monitoring the central areas of the site. This network is also supplemented by data from Facility Monitoring program wells that monitor active research and support facilities (Table 1-6). Results from the Environmental Surveillance (ES) programs are provided in Section 4.

Sampling Frequency and Analysis

The wells are sampled and analyzed annually for VOCs. Wells 109-03 and 109-04 are analyzed quarterly for VOCs, gamma spectroscopy, tritium, and Sr-90 (Table 1-5) and split samples are analyzed by the Suffolk County Department of Health Services.

3.2.13.2 Monitoring Well Results

No VOCs were detected above AWQS. The highest VOC detected was 4.1 µg/L of 1,1,1-trichloroethane in well 065-02. Radionuclides were not detected in any of the samples collected from wells 109-03 and 109-04 during 2014.

3.2.13.3 Groundwater Monitoring Program Evaluation

The evaluation of the OU III Central Monitoring Program is based on the major decision rules established for this program using the groundwater DQO process.

1. Is the contamination naturally attenuating as expected?
 "Yes, the residual contaminants in the central area of the site are attenuating as expected. There are no significant source areas releasing VOCs to the groundwater in the central area of the site."

2. Has the groundwater cleanup goal of meeting MCLs been achieved?
 "Yes. Since 1997, the VOC concentrations in the central portion of the site have significantly decreased, as noted in TVOC plume comparison Figure 3.2.3. During 2014, no groundwater contamination was detected exceeding the MCLs; therefore, the OU III ROD objective of meeting MCLs by 2030 has been met for this area."

3.2.13.4 Recommendation

No changes to the OU III Central Groundwater Monitoring Program are warranted at this time.
3.2.14 Off-Site Monitoring

The OU III Off-Site Groundwater Monitoring Program is used to monitor contamination in the southwest portion of the OU III plume.

3.2.14.1 Groundwater Monitoring

Well Network

The network has 11 wells that monitor the off-site southwest downgradient extent of OU III (Figure 3.2.14-1). Some wells downgradient of the leading edge of the plumes serve as sentinel wells. These wells are screened in the deep portions of the Upper Glacial aquifer.

Sampling Frequency and Analysis

The wells are sampled annually and samples analyzed for VOCs (Table 1-5). Samples were collected in the fourth quarter of 2011.

3.2.14.2 Monitoring Well Results

The complete results for the monitoring wells in this program can be found in Appendix C. The horizontal extent of the off-site segment of the OU III VOCs is shown on Figure 3.2.14-1.

The monitoring wells in the OU III Off-Site Monitoring Program are perimeter and sentinel wells. No wells in the OU III Off-Site Monitoring Program had levels of VOCs that exceeded the AWQS. With the exception of wells 000-99 in 2005 and 800-52 in 2011, the OU III Off-Site Monitoring Program wells have not detected concentrations of VOCs detected above the AWQS since the wells were installed.

3.2.14.3 Groundwater Monitoring Program Evaluation

The evaluation of the OU III Off-Site Monitoring Program is based on these major decision rules established for this program using the groundwater DQO process.

1. Were unexpected levels or types of contamination detected?
 No. Concentrations of contaminants detected were within historic levels and no unexpected contaminants were reported.

2. Is the contamination naturally attenuating as expected?
 Yes, the low level VOCs are attenuating as expected. The observed VOC concentrations are less than the AWQS.

3. Has the groundwater cleanup goal of meeting MCLs been achieved?
 VOCs were not detected above the AWQS in 2014.

3.2.14.4 Recommendation

No changes to the OU III Off-Site Groundwater Monitoring Program are warranted at this time.
3.2.15 South Boundary Radionuclide Monitoring Program

The South Boundary Radionuclide Monitoring Program was initiated to confirm that radionuclides are not migrating south of the BNL site. The sampling was conducted in conjunction with the OU III South Boundary, Western South Boundary, and OU VI Programs. The OU I portion of the south boundary is discussed in Section 3.1.

3.2.15.1 Groundwater Monitoring

A network of 48 monitoring wells is used to monitor radionuclides from the OU III South Boundary, OU III Western South Boundary, and OU VI programs. The well locations along the southern property boundary are shown on Figure 3.2.15-1.

Sampling Frequency and Analysis

The OU III South Boundary Radionuclide Monitoring Program wells were sampled annually for tritium, Sr-90, and gamma spectroscopy (Table 1-5).

3.2.15.2 Monitoring Well Results

The radionuclide analytical results for the wells can be found in Appendix C. There were no confirmed detections of radionuclides in the OU III South Boundary Radionuclide Monitoring Program wells.

3.2.15.3 Groundwater Monitoring Program Evaluation

The OU III South Boundary Radionuclide Monitoring Program can be evaluated based on the decision rule identified for this program resulting from applying the groundwater DQO process.

1. Were unexpected levels or types of contaminants detected?
No. There were no unexpected detections of contaminants in the South Boundary Radionuclide Groundwater Monitoring Program during 2014.

3.2.15.4 Recommendations

There are no recommended changes to the South Boundary Radionuclide Groundwater Monitoring Program.
3.2.16 BGRR/WCF Strontium-90 Treatment System

The Brookhaven Graphite Research Reactor (BGRR)/Waste Concentration Facility (WCF) Treatment System addresses the Sr-90 plumes in groundwater downgradient of these facilities. The BGRR/WCF remedy consists of:

1. Operation of nine extraction wells using ion exchange to remove Sr-90, with discharge of the treated water to dry wells,
2. Operation of the system to minimize plume growth and meet DWS by 2070,
3. Continued monitoring and evaluation of data to ensure protectiveness, and
4. Institutional controls and five-year reviews

The analytical results indicate three areas of elevated Sr-90: one extending south from the WCF area, one extending south of the BGRR (Building 701)/Below Ground Ducts (BGD) and former Canal House, and another that is south of the former Pile Fan Sump (PFS)/Building 801 Area (Figure 3.2.16-1).

3.2.16.1 System Description

Operations for this treatment system began in January 2005. There are two extraction wells (SR-1 and SR-2) located south of the WCF, and three extraction wells (SR-3, SR-4, and SR-5) located south of the BGRR. SR-4 and SR-5 have been in a pulsed pumping mode since 2011. Four extraction wells (SR-6, SR-7, SR-8, and SR-9) were installed in 2010 to address higher Sr-90 concentrations located in the downgradient portion of the WCF plume (in the vicinity of the HFBR) and began operation in 2011.

Groundwater from the extraction wells is piped to an ion exchange treatment system inside Building 855 (within the BNL Waste Management Facility). The vessels of ion exchange media are designed to treat groundwater contaminated with Sr-90 to below the 8 pCi/L DWS. In addition, the influent is also treated for low-level concentrations (less than 10 µg/L) of VOCs using liquid-phase activated carbon.

Effluent is recharged to the Upper Glacial aquifer via three drywells located approximately 850 feet west of Building 855. A SPDES equivalency permit regulates this discharge. A complete description of the system is included in the Operations and Maintenance Manual for the Sr-90 BGRR/WCF/PFS/Building 801 Area Groundwater Treatment System (BNL 2012c).

3.2.16.2 Groundwater Monitoring

Well Network

A network of 95 monitoring wells is used to monitor the Sr-90 plumes associated with the BGRR, WCF, and PFS/Building 801 Areas. 22 temporary wells (see Figure 3.2.16-1 for locations) were installed in 2014/2015 to augment the permanent well network and fill in plume data gaps. The areas targeted for additional data were the former WCF yard, south of Buildings 701 and 801, and in the vicinity of the HFBR downgradient of the WCF.

Sampling Frequency and Analysis

The well samples are analyzed for Sr-90. As noted in Table 1-5, several of the wells also serve dual purposes for other programs. Monitoring well results are tabulated in Appendix C. In 2014, the sampling frequency for all three of the Sr-90 plume segments, (BGRR, PFS/Building 801 area and WCF) was in the O&M phase (annual) for most wells. The monthly sampling frequency for source area monitoring wells 075-664 and 075-701 continued in order to monitor for Sr-90 releases from underneath Building 701/BGDs.
3.2.16.3 Monitoring Well/Temporary Well Results

The Sr-90 plume distribution map is shown on Figure 3.2.16-1. The distribution of Sr-90 throughout the BGRR, WCF, and PFS/Building 801 areas is depicted based on groundwater data obtained from the fourth-quarter 2014 sampling round supplemented with data from the temporary wells which were sampled during the fourth quarter of 2014 and first two quarters of 2015. Table 3.2.16-2 contains the temporary well data for 2014/2015. The following cross-sectional views are also provided:

- **Figure 3.2.16-2** (I–I’) for the BGRR (Building 701 Area) plume – A north–south cross section from the BGRR south to Brookhaven Avenue
- **Figure 3.2.16-3** (J–J’) for the PFS/and PFS/Building 801 Area plume – A north–south cross section from Building 801 south to Cornell Avenue
- **Figure 3.2.16-4** (K–K’) for the WCF plume – A north–south cross section from WCF south to Cornell Avenue

In addition, historical Sr-90 concentration trends for key wells are plotted on Figure 3.2.16-5. Historically, the highest overall Sr-90 concentration (3,150 pCi/L) occurred in 2003 in a temporary well installed approximately 185 feet south of Building 701, and slightly upgradient of the current location of extraction well SR-3. The highest historical Sr-90 concentration in the WCF area (1,560 pCi/L) occurred in 2003 in a temporary well installed immediately downgradient of the six former underground storage tanks (USTs A/B), and approximately 25 feet northwest of the WCF (Building 811). This area within the WCF is upgradient of the current location of extraction wells SR-1 and SR-2. The highest historical Sr-90 concentration in the former PFS/Building 801 Area (566 pCi/L) occurred in 1997 in a temporary well installed downgradient of this area.

During the fourth quarter of 2013 and continuing into 2014 the monitoring well network was supplemented with 22 temporary wells. The three areas targeted with temporary wells were downgradient of Building 801 and the PFS, in the vicinity of extraction wells SR-6, SR-7, SR-8, and SR-9 and the areas adjacent to the HFBR. A comparison of the plume from 2004 to 2014 is provided on Figure 3.2.16-10. The following is a summary of the 2014 monitoring data for the three Sr-90 plumes:

WCF Plume

Refer to Figure 3.2.16-4 for a cross-sectional view of the WCF plume.

- Groundwater characterization of the WCF yard at the northern edge of the former “D” Waste Tank locations was performed during the first two quarters of 2015. The characterization consisted of temporary well sampling at nine locations as shown in Figure 3.2.16-1. The purpose of this characterization was to identify the magnitude and extent of residual Sr-90 in the source area and provide data in support of the Building 811 demolition and soil cleanup effort scheduled later in 2015. Monitoring well 065-175 has contained the highest Sr-90 concentrations immediately downgradient of the source area. Following a general slow decline in concentrations since 2000 the Sr-90 concentration in this well increased significantly to 355 pCi/L in April 2014. The Sr-90 concentrations in this well subsequently dropped to 74 pCi/L and 58 pCi/L respectively, during the fourth quarter of 2014 and first quarter of 2015 (see Figure 3.2.16-5). Extraction wells SR-1 and SR-2 are located immediately south of the WCF source area. Extraction well SR-1 has displayed a slow and steady decline in concentrations since the pump and treat system began in 2005 (Figure 3.2.16-9). SR-2 has also showed an overall decline in concentrations but the trend has leveled off over the past two years.

- The WCF Sr-90 plume from Rutherford Drive south to Brookhaven Avenue appears to have shifted slightly to the east since 2012. This determination is based on groundwater flow direction
information derived from the water table contour map (see Figure 2-2) in combination with observations of changing concentrations in permanent and temporary wells in this area (see Figure 3.2.16-1). Efforts have been made to balance the flow to the RA V and OU III Basins (see Figure 2-2) following the shutdown of both the OU I South Boundary and the HFBR treatment systems by diverting additional water from the OU III Middle Road Treatment System from the OU III Recharge Basin to the RA V basin. Groundwater flow directions in this portion of the BNL site are sensitive to recharge to these basins along with the HO Recharge Basin in combination with supply water pumping across the site. The Groundwater Protection Group works in coordination with BNL Water and Sanitary Planning Committee to balance pumping and recharge and maintain groundwater flow directions across the site.

- A number of temporary wells were sampled in 2013 and 2014 to assess the eastward shift of the plume in the area south of Rutherford Drive. Characterization of this segment of the plume is partially hindered by the presence of the HFBR and ancillary building structures. The highest Sr-90 concentration in the vicinity of the extraction wells was 117 pCi/L in temporary well BGRR-GP-86 in 2013. This temporary well location is approximately 80 feet east of SR-9. There are currently no permanent monitoring well locations in this area. A recommendation is made in this report to install several temporary wells in 2015 to characterize this higher concentration segment of the plume.

BGRR (Building 701 area) Plume

Refer to Figure 3.2.16-2 for a cross-sectional view of the BGRR (Building 701 Area) plume.

- The Sr-90 concentrations in source area monitoring wells 075-664 and 075-701 sharply increased during 2013 and into early 2014. The maximum concentrations observed during this time frame in these wells were 487 pCi/L and 325 pCi/L, respectively (see Figure 3.2.16-5). This increase was reversed in both wells during 2014 with Sr-90 concentrations reported for wells 075-664 and 075-701 of 2 pCi/L and 4.9 pCi/L, respectively in December. The high Sr-90 concentrations in this area are captured by extraction well SR-3. An engineered cap was installed during 2011 which extends out from Building 701 to cover previously identified areas of underground soil contamination, including the BGDs and former Canal House.

An analysis of the monthly Sr-90 sampling data from extraction well SR-3 (which is located approximately 185 feet downgradient of Building 701 and 120 feet downgradient of the BGDs) shows that there have been occasional significant increases in concentration dating back to the start-up of this well in 2005. It is suspected that these concentration increases may be related to periodic water table increases that flush Sr-90 from the deep vadose zone below the source area. A trend of both Sr-90 concentrations from SR-3 and water table elevations from this area is provided in Figure 3.2.16-6. The trends were compared to see whether a correlation could be identified between significant water table elevation increases and Sr-90 increases in SR-3. The travel time from the nearest potential source (the BGD area) to SR-3 is approximately 4-6 years. While additional time is needed to establish a positive correlation, it is possible that significant water table elevation increases are followed by spikes in Sr-90 concentrations that would fit within the 4-6 year travel time frame from the source to SR-3.

The sampling frequency of source area monitoring wells 075-664 and 075-701 was increased to monthly in October 2012 to monitor for potential rebounding Sr-90 concentrations resulting from the 2010 historic high water table levels. The estimated Sr-90 travel time in groundwater from the BGD area to these source area monitoring wells is 2-4 years. Extraction well SR-3 is located approximately 50 feet further downgradient of the source area monitoring wells. There was a short term Sr-90 increase in wells 75-664 and 075-701 during late 2013/early 2014 time frame. If this concentration increase is related to the 2010 water table increase it is at the early end of the expected range of arrival times (2-4 years). The short duration of the increase may also indicate
that the Sr-90 inventory beneath the source area has diminished. Monthly monitoring will continue through 2016 to fully assess a correlation between the water table and Sr-90 concentrations at the source area.

- 2014 marked the fourth year of monitoring the BGRR cap wells. Sr-90 concentrations in monitoring well 075-700 have remained below the DWS of 8 pCi/L since November 2013 following a high concentration of 40 pCi/L in April 2012. Sr-90 concentrations in monitoring well 075-699 decreased to below the DWS in 2014 following a peak concentration of 104 pCi/L in April 2013. This well is located approximately 200 feet south of the former BGRR canal house.

- Sr-90 concentrations in monitoring wells located in the downgradient segments of the BGRR/Building 701 and PFS/Building 801 plumes remained stable during 2014, and the plumes continue to be bounded by the monitoring well network.

- As per the recommendation in the 2013 Groundwater Status Report, a monitoring well will be installed during the Spring 2015 along Bell Avenue to serve as a sentinel well for the Building 701 plume segment.

Former Pile Fan Sump/Building 801 Plume

Refer to Figure 3.2.16-3 for a cross-sectional view of the PFS plume.

- Plume core well 065-37, located approximately 45 feet south of Building 801 and immediately downgradient of the former PFS, has had elevated Sr-90 levels since October 2012 (see Figure 3.2.16-5). Monitoring well 065-325 was installed in 2002 in response to an incident involving the loss of approximately 4,950 gallons of storm water that had flooded the basement of Building 801. This water became contaminated with Sr-90 when it came in contact with the basement floor with residual contamination from historical radiological spills. Sr-90 levels in this well have ranged between 2 pCi/L and 90 pCi/L since 2002. Groundwater characterization approximately 240 feet south of this area was performed in 2013 and 2014 as per a recommendation in the 2012 BNL Groundwater Status Report to determine the southern extent of the plume above DWS. The maximum concentration detected in the temporary wells installed in an east-west transect approximately 40 feet south of well 065-37 was 76 pCi/L in BGRR-GP-123 (see Figure 3.2.16-1 and Figure 3.2.16-3). Additional downgradient characterization of this plume north of Brookhaven Avenue is difficult due to the presence of facilities structures and utilities.

3.2.16.4 System Operations

In accordance with the SPDES equivalency permit, the required frequency for Sr-90 and VOC sampling is monthly and the pH measurement is weekly. However, throughout 2014 while the system was operating, samples from the influent, effluent, and midpoint locations of the treatment system were collected twice a month in order to optimize clinoptilolite usage. All system samples were
analyzed for Sr-90 and VOCs. The influent was also analyzed for tritium. Sr-90 concentrations in the extraction wells in 2014 are summarized on Table F-39. System influent and effluent concentrations are summarized on Tables F-40 and F-41. Table F-42 contains the monthly Sr-90 removal totals for the system.

During 2014, wells SR-4 and SR-5 operated in a one month on, one month off pulsed-pumping mode. In October, well SR-6 also started a one month on, one month off pulsed-pumping mode. Operating details are given in the O&M manual for this system (BNL 2012c). Below is a summary of the system operations for 2014.

January - September 2014
The system was off from February 20 until April due to a computer failure and waiting for a replacement. In June, the system was off for five days due to electrical problems. In July, the system was off for seven days for a bag filter change out. The system was off from September to November due to high water levels in the diffusion wells. The system treated approximately 13.5 million gallons of water during this period.

October - December 2014
The system was off from September to November due to high water levels in the diffusion wells. The system operated normally for the remainder of the year. The system treated approximately 4 million gallons of water during this period.

Extraction Well Operational Data
During 2014, approximately 17.5 million gallons of water were treated by the remediation system, with an average flow rate of 36 gpm. Table 3.2.16-3 shows the monthly extraction well pumping rates while Table F-39 shows Sr-90 concentrations.

3.2.16.5 System Operational Data
During 2014, influent concentrations of Sr-90 ranged from 10 pCi/L to 30 pCi/L, with the highest concentration observed in extraction well SR-2 at a concentration of 63 pCi/L during April. The highest influent tritium concentration during 2014 was 1340 pCi/L in December (Table F-41). During 2014, Sr-90 was detected at a maximum concentration of 3.4 pCi/L. There were no VOCs or Sr-90 detected above the SPDES Equivalency Permit discharge limits in the 2014 effluent samples (Table 3.2.16-1).

Extraction Wells
Maximum Sr-90 concentrations in each of the extraction wells during 2014 were as follows:
- SR-1 18 pCi/L in May
- SR-2 63 pCi/L in April
- SR-3 43 pCi/L in April
- SR-4 5 pCi/L in May
- SR-5 10 pCi/L in April
- SR-6 16 pCi/L in November
- SR-7 14 pCi/L in May
- SR-8 36 pCi/L in April
- SR-9 40 pCi/L in November

Cumulative Mass Removal
Average flow rates for each monitoring period were used, in combination with the Sr-90 influent concentrations, to calculate the number of milliCuries (mCi) removed. During 2014, the flow averaged 36 gpm. Approximately 1.1 mCi of Sr-90 was removed during 2014, for a total of 25.1 mCi.
removed since system start-up in 2005 (Table F-42). Cumulative mass removal of Sr-90 is shown on Figure 3.2.16-7. Figures 3.2.16-8 and 3.2.16-9 show the Sr-90 concentrations over time for the extraction wells.

3.2.16.6 System Evaluation
The BGRR/WCF Strontium-90 Treatment System and Monitoring Program can be evaluated in the context of the decisions established for this program using the groundwater DQO process:

1. Is there a continuing source of contamination? If present, has the source area been remediated or controlled?
 WCF Plume: The source area for this plume was remediated in 2004. 2014 data from temporary wells in the former WCF yard indicate the presence of residual source area contamination in the vadose zone. Planning is underway for the demolition of Buildings 810 and 811 in 2015 and removal of any associated contaminated soils beneath and adjacent to the buildings.

 BGRR Plume: The source area is capped by the building and an engineered cap that was completed in 2011. The source area is being monitored to determine whether there is a continuing release of Sr-90 from the building. The correlation between water table elevation and releases of residual Sr-90 inventory located below portion(s) of Building 701 is discussed in Section 3.2.16-3. Based on an analysis of nine years of data from source area extraction well SR-3, it appears likely that significant increases in water table elevation are releasing Sr-90 remaining in the deep vadose zone below Building 701. Sr-90 well data in this area through the end of 2014 have been low and may indicate a diminishing source beneath the building and cap. Additional monitoring of the source area wells and SR-3 in combination with the water table elevations will be required to verify this relationship.

 PFS/Building 801 Area Plume: Persistent elevated Sr-90 concentrations in source area monitoring wells indicates the presence of a continuing source. Sr-90 concentrations in this plume are expected to meet the ROD cleanup goal.

2. Were unexpected levels or types of contamination detected?
 WCF Plume: The observed Sr-90 concentrations in the Former WCF yard during 2014 were expected.
 BGRR Plume: There were no unexpected levels of Sr-90.
 PFS/Building 801 Area Plume: There were no unexpected levels of Sr-90.

3. Has the downgradient migration of the plume been controlled?
 WCF Plume: The downgradient migration of the plume has been controlled. The eastward shift in the downgradient segment of this plume has resulted in a partial bypassing of the capture zone of SR-9 to the east. These Sr-90 concentrations are well below the system capture goal of 175 pCi/L and are expected to meet the ROD cleanup goals.

 BGRR Plume: Extraction well SR-3 is controlling the downgradient migration of Sr-90 from the source area.

 PFS/Building 801 Area Plume: This plume is not being actively remediated. Based on the groundwater characterization work performed in 2014 to identify the leading edge of this plume, the plume is expected to meet the ROD cleanup goals.
4. Can individual extraction wells or the entire treatment system be shut down or placed in pulsed pumping operation?

- **WCF Plume:** No. The cleanup goal has not yet been met. However, the extraction wells are capturing source area Sr-90 contamination immediately downgradient from the WCF source.
- **BGRR Plume:** Extraction well SR-3 is effectively controlling the source area and full time operation will continue. Sr-90 concentrations in SR-4 and SR-5 have declined to low levels and are currently in pulsed pumping mode to aid in stimulating Sr-90 removal from the aquifer.
- **PFS/Building 801 Area Plume:** This plume is not being actively remediated. The cleanup goal of meeting the DWS in the aquifer has not yet been met.

4a. Are the Sr-90 concentrations in the plume core wells above or below 8 pCi/L?

Sr-90 concentrations for individual core wells in all three of the Sr-90 plumes are above 8 pCi/L.

4b. Has there been a significant concentration rebound in core wells and/or extraction wells following shutdown?

This system is still operational. No significant Sr-90 concentration rebounding has been observed in Building 701/BGD extraction wells SR-4 and SR-5. These are the only extraction wells in pulsed pumping mode.

5. Has the Groundwater Cleanup goal of meeting MCLs been achieved?

The groundwater cleanup goal of meeting DWS has not been achieved for these plumes.

3.2.16.7 Recommendations

The following are recommendations for the BGRR/WCF Groundwater Treatment System and monitoring program:

- Continue to monitor source area Sr-90 concentrations on a monthly basis immediately downgradient of the BGRR.
- Maintain the sampling frequency for BGRR cap monitoring wells 075-699 and 075-700 at semi-annual due to elevated Sr-90 concentrations in 2012-2014.
- Install temporary wells immediately south of the Building 701 cap to identify any eastward plume shift out of the well network.
- Characterize the Sr-90 concentrations immediately south of the HFBR Building using temporary and/or permanent monitoring wells. Evaluate the need for an additional extraction well should concentrations exceed the system capture goal of 175 pCi/L.
- Characterize the WCF plume segment south of Rutherford Drive using temporary wells.
- Install temporary wells as needed to fill in data gaps and characterize the BGRR Sr-90 plume segment south of Cornell Avenue.
- Install a sentinel monitoring well for the leading edge of the WCF Sr-90 plume segment in the vicinity of Temple Place west of monitoring well 075-89.
- Continue operating wells SR-1, SR-2, SR-3, SR-7, SR-8, and SR-9 in full time mode.
- Due to low Sr-90 concentrations in BGRR extraction wells SR-4, SR-5 and SR-6, continue these wells in a pulsed pumping mode (one month on and one month off).
3.2.17 Chemical/Animal Holes Strontium-90 Treatment System

This section summarizes the operational data from the Chemical/Animal Holes Strontium-90 Treatment System for 2014, and gives conclusions and recommendations for future operation. This system began operation in February 2003.

3.2.17.1 System Description

The Chemical/Animal Holes were located in the south-central portion of the BNL property (Figure 1-1 and 3.2.17-1). The area consisted of 55 pits east of the Former Landfill that were used for the disposal of a variety of laboratory chemicals and animal remains. The buried waste was excavated in 1997.

The elements of the Sr-90 groundwater remediation at the Chemical/Animal Holes are:

1. Three extraction wells pumping into an ion exchange treatment system to remove Sr-90 from the extracted groundwater, and on-site discharge of the clean water into two drywells.
2. Operation of the system to minimize plume growth and meet DWS (8 pCi/L) by 2040.
3. Continued monitoring and evaluation of the data to ensure protectiveness.

Details of operations are provided in the Chemical/Animal Holes Strontium-90 Groundwater Treatment System Operation and Maintenance Manual (BNL 2008b).

3.2.17.2 Groundwater Monitoring

Well Network

The Chemical/Animal Holes monitoring network consists of 32 wells. Figures 1-2 and 3.2.17-1 show the monitoring well locations.

Sampling Frequency and Analysis

To help support a decision for shutdown, the sampling frequency for the monitoring wells is semi-annual (shutdown phase).

3.2.17.3 Monitoring Well Results

Figure 3.2.17-1 shows the Sr-90 plume distribution. The plume depiction is derived from third quarter 2014 monitoring well data supplemented with temporary well data from early 2014. The temporary well data from 11 of the 13 Geoprobes was presented in the 2013 Groundwater Status Report. The remaining two Geoprobes were installed in May 2014 downgradient of well 106-135.

The area of highest concentration (approximately 100 pCi/L) is currently located immediately upgradient of EW-1. Lower concentrations are identified south of the Princeton Avenue firebreak. Overall, the plume concentrations have significantly decreased over the last several years. To date, the highest Sr-90 concentration observed in groundwater in this area was 4,720 pCi/L at well 106-99 in 2005. Sr-90 concentrations in the plume have been below 250 pCi/L since February 2011. As seen on Figure 3.2.17-6, the plume is now discontinuous as a result of the progress of the treatment system. See Figure 3.2.17-2 for trends for key monitoring wells.

A summary of key monitoring well data for 2014 and temporary well data from early 2014 follows:

- The highest Sr-90 concentration observed in 2014 was 129 pCi/L in plume core well 106-94 during the second quarter sampling. This monitoring well is located approximately 60 feet north of EW-1. Since 2006 Sr-90 concentrations have ranged between 37 pCi/L to 210 pCi/L, and have shown a slight decrease since 2013.
Core well 106-95, also located upgradient of EW-1 detected Sr-90 up to 82 pCi/L in 2014. This well has typically ranged between 60 pCi/L to 300 pCi/L since it was installed in 2002. However, following an historical high detection of 1,280 pCi/L in 2005, Sr-90 concentrations have been dropping off in this well. The January 2015 sample detected 178 pCi/L of Sr-90.

Sr-90 concentration trends in plume core wells 106-16 and 106-99 have significantly declined over time with the maximum value of less than 130 pCi/L since 2011.

Perimeter monitoring well 106-135 detected 6 pCi/L of Sr-90 in 2014. The temporary well installed at this location in 2010 identified Sr-90 at 85 pCi/L. The three temporary wells installed in April 2014 south of Princeton Avenue further delineated the plume segment downgradient of well 106-135. The maximum Sr-90 concentration detected was 21 pCi/L in CAH-GP-07-2014. These data were presented in the 2013 Groundwater Status Report. The Sr-90 data from the two temporary wells (GP-12-2014 and GP-13-2014) installed in May 2014 were less than the DWS. These data are presented in Table 3.2.17-3.

Plume core well 106-125, located upgradient of EW-2, detected 498 pCi/L of Sr-90 in 2007, and has remained below 30 pCi/L since 2011. Sr-90 was detected in this well in 2014 up to 16 pCi/L. Plume core well 106-119, located upgradient of the southern-most extraction well EW-3 has remained below the DWS since 2012.

Sr-90 was not detected in bypass wells 106-120, 106-121, and 106-122 since 2012. These wells are approximately 100 feet downgradient of EW-3.

The complete monitoring results for all wells in this program are in Appendix C.

3.2.17.4 System Operations

As recommended in the 2013 Groundwater Status Report, in October 2014 the Chemical/Animal Holes Strontium-90 Treatment System began to run in a one month on, two month off pulsed pumping status. The influent, midpoint, and effluent locations were sampled twice per month when the system was operating. During the time the system was off, no samples were collected. The samples were analyzed for Sr-90 and the effluent samples were analyzed for pH (Table 3.2.17-1). All extraction wells were sampled every other month through September (Table F-43). The wells were sampled again in December.

Sr-90 concentrations for the system influent and effluent in 2014 are summarized on Tables F-44 and F-45. There were no detections of Sr-90 in the system effluent in 2014. Table F-46 contains a summary of the monthly Sr-90 mass removal for the system.

Summarized below are the system operations data for 2014.

January - September 2014

The system operated the majority of the time during this period. The system was in pulsed pumping mode (one month on and one month off). In January, the system was off from the 6th to the 15th due to computer software issues. The system was off again in July for two weeks due to computer issues. The system treated approximately 3.6 million gallons of water from January through September.

Table 3.2.17-1.
Chemical Holes Sr-90 Treatment System
2014 SPDES Equivalency Permit Levels

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Permit Level</th>
<th>Max. Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH range (SU)</td>
<td>5.0–8.5</td>
<td>5.7–5.9</td>
</tr>
<tr>
<td>Sr-90 (pCi/L)</td>
<td>8.0</td>
<td><MDA</td>
</tr>
</tbody>
</table>

Notes:
- pCi/L = pico Curies per liter
- SU = Standard Units
- MDA = Minimal detectable activity
- Required sampling frequencies are monthly for Sr-90 and pH.
In October, the system pulsed pumping frequency was changed to one month on, two months off. As a result, the entire system remained off in October and November. Approximately 0.8 million gallons of water was treated during this period.

3.2.17.5 System Operational Data

Concentrations of Sr-90 in EW-1 have steadily dropped-off since 2009 and averaged 17 pCi/L in 2014. This is consistent with the reduced Sr-90 levels detected in monitoring wells upgradient of EW-1 since 2012. Sr-90 concentrations in EW-2 have decreased as expected since this well became operational in November 2007. Upon start-up, up to 139 pCi/L of Sr-90 was detected in EW-2 and the concentration has steadily dropped to less than the DWS since 2012. When EW-3 became operational, concentrations were already low at 13 pCi/L. They remained low through late 2011 and then started increasing slightly. Sr-90 concentrations in EW-3 averaged 6 pCi/L in 2014. Figure 3.2.17-4 presents the extraction well data over time. The 2014 analytical data show that influent Sr-90 concentrations ranged from 4 pCi/L to 8 pCi/L (see Table F-44). The effluent samples did not detect any Sr-90. Approximately 4.4 million gallons of groundwater were treated during 2014.

Cumulative Mass Removal

Average flow rates for each monitoring period were used, in combination with the Sr-90 influent concentration, to calculate the mCi removed. Flow averaged 16 gpm during 2014 while the system was in operation. Table 3.2.17-2 shows the monthly extraction well pumping rates. The cumulative total mass of Sr-90 removed was approximately 0.09 mCi during 2014, with a total of approximately 4.8 mCi removed since 2003 (Figure 3.2.17-5).

3.2.17.6 System Evaluation

The Chemical/Animal Holes Sr-90 Treatment System performance can be evaluated based on decisions identified for this system as part of the DQO process.

1. Is there a continuing source of contamination? If present, has the source area been remediated or controlled?

The former Chemical/Animal Holes, located upgradient of extraction well EW-1 were excavated in 1997. Although Sr-90 has been detected up to 93 pCi/L in the spring 2014 Geoprobes installed in this upgradient portion of the plume, concentrations have decreased from the 2008 and 2012 temporary wells installed at this location. As seen by the trends in Figure 3.2.17-2, Sr-90 concentrations in monitoring wells immediately upgradient of EW-1 have been significantly reduced over the last six to seven years. This is indicative of the progress of the active remediation and the significant reduction of any residual contamination remaining in the vadose zone.

2. Were unexpected levels or types of contamination detected?

There were no unexpected levels or types of contamination detected in the plume in 2014.

3. Has the downgradient migration of the plume been controlled?

The monitoring data from plume perimeter wells to the west and east as well as the system bypass wells indicate that the main portion of the plume is controlled by the three extraction wells. Although the lower concentration portion of the plume to the west of EW-2 will likely not be captured by the extraction wells, the Sr-90 concentrations are expected to attenuate to the DWS by 2040. The five temporary wells installed in April and May 2014 in this area detected Sr-90 up to 21 pCi/L.
4. Can individual extraction wells or the entire treatment system be shut down or placed in pulsed pumping operation?
Based on groundwater monitoring data discussed in Section 3.2.17.3, Sr-90 levels upgradient of extraction well EW-1 have dropped-off to less than 180 pCi/L since 2012. This coincides with the original groundwater modeling performed that projected that EW-1 would operate for approximately 10 years in order to reduce the Sr-90 concentrations in the plume to meet the overall cleanup objective of meeting DWS by 2040.

4a. Are Sr-90 concentrations in plume core wells above or below 8 pCi/L?
Sr-90 concentrations in 10 of 17 core wells were above 8 pCi/L in 2014.

4b. Is there a significant concentration rebound in core wells and/or extraction wells following shutdown?
Since the system was placed in a pulsed pumping mode (one month on and one month off) in October 2013, and again starting in October 2014 (one month on and two months off), no significant rebound was evident.

5. Has the groundwater cleanup goal of meeting drinking water standards been achieved?
No. The DWS has not been achieved for Sr-90 in all plume core wells. However, based on current upgradient Sr-90 concentrations, the DWS is expected to be achieved by 2040. Comparison of the current plume with the 2002 plume is provided in Figure 3.2.17-6.

3.2.17.7 Recommendations
The following are the recommendations for the Chemical/Animal Holes Strontium-90 Treatment System and groundwater monitoring program:

- Due to elevated Sr-90 concentrations in monitoring wells north of EW-1 in the first quarter 2015, the planned submittal of the Petition for Shutdown will be delayed and the data further evaluated.
- Continue to operate all three extraction wells in pulsed pumping mode of one month on and two months off.
- In May 2015, install three permanent shallow wells to monitor the residual Sr-90 upgradient of EW-1.
- To enhance the monitoring well network in the western portion of the plume, install a monitoring well downgradient of Geoprobe CAH-GP-07-2014.
CHAPTER 3: CERCLA GROUNDWATER MONITORING AND REMEDIATION

3.2.18 HFBR Tritium Pump and Recharge System

In late 1996, tritium was detected in monitoring wells near the HFBR. The source of the release was traced to the HFBR spent fuel pool. In response, the fuel rods were removed and the spent fuel pool was drained. In May 1997, a three-well groundwater pump and recharge system was constructed on the Princeton Avenue firebreak road, approximately 3,700 feet downgradient of the HFBR to capture the leading edge of the tritium plume and prevent off site migration of the plume. Extracted water was recharged at the RA V Recharge Basin. The extraction system was placed on standby status in September 2000, as groundwater monitoring data demonstrated that the plume was attenuating to concentrations well below DWS in the vicinity of the extraction wells.

As described in the OU III ROD, the selected remedy to address the HFBR tritium plume included implementing monitoring and low-flow extraction programs to prevent or minimize the plume’s growth. Beginning in June 2000 and ending April 2001, 20 low-flow extraction events removed 95,000 gallons of tritiated water with concentrations greater than 750,000 pCi/L. This water was sent off site for disposal.

The OU III ROD contingencies are defined as either a detection of tritium above 25,000 pCi/L in monitoring wells at the Chilled Water Facility Road, or above 20,000 pCi/L in monitoring wells along Weaver Drive. The OU III ROD contingency of exceeding 20,000 pCi/L at Weaver Drive was triggered with a detection of 21,000 pCi/L in November 2006. In 2007, extraction well EW-16 was installed to supplement the three existing extraction wells and the system was restarted in November 2007 as per the ROD contingency.

The Petition For Shutdown, High Flux Beam Reactor, Tritium Plume Pump and Recharge System (BNL 2013e) was submitted to the regulatory agencies in March 2013 based on satisfaction of the criteria established in the 2008 Groundwater Status Report (BNL, 2009b) and documented in the Operations and Maintenance Plan for the High Flux Beam Reactor Tritium Plume Pump and Recharge System (BNL, 2009c). The petition was approved by the regulatory agencies in May 2013 and the extraction wells were placed in standby mode.

3.2.18.1 System Description

As a result of the implementation of the ROD contingency described above, operation of the system resumed in November 2007 and includes the pumping of wells EW-16 and EW-11. Extraction well EW-16 was installed approximately 400 feet north of the existing pumping and recharge wells located on Princeton Avenue (Figure 3.2.18-1). Extraction wells EW-9, EW-10, EW-11, and EW-16 are sampled at a quarterly frequency.

For a complete description of the HFBR Tritium Pump and Recharge System, see the Operations and Maintenance Manual for the High Flux Beam Reactor Tritium Plume Pump and Recharge System (BNL 2009c).

3.2.18.2 Groundwater Monitoring

Well Network

A monitoring well network of 60 wells is used to monitor the source area and verify the predicted attenuation of the plume (Figure 1-2).

Sampling Frequency and Analysis

Sampling details for the well network are provided on Table 1-5. Select wells are also analyzed for VOCs.

3.2.18.3 Monitoring Well Results

Figure 3.2.18-1 displays postings of fourth quarter 2014 data for each of the wells in the monitoring network. There were a total of three tritium detections observed during 2014 monitoring that exceeded the 20,000 pCi/L DWS. The highest concentration was 31,200 pCi/L in monitoring well
075-45 during the first quarter. This well is located immediately south of the HFBR building. Appendix C contains the complete set of monitoring well data. A north to south cross-sectional view of the monitoring area is shown on Figure 3.2.18-2. Tritium concentration trends for key monitoring wells are shown on Figure 3.2.18-3. The following is a summary of groundwater monitoring well results:

Background

Samples are collected from a network of two monitoring wells north of the HFBR. There were no detections of tritium in these wells during 2014. The wells serve as early detection points in the event that groundwater flow shifts to a more northerly direction and toward supply wells 10 and 11. Groundwater flow during 2014 was consistently to the south. Maintenance of the southerly flow in this area of the site is an ongoing goal of the BNL Water and Sanitary Planning Committee which meets regularly to discuss on-site pumping and recharge of groundwater. Supply wells 10 and 11 provided approximately 30% of the Laboratory's water supply in 2014. Although the use of eastern supply wells 10 and 11 during portions of the year resulted in changes in flow directions in several areas of the site (e.g., the g-2 tritium source area and the Waste Management Facility), did not have a significant impact on flow directions in the HFBR area.

HFBR to Brookhaven Avenue

Elevated tritium concentrations directly downgradient of the HFBR have been observed to correlate with high water-table elevation events. This results in water-table flushing of the unsaturated zone beneath the HFBR. The magnitude and frequency of these events has decreased over the previous four years. The highest concentration observed in this area during 2014 was 31,200 pCi/L in monitoring well 075-45. There have been a total of 25 tritium detections since 2011 exceeding the 20,000 pCi/L DWS all of which were in monitoring wells located between Brookhaven Avenue and the HFBR. The highest concentration during this period was 142,000 pCi/L in well 075-225 from July 2011. Figure 3.2.18-4 plots the highest tritium concentrations in monitoring wells located immediately downgradient of the HFBR for each sampling round over time. Based on the decreasing concentration trend it appears that the inventory of tritium beneath the HFBR that is affected by the water-table flushing has significantly decreased over the years.

Brookhaven Avenue to Princeton Avenue Firebreak Road

The remnant of the high concentration segment of the plume that BNL has been tracking since 2000/2001 when it was located in the vicinity of Temple Place and was subject to low-flow extraction remediation has attenuated to concentrations below the DWS. Peak tritium concentrations observed in this area have remained below the DWS since October 2009. The peak tritium concentration for 2014 in this area was 5,460 pCi/L in monitoring well 096-55.

The HFBR Pump and Recharge System was placed in standby mode during May 2013. EW-16 is currently sampled on a quarterly basis. A peak tritium concentration of 6,580 pCi/L was observed in this well in 2007. Since that time, concentrations have remained below 3,000 pCi/L. There has been no evidence of rebound during 2014 in either the area monitoring wells or the extraction wells.

3.2.18.4 System Operations

Extraction wells EW-9, EW-10, EW-11, and EW-16 were sampled quarterly and analyzed for tritium and VOCs in 2014. The treatment system was in standby mode throughout 2014. Table F-47 shows the effluent VOC and tritium data. Table F-48 shows VOC and tritium concentrations in the extraction wells.
3.2.18.5 System Evaluation
The OU III HFBR Tritium Pump and Recharge System and Monitoring Program can be evaluated based on the decision rules established for this program using the groundwater DQO process.

1. Is there a continuing source of contamination? If present, has the source area been remediated or controlled?
Yes, an increasingly smaller inventory of tritium remains in the unsaturated zone beneath the HFBR building. The highest concentration observed in the source area during 2014 was 31,200 pCi/L in monitoring well 075-45. As previously discussed, there were only three detections of tritium above the DWS in monitoring wells immediately downgradient of the HFBR in 2014. The steadily declining peak tritium concentrations in wells immediately downgradient of the HFBR are shown in **Figure 3.2.18-4**.

2. Were unexpected levels or types of contamination detected?
No. There were no unusual or unexpected concentrations/types of contaminants observed in the monitoring wells or the extraction wells associated with the HFBR Tritium Pump and Recharge System during 2014.

3. Is the plume attenuating as expected?
Yes. Based on the past several years of groundwater monitoring data the plume has attenuated to concentrations below DWS from Brookhaven Avenue south to the pump and recharge system extraction wells. Over the past several years there have been fewer tritium concentration detections in source area wells above the DWS. In addition, the magnitude of the concentrations has also significantly decreased as shown in **Figure 3.2.18-4**. A comparison of the plume from 1997 to 2014 is provided in **Figure 3.2.18-5** and clearly depicts the attenuation of the plume.

4. Has the downgradient migration of the plume been controlled?
Yes. The downgradient segment of the plume has been successfully remediated by a combination of pumping and natural attenuation to levels below the DWS. Groundwater modeling conducted in 2007 to address the downgradient high concentration plume segment approaching Weaver Drive predicted that the pump and recharge system would operate until approximately 2011-2013. Tritium, in what was formerly the downgradient high concentration segment of the plume, has remained below the DWS in all permanent and temporary wells since 2009.

5. Can individual extraction wells or the entire treatment system be shut down or placed in pulse pumping operation?
The regulatory agencies approved the Petition for Shutdown of this system in May 2013, and the system was placed in standby mode at that time.

5a. Are tritium concentrations in plume core wells above or below the 20,000 pCi/L DWS in the downgradient segment of the plume?
Tritium concentrations in this area during 2014 were below the DWS.

5b. Is there a significant concentration rebound in core wells and/or extraction wells following shutdown?
There has not been any indication of tritium concentration rebound in either the monitoring or extraction wells since they were placed in standby mode.
6. Has the groundwater cleanup goal of meeting MCLs been achieved?
The downgradient portion of the former plume south of Brookhaven Avenue has met cleanup goals. Monitoring of the source area will continue until tritium concentrations consistently remain below the DWS.

3.2.18.6 Recommendations
The following are recommendations for the HFBR AOC 29 Tritium Pump and Recharge System and monitoring program:

- The extraction wells remain in standby mode. One or more extraction wells can be restarted if tritium concentrations in the extraction wells rebound to concentrations above 20,000 pCi/L.

- Discontinue sampling of 24 monitoring wells located south of Temple Place as summarized in Table 3.2.18-1 following the third quarter 2015 sampling round. There is no longer a need to monitor south of Temple Place based on the attenuation of the leading edge of the plume and the limited releases of tritium being observed from the HFBR in recent years as discussed previously.

- Up to six new monitoring wells will be installed on the HFBR lawn area immediately north of Cornell Avenue. This will create a network that can detect future releases of tritium from the source area. Following the installation of these new wells, monitoring will also be discontinued for the 25 monitoring wells currently located along Cornell Avenue. The monitoring network for the HFBR going forward will consist of a network of wells located immediately north of Cornell Avenue.
3.3 OPERABLE UNIT IV

This section summarizes the data from the Building 650 and Sump Outfall Strontium-90 Monitoring Program that monitors a Sr-90 plume and offers conclusions and recommendations for monitoring.
This Page Intentionally Left Blank.
3.3.1 Building 650 and Sump Outfall Strontium-90 Monitoring Program

The Building 650 and Sump Outfall Strontium-90 Monitoring Program monitors a Sr-90 plume that derived from a remediated source area known as the former Building 650 Sump Outfall Area. This former source consisted of a depression (sump outfall) at the terminus of a discharge pipe from the building. The pipe conveyed discharges from a concrete pad located approximately 1,200 feet to the west, where radioactively contaminated clothing and equipment were decontaminated beginning in 1959 (Figure 3.3.1-1).

Remediation (by excavation) of the contaminated soils associated with the Building 650 sump outfall and removal of the pipe leading to the outfall, as well as soil, concrete, and asphalt associated with the former decontamination pad behind Building 650, were completed in 2002. Building 650 is included on the BNL Environmental Liabilities list of buildings that have contamination associated with them and will be addressed as funding is made available.

3.3.1.1 Groundwater Monitoring

Well Network

The network consists of 20 wells used to monitor the Sr-90 concentrations originating from the former Building 650 sump outfall area (Figure 1-2 and 3.3.1-1).

Sampling Frequency and Analysis

During 2014, the wells were monitored either annually or semiannually, and the samples were analyzed for Sr-90 (Table 1-5).

3.3.1.2 Monitoring Well Results

The complete monitoring well radionuclide sampling results can be found in Appendix C. The Sr-90 plume continues to migrate southward away from the former Building 650 sump outfall area. The migration rate of Sr-90 in the aquifer, based on observing Sr-90 concentration changes in monitoring wells over time, is approximately 20-40 feet per year. The locations of the monitoring wells and the Sr-90 concentrations are shown on Figure 3.3.1-1. The leading edge of the plume, as defined by the 8 pCi/L DWS is presently located immediately north of Brookhaven Avenue, based on the results over the past several years from monitoring wells 076-181 and 076-182.

Sr-90 concentrations in the source area continue to decrease as evidenced by data from wells 076-13 and 076-169 over the previous 16 years (Figure 3.3.1-2). The highest concentration observed in the plume during 2014 was in monitoring well 076-415 (132 pCi/L in March). The well was sampled subsequently in May and July and showed reduced Sr-90 concentrations of 16 pCi/L and 11 pCi/L, respectively.

A recommendation in the 2013 Groundwater Status Report called for a new sentinel well south of Brookhaven Avenue. Well installation work has not been possible in the targeted area due to the need to minimize disruptions to research activities at NSLS II. Several temporary wells are currently scheduled to be installed in this area during research hiatus in May 2015.

The groundwater model for this plume was updated in 2010 with temporary well data obtained in 2009/2010. The updated model predicts that the plume will attenuate to below the 8 pCi/L DWS by approximately 2034. The leading edge of the plume, as defined by the DWS, is predicted to advance no further than approximately 250 feet south of Brookhaven Avenue.

3.3.1.3 Groundwater Monitoring Program Evaluation

The monitoring program can be evaluated based on the decision rules identified from the groundwater DQO process.
1. **Is there a continuing source of contamination? If present, has the source area been remediated or controlled?**

Although the source area was remediated in 2002 there are still occasional detections of Sr-90 in groundwater above the DWS. Based on the Sr-90 concentrations in source area monitoring wells any residual contamination that may remain at depth in the unsaturated zone above the water table appears to be minimal. The residual contamination continues to be flushed by the rising and falling of the water table and precipitation.

2. **Were unexpected levels or types of contamination detected?**

All Sr-90 detections in 2014 were within the expected concentration range. There was an anomalous detection of Sr-90 in a March 2014 sample from well 076-415 of 132 pCi/L. A subsequent resample and the following two routine sample rounds showed a maximum concentration in this well of 16 pCi/L.

3. **Is the plume naturally attenuating as expected?**

Yes. The observed data are consistent with the attenuation model in terms of the extent and magnitude of Sr-90 contamination in groundwater.

4. **Has the groundwater cleanup goal of meeting MCLs been achieved?**

No. The performance objective for this project is to achieve Sr-90 concentrations below the DWS of 8 pCi/L. There were six wells exceeding this limit in 2014 (076-07, 076-13, 076-24, 076-415, 076-181 and 076-182). Therefore, the performance objectives have yet to be achieved. The removal of contaminated soils in 2002 addressed the predominate source of groundwater contamination. The groundwater plume continues to degrade due to natural attenuation (i.e., radioactive decay and dispersion).

3.3.1.4 **Recommendations**

The following are recommendations for the Building 650 and Sump Outfall Strontium-90 Monitoring Program:

- Continue the current monitoring frequency stated in Table 1-5 with the exception of well 076-13 for which the frequency will be increased to quarterly.

- Install several temporary wells immediately north of the NSLS-II for the purpose of siting a permanent sentinel monitoring well.
3.4 OPERABLE UNIT V

3.4.1 OU V Monitoring Program

The Sewage Treatment Plant (STP) processes sanitary wastewater from BNL’s research and support facilities. Treated effluent from the STP was discharged to the Peconic River under a NY SDEC SPDES permit until September 2014. Since October 2014, BNL’s STP effluent has been released to groundwater recharge basins. Historically, BNL’s STP received discharges of contaminants from routine operations. Releases of low-level contaminants to groundwater (in particular, VOCs, metals, and radionuclides) occurred via the STP sand filter beds and discharges to the Peconic River. The OU V project monitored the identified groundwater contamination downgradient of the STP.

Groundwater quality in the immediate vicinity of the STP is currently monitored under the Facility Monitoring Program, which is discussed in Section 4.4 of this document. On March 10, 2012, BNL issued a Petition to Discontinue Operable Unit V Groundwater Monitoring to the regulators for their review (BNL 2012d). Based on the recommendations and the regulatory comments, the groundwater monitoring program was reduced to one monitoring well, 000-122 in 2012. The last round of data from this well in 2013 indicated that all VOC concentrations were below AWQS. Based on the recommendation in the 2013 Groundwater Status Report, sampling of well 000-122 was discontinued. This completed the groundwater sampling requirements for OU V.
This Page Intentionally Left Blank.
3.5 OPERABLE UNIT VI EDB TREATMENT SYSTEM

The OU VI EDB Treatment System addresses an ethylene dibromide (EDB) plume in groundwater extending from south of North Street for approximately 3,000 feet. EDB was used during the 1970s as a fumigant for the BNL Biology Department’s biology fields located in the southeastern portion of the site (Figure 3.5-1). In 1995 and 1996, low levels of EDB were detected in groundwater near the fields. Higher levels were found migrating toward the southern site boundary and off site to the south. In addition, the depth of the plume increased within the Upper Glacial aquifer to the south. EDB has not been detected on BNL property since 2009.

3.5.1 System Description

A groundwater remediation system to address the off-site EDB plume began routine operations in August 2004. The OU VI EDB Treatment System consists of two extraction wells and two recharge wells (see Figure 3.5-1). A complete description of the system is included in the Operations and Maintenance Manual for the OU VI EDB Groundwater Treatment System (BNL 2004c).

3.5.2 Groundwater Monitoring

Well Locations

A network of 26 wells monitor the EDB plume from the BNL south boundary to locations on private property south of North Street (Figure 3.5-1).

Sampling Frequency and Analysis

The OU VI EDB plume monitoring program is in the O&M phase (Table 1-8). The sampling frequency for most of the plume core and perimeter wells is semiannual (Table 1-5). However, wells 000-178, 000-508, 000-519, 000-520, 000-524, and 000-527 were sampled at a quarterly frequency for the year. The wells are analyzed for EDB according to EPA Method 504. Samples are also analyzed annually for VOCs using EPA Method 524.2. Three wells are incorporated into the OU III South Boundary Radionuclide monitoring program and analyzed for tritium annually (Section 3.2.15).

3.5.3 Monitoring Well Results

Appendix C contains the complete analytical results of the OU VI EDB monitoring well sampling program. The distribution of the EDB plume for the fourth quarter of 2014 is shown on Figure 3.5-1. The leading edge of the plume is being captured by extraction wells EW-1E and EW-2E. The plume is located in the deep Upper Glacial aquifer as depicted on cross section M–M’ (Figure 3.5-2). See Figure 3.5-3 for historical EDB trends for key monitoring wells. A summary of key monitoring well data for 2014 follows:

- EDB concentrations in all core wells upgradient of well 000-178 have declined significantly over the past several years. EDB in well 000-178 has increased from late 2006 through 2012, indicating movement of the plume south. A 2012 sample detected 4.8 µg/L of EDB, which is an historical high for this well since it was installed in 1998. Since 2012, concentrations appear to be dropping off to a maximum of 2.5 µg/L in the first quarter 2014. This was also the maximum EDB detection in the plume in 2014. This well is upgradient of EW-2E. The federal DWS for EDB is 0.05 µg/L.

- Core well 000-507 has detected gradually increasing levels of EDB above the DWS since it was installed in 2005. In 2012, EDB concentrations reached an historical high for this well of 1.67 µg/L. Since 2013, concentrations have dropped slightly with a maximum EDB value of 0.72 µg/L in the fourth quarter 2014. This well is immediately upgradient of extraction well EW-1E.

- Monitoring well 000-520 was installed in March 2011 to monitor the eastern extent of the plume (Figure 3.5-1). This well is located next to the treatment system building. EDB concentrations in
this well ranged from 2.73 µg/L in 2011 to 0.036 µg/L in the fourth quarter of 2014. This contamination will be captured by the extraction wells. As shown on the cross section (Figure 3.5-2), this well is screened just above the Gardiners Clay (between 135 and 145 feet b.s.l.):

- **EDB** in the eastern perimeter monitoring well 000-524, installed in September 2012, remained below the DWS of 0.05 µg/L since 2013. This indicates that the lateral extent of the plume continues to be captured.
- New bypass monitoring well (000-527) was installed in September 2013 south of extraction well EW-2E to verify capture of the deeper contamination identified in monitoring well 000-178. This well is screened 10 feet deeper than adjacent bypass well 000-519. EDB was not detected in well 000-527 in 2013 or 2014. Remaining plume bypass wells 000-501, 000-508, and 000-519 have not detected EDB since 2005.

As noted above, the southern migration of the plume is observed by analyzing the trends on Figure 3.5-3. The core of the plume is located between the extraction wells and wells 000-283 and 000-284. Comparing the plume’s distribution from 1999 to 2014 (Figure 3.5-4), as well as the EDB concentrations in monitoring wells just south of North Street, helps to illustrate the southern movement of the plume. EDB was detected in well 000-110, located along North Street in both 2014 samples, but below the DWS. This indicates that the trailing edge of the plume has moved south. Overall, peak EDB concentrations declined from 7.6 µg/L in 2001 (in well 000-283) to 2.5 µg/L in 2014 (in monitoring well 000-178).

EDB was the only VOC detected above the standard in any OU VI well in 2014 (Appendix C).

3.5.4 System Operational Data

The sampling frequency of the extraction wells is quarterly. In conformance with the SPDES equivalency permit, the sampling frequency for the influent and effluent is monthly. All OU VI system samples were analyzed for VOCs and EDB, and the effluent sample was analyzed weekly for pH. **Table 3.5-1** provides the effluent limitations for meeting the requirements of the SPDES equivalency permit.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Permit Limit (µg/L)</th>
<th>Max. Measured Value (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH (range)</td>
<td>5.0 – 8.5 SU</td>
<td>5.6 – 7.7 SU</td>
</tr>
<tr>
<td>ethylene dibromide</td>
<td>0.03</td>
<td><0.02</td>
</tr>
<tr>
<td>chloroform</td>
<td>7.0</td>
<td>1.21</td>
</tr>
<tr>
<td>1,1-dichloroethene</td>
<td>5.0</td>
<td><0.50</td>
</tr>
<tr>
<td>1,1,1-trichloroethane</td>
<td>5.0</td>
<td><0.50</td>
</tr>
<tr>
<td>methyl chloride</td>
<td>5.0</td>
<td><0.50</td>
</tr>
<tr>
<td>methylene chloride</td>
<td>5.0</td>
<td>0.86B</td>
</tr>
</tbody>
</table>

Notes:

- Required sampling frequency is monthly for VOCs and weekly for pH.
- SU = Standard Units
- B = Compound also found in blank

Extraction Wells

During 2014, the system treated approximately 177 million gallons of water, with an average flow rate of approximately 348 gpm. **Table 2-2** contains the monthly pumping data for the two extraction wells, and **Table 3.5-2** shows the pumping rates. VOC concentrations for EW-1E (000-503) and EW-
2E (000-504) are provided on Table F-49. In 2014, the extraction wells had a maximum EDB detection of 0.047 µg/L in EW-1E in July. No other VOCs were detected in the extraction wells above the AWQS.

Figure 3.5-5 shows the EDB concentrations in the extraction wells over time. EDB levels in EW-1E have remained relatively stable since 2008, hovering around the DWS. EDB in EW-2E has been slowly increasing since 2008, with detections typically just below the DWS. The increase can be attributed to the higher EDB concentrations in the core of the eastern portion of the plume migrating south to this extraction well.

System Influent and Effluent

During 2014, OU VI EDB system discharge parameters were below the regulatory limit specified in the SPDES equivalency permit. Influent and effluent results are reported on Tables F-50 and F-51, respectively. EDB was detected in all of the monthly sampling events of the combined influent throughout 2014, with a maximum concentration of 0.07 µg/L.

Cumulative Mass Removal

No cumulative mass removal calculations were performed because of the typically low detections of EDB historically below the DWS in the system influent. EDB was detected in all four quarterly samples in both extractions wells; however, EDB was not detected above the standard in 2014. Several low-level VOCs not attributable to BNL were detected; the results are potentially due to analytical lab contamination and were all below the AWQS.

3.5.5 System Evaluation

Start-up of the system began in August 2004. The system is operating as designed; no operating difficulties were experienced beyond normal maintenance, and no permit equivalencies have been exceeded.

The OU VI EDB System performance can be evaluated based on decisions identified in the groundwater DQO process.

1. Is there a continuing source of contamination? If present, has the source area been remediated or controlled?
 No. There is no continuing source.

2. Were unexpected levels or types of contamination detected?
 No.

3. Has the downgradient migration of the plume been controlled?
 Yes. The hydraulic capture of the system is operating as designed. Based on the low detections of EDB in perimeter well 000-524, the eastern extent of the plume is defined at well 000-520. Bypass monitoring well 000-527 was installed in November 2013 to further ensure that the deeper portion of the plume is being captured by the extraction wells. EDB was not detected in the three bypass wells in 2013 and 2014.

4. Can individual extraction wells or the entire treatment system be shut down or placed in pulsed pumping operation?
 No, the system has not met all shutdown requirements of meeting DWS in the core monitoring wells and extraction wells. Although EDB concentrations in EW-2E are just below the DWS, concentrations have been increasing with the advance of the plume (see Figure 3.5-5). The plume has moved slower than originally simulated in the 2000 groundwater model. It was originally envisioned that the system would need to operate between eight to ten years. Due to the current location of the plume compared to the extraction wells, the system is expected to operate longer than expected. However, due to uncertainties, the groundwater model needs to be updated.
4a. Are EDB concentrations in plume core wells above or below 0.05 µg/L?
In 2014, six of ten plume core wells had concentrations greater than the 0.05 µg/L DWS.

4b. Is there a significant concentration rebound in core wells and/or extraction wells following shutdown?
To date, the OU VI EDB system has not been pulsed pumped or shut down.

5. Has the groundwater cleanup goal of meeting MCLs been achieved?
No. The DWS has not been achieved for EDB in plume core wells. However, it is expected to be achieved by 2030, as required by the OU VI ROD. The system will continue to operate through 2019.

3.5.6 Recommendations
The following recommendations are made for the OU VI EDB Treatment System and groundwater monitoring program:

- Maintain routine operations of the treatment system.
- Update the groundwater model to re-evaluate the projected system operation duration.
CHAPTER 3: CERCLA GROUNDWATER MONITORING AND REMEDIATION

3.6 SITE BACKGROUND MONITORING

Background water quality has been monitored since 1990. Historically, low levels of VOCs were routinely detected in several background wells that are screened in the deeper portions of the upper Glacial aquifer. Background quality is defined as the quality of groundwater that is completely unaffected by BNL operations.

3.6.1 Groundwater Monitoring

Well Network

The 2014 program included 10 wells in the northwestern portion of the BNL property (Figure 1-2).

Sampling Frequency and Analysis

The samples were collected annually and analyzed for VOCs (Table 1-5).

3.6.2 Monitoring Well Results

The complete groundwater analytical data for 2014 are provided in Appendix C. There were detections of low levels of several VOCs in the site background wells, all of which were below AWQS. The highest concentration detected was 0.25 µg/L of tetrachloroethene in well 017-03 (AWQS of 5 µg/L).

While radionuclides are no longer analyzed in background wells, historic results are presented for reference purposes. Table 3.6-1 summarizes the range of radionuclide values detected in background wells from 1996 through 2001.

3.6.3 Groundwater Monitoring Program Evaluation

The program can be evaluated using the decision rule developed as part of the groundwater DQO process.

1. Were unexpected levels or types of contamination detected?

No. There were no VOCs detected in site background wells above AWQS during 2014. Based on these results, there is no current impact to BNL groundwater quality from upgradient contaminant sources.

3.6.4 Recommendation

No changes to the monitoring program are warranted at this time.

Table 3.6-1. Radiological Background Monitoring, 1996 – 2001

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Activity Range (pCi/L)</th>
<th>Contract-Required Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesium-137</td>
<td><MDA to 7.24</td>
<td>12</td>
</tr>
<tr>
<td>Gross alpha</td>
<td><MDA to 2.66</td>
<td>1.5</td>
</tr>
<tr>
<td>Gross beta</td>
<td><MDA to 6.41</td>
<td>4.0</td>
</tr>
<tr>
<td>Strontium-90</td>
<td><MDA to 3.84</td>
<td>0.8</td>
</tr>
<tr>
<td>Tritium</td>
<td><MDA</td>
<td>300</td>
</tr>
</tbody>
</table>

Note:
<MDA = Less than minimum detectable activity
This Page Intentionally Left Blank.
3.7 CURRENT AND FORMER LANDFILL GROUNDWATER MONITORING

Groundwater monitoring data from both the Current and Former Landfills are discussed in detail in the BNL 2014 Environmental Monitoring Report, Current and Former Landfill Areas (BNL 2015a). The complete groundwater monitoring results for these programs are included in Appendix C.

3.7.1 Current Landfill Summary

Groundwater data show that, in general, contaminant concentrations have been decreasing following the capping of the landfill in 1995. By the end of 2014, the landfill had been capped for 19 years. Groundwater quality has been slowly improving. The trend in the data suggests that the cap is effective in mitigating groundwater contamination. Groundwater monitoring wells for the Current Landfill are shown on Figure 3.7-1. The following is a summary of the results from the samples collected during 2014:

- Benzene was detected in downgradient wells 087-11, 087-23, and 088-109 at concentrations above the groundwater standard with a maximum concentration of 2 µg/L. Chloroethane detected in well 088-109 was the only other VOC detected above groundwater standards. During 2014, chloroethane concentrations ranged up to 76 µg/L indicating that VOCs continue to emanate from the landfill. An analysis of the trends of VOCs indicated the concentrations are stable to decreasing. These concentrations are naturally attenuating and are not detected at the site boundary above the drinking water standard.

- Concentrations of landfill water chemistry parameters and metals such as ammonia and iron in several downgradient wells were above the upgradient values. This suggests that leachate continues to emanate from the landfill, but at low levels.

- Tritium continues to be detected in wells 087-27 and 088-109 downgradient of the Current Landfill, but at concentrations well below groundwater standards. This is consistent with historical observations. There have been no detections of radionuclides above the drinking water standards since 1998.

Although low levels of contaminants continue to be detected, the landfill controls are effective at reducing the impact of the Current Landfill on groundwater quality as evidenced by the improving quality of groundwater downgradient of the landfill.

3.7.2 Current Landfill Recommendations

The groundwater monitoring well network is adequate at this time. No changes to the monitoring frequency are needed.

3.7.3 Former Landfill Summary

Data show that contaminant concentrations decreased following the capping of the landfill in 1996. Contaminant concentrations downgradient of this landfill were relatively low prior to capping. The trend in the data suggests that the cap is effective in mitigating any remaining contamination from entering the groundwater. Based on VOC and Sr-90 concentration trends in downgradient wells, it appears that the landfill cap is performing as planned. Groundwater monitoring wells for the Former Landfill are shown on Figure 3.7-2. The following is a summary of the results from the samples collected during 2014:

- The Former Landfill Area is not a source of VOC contamination. No VOCs were detected above groundwater standards in 2014. VOC concentrations in the downgradient wells were at or near the minimum detectable limits.
Water chemistry parameters were detected at concentrations approximating those of historic background monitoring well results, indicating that leachate generation is minimal to nonexistent.

No metals exceeded the groundwater standards in wells downgradient of the Former Landfill Area. After replacing the pump in well 106-02 in 2013, the iron concentration has decreased from an historic high of 2,190 µg/L in 2012 to 148 µg/L in 2014. Therefore, it is concluded that the pump was the source of the iron in well 106-02.

The Former Landfill Area no longer appears to be a source of strontium-90 contamination. Only trace amounts of strontium-90 were detected near the Former Landfill Area with a maximum concentration of 3.7 pCi/L in well 097-64. The strontium-90 detected in wells 106-44, 106-45 and 106-64 has been decreasing with time and has been below groundwater standards since 2001.

The implemented landfill controls are effective, as evidenced by the improved quality of groundwater downgradient of the landfill.

3.7.4 Former Landfill Recommendations
The following is a recommendation for the Former Landfill Area monitoring:

- The groundwater monitoring well network is adequate at this time. No changes to the monitoring frequency are needed.
3.8 **g-2 Tritium Source Area and Groundwater Plume**

In November 1999, tritium was detected in the groundwater near the former g-2 experiment at concentrations above the 20,000 pCi/L DWS. Sodium-22 was also detected in the groundwater, but at concentrations well below the 400 pCi/L DWS. An investigation into the source of the contamination revealed that the tritium and sodium-22 originated from activated soil shielding located adjacent to the g-2 target building, where approximately five percent of the beam was inadvertently striking one of the beam line magnets (magnet VQ-12). Rainwater was able to infiltrate the activated soils and carry the tritium and sodium-22 into the groundwater. To prevent additional rainwater infiltration into the activated soil shielding, a concrete cap was constructed over the area in December 1999. The g-2 experiment was decommissioned in April 2001.

The g-2/BLIP/former UST ROD (BNL 2007a) requires continued routine inspection and maintenance of the impermeable cap, groundwater monitoring of the source area to verify the continued effectiveness of the stormwater controls, and monitoring the tritium plume until it attenuates to less than 20,000 pCi/L. Monitoring of the source area will continue as long as the activated soils have the potential to impact groundwater quality. Contingency actions have been developed if tritium levels exceeding 1,000,000 pCi/L are detected within the plume, or if the tritium plume does not attenuate to less than 20,000 pCi/L before reaching Brookhaven Avenue. In December 2011, tritium was detected above the 20,000 pCi/L trigger level in several temporary wells installed immediately south of Brookhaven Avenue, with a maximum concentration of 58,600 pCi/L. In response to exceeding the ROD trigger, BNL proposed the continued monitoring of the plume segment until tritium concentrations decreased to <20,000 pCi/L. Based upon the relatively small size of the plume segment and low tritium concentrations, active remediation to limit plume growth was not warranted.

3.8.1 g-2 Tritium Source Area and Plume Groundwater Monitoring

Well Network

The g-2 tritium plume is currently monitored in two areas: the source area (including the area to the east of Building 912), and the downgradient plume segment located south of Brookhaven Avenue. Monitoring of the source area is accomplished using six wells immediately downgradient of the source, and 12 wells southeast of Building 912 ([Table 1-6](#)). Monitoring of the downgradient tritium plume segment located south of Brookhaven Avenue is accomplished using temporary wells ([Figures 3.8-1](#)).

Sampling Frequency and Analysis

During 2014, the wells located immediately downgradient of the g-2 source area were monitored quarterly, and the samples were analyzed for tritium ([Table 1-6](#)). The wells located southeast of Building 912 were sampled two times during the year.

During January 2015, four temporary wells were installed to track the downgradient portion of the g-2 plume in the area south of Brookhaven Avenue, near the National Synchrotron Light Source II (NSLS II) facility ([Figure 3.8-1](#)).

3.8.2 g-2 Tritium Source Area and Plume Monitoring Well Results

The extent of the g-2 tritium plume during the fourth quarter of 2014 is depicted on [Figure 3.8-1](#). [Figure 3.8-2](#) provides a cross-sectional view of the plume.

Source Area Monitoring Results

The maximum tritium concentration in source area wells was 37,100 pCi/L in well 054-07 during the first quarter ([Figures 3.8-3 and 3.8-4](#)). Tritium that is traceable to the g-2 source area continues to be detected in monitoring wells located downgradient (southeast) of AGS Building 912. The maximum tritium concentration in this area was
24,100 pCi/L in a sample from well 065-324 collected during the second quarter. All tritium concentrations in wells downgradient of Building 912 were below the 20,000 pCi/L DWS by the fourth quarter.

Downgradient Areas of the Plume
The downgradient g-2 plume segment is located south of Brookhaven Avenue, near the NSLS-II facility (Figure 3.8-1). Four temporary wells were installed in January 2015 (Figure 3.8-1). Tritium was not detected above the 20,000 pCi/L DWS in any of the samples. The maximum tritium concentration of 14,900 pCi/L was detected in temporary well G2-GP-125. The cross sectional view of the plume segment is depicted on Figure 3.8-2. The monitoring results for the temporary wells are summarized on Table 3.8-1.

3.8.3 g-2 Tritium Source Area and Plume Groundwater Monitoring Program Evaluation
The 2014 monitoring data were evaluated using the following Data Quality Objective statements.

1. Is there a continuing source of contamination? If present, has the source been remediated or controlled?
Although tritium continues to be detected in the groundwater downgradient of the g-2 source area at concentrations that exceed the 20,000 pCi/L DWS, the overall reduction in tritium concentrations since 1999 indicates that the cap is effectively preventing rainwater from infiltrating the activated soil shielding. A comparison of tritium levels in the source area monitoring wells and water-table elevation data suggests that periodic natural fluctuations in the water table have released residual tritium from the deep vadose zone (i.e., unsaturated soil immediately above the water table). There appears to be good correlation between high tritium concentrations detected in monitoring wells immediately downgradient of the source area and the water-table elevation about one year before the sampling (Figure 3.8-3). It is believed that this tritium was mobilized to the deep vadose zone soil close to the water table before the cap was constructed in December 1999. Once the cap was in place, the lack of additional rainwater infiltration kept the tritium in the vadose zone from migrating into the groundwater until the significant rise in water table mobilized it.

2. Were unexpected levels of tritium detected?
The observed tritium levels in the source area monitoring wells are consistent with previous surveillance results. Over time, the amount of tritium remaining in the vadose zone near the water table is expected to decrease by means of the natural water table flushing mechanism and by natural radioactive decay. Compared to previous monitoring results, during 2014 tritium was not detected in the groundwater south of Brookhaven A venue at concentrations above the 20,000 pCi/L DWS.

3. Is the plume naturally attenuating as expected?
With the effectiveness of the source area controls, the plume segment immediately downgradient of the source area is attenuating as expected. Furthermore, results from the temporary wells installed in January 2015 indicate that tritium in the plume segment located south of Brookhaven A venue has attenuated to less than 20,000 pCi/L.

4. Has the groundwater cleanup goal of meeting MCLs been achieved?
Not at this time. Tritium concentrations in groundwater immediately downgradient of the g-2 source area continue to exceed the MCL. However, results of monitoring conducted in early 2015 indicate that tritium concentrations in the plume segment that was located south of Brookhaven A venue have attenuated to below the MCL.
3.8.4 g-2 Tritium Source Area and Plume Recommendations

The following are recommended for the g-2 tritium source area and plume groundwater monitoring program:

- As required by the ROD, BNL will continue to conduct routine inspections of the g-2 cap and monitor groundwater quality downgradient of the source area. Because tritium concentrations in the wells immediately downgradient of the source area have been continuously less than 50,000 pCi/L for nearly three years, reduce the sampling frequency from quarterly to semiannually starting in 2015.

- Reduce the sampling frequency of the Building 912 area wells that are used to track the g-2 tritium plume from semiannually to annually.

- Install several additional Geoprobe wells in the vicinity of the NSLS-II during the summer of 2015 to verify that tritium concentrations in the downgradient plume segment have decreased to less than the 20,000 pCi/L DWS. If verified, discontinue monitoring the remnants of the g-2 plume in the area south of Brookhaven A venue.
3.9 BROOKHAVEN LINAC ISOTOPE PRODUCER (BLIP)

When the Brookhaven Linac Isotope Producer (BLIP) is operating, the Linac delivers a beam of protons that strike a series of targets in the BLIP target vessel, positioned at the bottom of a 30-foot underground tank. The targets rest inside a water-filled, 18-inch-diameter shaft that runs the length of the tank, and are cooled by a 300-gallon, closed-loop primary cooling system. During irradiation of the targets, radionuclides are produced in the cooling water and the soil immediately outside the tank by the neutrons created at the target.

In 1998, tritium concentrations of 52,000 pCi/L and sodium-22 up to 151 pCi/L were detected in the groundwater approximately 40 feet downgradient of the BLIP target vessel. Due to the activation of the soil shielding surrounding the BLIP target vessel and the detection of tritium and sodium-22 in groundwater, the BLIP facility was designated as sub-AOC 16K under the IAG.

In 1998, BNL made improvements to the stormwater management program at BLIP in an effort to prevent additional rainwater infiltration into the activated soil below the building. In May and June 2000, BNL undertook additional protective measures by injecting colloidal silica grout (also known as a Viscous Liquid Barrier) into the activated soil. The grout reduces the permeability of the soil, thus further reducing the ability of rainwater to leach tritium and sodium-22 from the activated soils should the primary stormwater controls fail.

In late 2004, BNL constructed a protective cap over the beam line that runs from the Linac to the BLIP facility. The cap was installed because direct soil measurements and beam loss calculations indicated that the tritium and sodium-22 concentrations in soils surrounding these beam lines could result in stormwater leachate concentrations that exceed the criteria described in the Accelerator Safety SBM S (Standards Based Management System) subject area.1

A ROD was signed in early 2007 (BNL 2007a). The ROD requires continued routine inspection and maintenance of the impermeable cap, and groundwater monitoring to verify the continued effectiveness of the stormwater controls. Maintenance of the cap and groundwater monitoring will continue for as long as the activated soils have the potential to impact groundwater quality.

3.9.1 BLIP Groundwater Monitoring

Well Network

The monitoring well network for the BLIP facility consists of one upgradient and three downgradient wells (Table 1-6). These wells provide a means of verifying that the stormwater controls described above are effective in protecting groundwater quality (Figure 3.9-1).

Sampling Frequency and Analysis

During 2014, upgradient well 064-46 was sampled once, and the three downgradient wells (064-47, 064-48, 064-67) were monitored twice. The groundwater samples were analyzed for tritium (Table 1-6).

3.9.2 BLIP Monitoring Well Results

Monitoring results indicate that the stormwater controls are highly effective in preventing the release of tritium from the activated soil surrounding the BLIP target vessel. Since April 2006, tritium levels have remained below the 20,000 pCi/L DWS. During 2014, the maximum tritium concentration was 680 pCi/L in the second quarter sampling of well 064-67. Tritium was not detected in any of the wells during the fourth quarter of 2014.

1 The BNL Accelerator Safety SBM S subject area requires stormwater controls where rainwater infiltration into activated soil shielding could result in leachate concentrations that exceed five percent of the drinking water standard for tritium (i.e., 1,000 pCi/L) or 25 percent of the drinking water standard for sodium-22 (i.e., 100 pCi/L).
3.9.3 BLIP Groundwater Monitoring Program Evaluation

The 2014 monitoring data were evaluated using the following Data Quality Objective statements.

1. Is there a continuing source of contamination? If present, has the source been remediated or controlled?

Although low levels of tritium continue to be detected in the groundwater downgradient of BLIP, the tritium concentrations have remained below the 20,000 pCi/L DWS since early 2006. The decline in tritium concentrations indicates that the stormwater controls are effectively preventing the leaching of tritium from the activated soils.

2. Were unexpected levels of contamination detected?

The observed tritium levels are consistent with previous surveillance results.

3. Has the groundwater cleanup goal of meeting MCLs been achieved?

Yes. However, the activated soil shielding below the BLIP facility needs to be protected from rainwater infiltration. Therefore, the cap needs to be maintained and groundwater surveillance is required to verify the continued effectiveness of the stormwater controls.

3.9.4 BLIP Recommendation

The following is recommended for the BLIP groundwater monitoring program:

- As required by the ROD, BNL will continue to conduct routine inspections of the cap, and to monitor groundwater quality downgradient of the BLIP facility.

- Because tritium levels in groundwater have remained below the 20,000 pCi/L MCL/DWS since January 2006, the monitoring frequency for downgradient monitoring wells 064-47, 064-48, and 064-67 will continue to be semiannual. Sampling frequency for upgradient well 064-46 will continue to be annually.
4.0 FACILITY MONITORING PROGRAM SUMMARY

During 2014, the Facility Monitoring Program at BNL monitored the groundwater quality at 12 research and support facilities. New York State operating permits require groundwater monitoring at the Major Petroleum Facility, Waste Management Facility, and the Sewage Treatment Plant; the remaining research and support facilities are monitored in accordance with DOE Orders 458.1 (Radiation Protection of the Public and the Environment) and 436.1 (Departmental Sustainability) or CERCLA Records of Decision. DOE Orders require the Laboratory to establish environmental monitoring programs at facilities that can potentially impact environmental quality, and to demonstrate compliance with DOE requirements and the applicable federal, state, and local laws and regulations. CERCLA Records of Decision define the monitoring requirements and remedial actions for the Building 452 Freon-11 plume, g-2 tritium source area and plume, and the Brookhaven Linac Isotope Producer (BLIP) source area. BNL uses monitoring data to determine whether current engineered and administrative controls effectively protect groundwater quality, determine whether additional corrective actions are needed, and to determine the effectiveness of remedial actions.

During 2014, 125 groundwater monitoring wells were sampled during 223 sampling events. BNL also installed seven temporary wells to monitor the g-2 Tritium Plume and the Building 452 Freon-11 plume. Approximately 40 groundwater samples were collected using the temporary wells. Table 1-6 summarizes the Facility Monitoring Program by project. Complete analytical results from groundwater samples collected in 2014 are provided in Appendix D. Monitoring results for the Building 452 Freon-11 plume, g-2 source area and tritium plume, and BLIP source area are presented in Sections 3.2.3, 3.8, and 3.9, respectively. Information on groundwater quality at each of the remaining monitored research and support facilities is described below.
This Page Intentionally Left Blank.
4.1 ALTERNATING GRADIENT SYNCHROTRON (AGS) COMPLEX

The structures that constitute the AGS Complex include the AGS Ring, Linear Accelerator (Linac), BLIP, Building 912, AGS Booster Beam Stop, 914 Transfer Tunnel, former g-2 experimental area, former E-20 Catcher, former U-Line Beam Target, and the J-10 Beam Stop. Activated soil has been created near a number of these areas as the result of secondary particles (primarily neutrons) produced at beam targets and beam stops. A number of radionuclides can be produced by the interaction of secondary particles with the soil that surrounds these experimental areas. Once produced in the soils, some of these radionuclides can be leached from the soils by rainwater, and carried to the groundwater. Of the radionuclides formed in the soil, only tritium (half-life = 12.3 years) and sodium-22 (half-life = 2.6 years) are detected in groundwater. Of these two radionuclides, tritium is more easily leached from the activated soils by rainwater and does not bind to soil particles. When tritium enters the water table, it migrates at the same rate as groundwater flow (approximately 0.75 feet per day). Sodium-22 does not leach out of the soil as readily as tritium, and migrates at a slower rate in the aquifer. The drinking water standard (DWS) for tritium is 20,000 pCi/L, and the standard for potassium-22 is 400 pCi/L.

To prevent rainwater from leaching these radionuclides from the soil, impermeable caps have been constructed over many of the activated soil shielding areas. Specifications for evaluating potential impacts to groundwater quality and the need for impermeable caps over beam loss areas are defined in the BNL Accelerator Safety subject area.1 BNL uses 57 groundwater monitoring wells to evaluate the impact of current and historical operations at the AGS beam stop and target areas. The locations of permanent monitoring wells are shown on Figure 4.1-1. The wells are routinely monitored for tritium because it is the best early indicator of a possible release (i.e., tritium is more leachable than sodium-22, and it migrates at the same rate as groundwater).

In the late 1990’s, BNL detected four tritium plumes that originated from the AGS complex: the g-2 experimental area (Section 3.8), the BLIP facility (Section 3.9), the former U-Line beam stop (Section 4.1.8), and the former E-20 Catcher (Section 4.1.4). The subsequent installation of impermeable caps over these soil activation areas resulted in a reduction of tritium levels to less than the 20,000 pCi/L DWS in the BLIP, former U-Line beam stop, and E-20 Catcher areas. Tritium continues to be detected downgradient of the g-2 soil activation area at concentrations that exceed 20,000 pCi/L.

4.1.1 AGS Building 912

Building 912 consists of five interconnected structures that were used to house four experimental beam lines (A, B, C, and D lines). Although beam line operations ended in 2002, BNL is planning to relocate the Accelerator Test Facility to Building 912.

Beam losses at the target areas resulted in the activation of the adjacent floor, and probably the soil beneath the floor. The highest levels of soil activation beneath Building 912 are expected at the former C-Line target cave. Stormwater infiltration around the building is controlled by paving and stormwater drainage systems that direct most of the water to recharge basins north of the AGS complex.

4.1.1.1 AGS Building 912 Groundwater Monitoring

Well Network

Twenty-three shallow Upper Glacial aquifer wells are positioned upgradient and downgradient of Building 912 (Figure 4.1-1). Upgradient wells are positioned to monitor potential tritium contamination from sources such as the g-2 area and the former U-Line experimental area. The downgradient wells are positioned to monitor the significant (former) beam stop and target areas in Building 912. Some of the

1 The BNL Accelerator Safety SBMS subject area requires stormwater controls where rainwater infiltration into activated soil shielding could result in leachate concentrations that exceed five percent of the drinking water standard for tritium (i.e., 1,000 pCi/L) or 25 percent of the drinking water standard for sodium-22 (i.e., 100 pCi/L).
downgradient wells are also used to track a section of the g-2 tritium plume that has migrated underneath Building 912 (Section 3.8).

Sampling Frequency and Analysis
During 2014, the 10 Building 912 wells that are also used to track the g-2 tritium plume were sampled two times, whereas the remaining 13 wells were sampled annually. The groundwater samples were analyzed for tritium (Table 1-6).

4.1.1.2 AGS Building 912 Monitoring Well Results
As in past years, low-level tritium contamination that is traceable to the g-2 source area continues to be detected in some of the wells located downgradient of Building 912 (Figure 4.1-1). During 2014, tritium from the g-2 tritium source area was detected in four wells (065-122, 065-123, 065-124, and 065-324), with a maximum concentration of 24,100 pCi/L detected in a sample collected from well 065-324 in April. All tritium concentrations were less than the 20,000 pCi/L DWS in samples collected in October. Tritium was not detected in the groundwater samples collected from the remainder of the Building 912 area wells.

4.1.1.3 AGS Building 912 Groundwater Monitoring Program Evaluation
The 2014 monitoring data were evaluated using the following Data Quality Objective statement.

1. Is there a continuing source of contamination? If present, has the source been remediated or controlled?
 Activated soils are present below the floor slab at Building 912. During 2014, tritium was not detected in areas not impacted by the g-2 tritium plume, which indicates that the building and associated stormwater management operations are effectively preventing rainwater infiltration into the activated soil below the experimental hall.

4.1.1.4 AGS Building 912 Recommendations
The following is recommended for the AGS Building 912 groundwater monitoring program:
• For 2015, reduce the sampling frequency for the ten of the Building 912 wells used to track the g-2 tritium plume from semiannually to annually. Therefore, all Building 912 monitoring wells will be sampled annually.

4.1.2 AGS Booster Beam Stop
The AGS Booster is a circular accelerator that is connected to the northwest portion of the main AGS Ring and to the Linear Accelerator (Linac). The AGS Booster, which has been in operation since 1994, is used to accelerate protons and heavy ions before injecting them into the main AGS ring. In order to dispose of the beam during studies, a beam stop system was originally constructed at the 10 to 11 o’clock portion of the Booster. In 1999, the beam stop was repositioned to the south side (6 o’clock section) of the Booster ring to allow for the construction of the NASA Space Radiation Laboratory (NSRL) tunnel.

Although internal shielding around the beam stop was designed to keep secondary particle interactions with the soil to very low levels, a geomembrane cap was constructed over the original beam stop region to prevent stormwater infiltration into the activated soil. When the beam stop was repositioned to the 6 o’clock region of the Booster, a coated concrete cap was constructed over the area.
4.1.2.1 AGS Booster Groundwater Monitoring

Well Network
Two shallow Upper Glacial aquifer monitoring wells (064-51 and 064-52) are used to monitor the Booster beam stop area (Figure 4.1-1).

Sampling Frequency and Analysis
During 2014, the Booster area wells were sampled two times, and the samples were analyzed for tritium (Table 4.1-6). Samples were collected in January 2014 due to a delay in the sampling of the wells originally scheduled for December 2013, and during the scheduled December 2014 monitoring period.

4.1.2.2 AGS Booster Monitoring Well Results
Although low levels of tritium were detected in the Booster area wells during 2001 and 2002 (up to 1,340 pCi/L in well 064-52), tritium has not been detected in the Booster area wells since that time (Figure 4.1-2).

4.1.2.3 AGS Booster Groundwater Monitoring Program Evaluation
The groundwater monitoring results were evaluated using the following Data Quality Objective statement.

1. Is there a continuing source of contamination? If present, has the source been remediated or controlled?
Activated soil shielding is present in the areas of the current and former Booster beam stops. The low levels of tritium detected in groundwater during 2001 and 2002 near the Booster were related to a short-term uncovering of activated soil shielding near the former booster beam stop during the construction of the tunnel leading from the Booster to the NSRL facility. This work, which began in September 1999 and was completed by October 1999, allowed rainwater to infiltrate the low-level activated soil shielding. Because tritium has not been detected in the Booster area monitoring wells since 2002, the caps have been effectively preventing rainwater infiltration into the activated soil shielding.

4.1.2.4 AGS Booster Recommendation
The following is recommended for the AGS Booster groundwater monitoring program:

- For 2015, the monitoring frequency for the Booster area monitoring wells will continue to be annually.

4.1.3 NASA Space Radiation Laboratory (NSRL)
The NSRL is jointly managed by the U.S. Department of Energy and NASA’s Johnson Space Center. The NSRL uses beams of heavy ions extracted from Booster accelerator for radiobiology studies. NSRL became operational in 2003. Although the secondary particle interactions with the surrounding soil shielding are expected to result in only a minor level of soil activation, a geomembrane cap was constructed over the entire length of the beam line and the beam stop region to prevent stormwater infiltration into the soil shielding.

2 Before construction of the NSRL tunnel commenced, soil samples were collected by drilling through the tunnel wall near the former booster beam stop to verify that the tritium and sodium-22 levels were within acceptable limits for worker safety and environmental protection.
4.1.3.1 NSRL Groundwater Monitoring

Well Network
This facility is monitored by shallow Upper Glacial aquifer monitoring wells 054-08, 054-62 and 054-191 (Figure 4.1-1).

Sampling Frequency and Analysis
The NSRL monitoring well 054-08 was monitored in January 2014 due to a delay in the December 2013 sample schedule, and during the scheduled December 2014 sample period along with wells 054-62 and 054-191. The samples were analyzed for tritium (Table 1-6).

4.1.3.2 NSRL Monitoring Well Results
During 2014, tritium was not detected in the NSRL monitoring wells.

4.1.3.3 NSRL Groundwater Monitoring Program Evaluation
The groundwater monitoring results were evaluated using the following Data Quality Objective statement.

1. Is there a continuing source of contamination? If present, has the source been remediated or controlled?
Activated soil shielding at the NSRL is being protected by an impermeable cap. Based on monitoring conducted to date, NSRL beam line operations have not impacted groundwater quality in the area.

4.1.3.4 NSRL Recommendation
The following is recommended for the NSRL groundwater monitoring program:
- For 2015, the monitoring frequency for the NSRL wells will continue to be annually.

4.1.4 Former AGS E-20 Catcher
The E-20 Catcher was in operation from 1984 to 1999, and was located at the 5 o’clock position of the AGS ring (Figure 4.1-1). The E-20 Catcher was used to pick up or “scrape” protons that moved out of acceptable pathways.

Like other beam loss areas in the AGS complex, the soil surrounding the former E-20 Catcher became activated by the interaction with secondary particles. In late 1999 and early 2000, tritium and sodium-22 levels in groundwater were found to exceed the DWS, with concentrations up to 40,400 pCi/L and 704 pCi/L, respectively. In April 2000, a temporary impermeable cap was installed over the E-20 Catcher area, and a permanent cap was constructed by October 2000. Tritium and sodium-22 concentrations dropped to below the DWS soon after the cap was installed.

4.1.4.1 Former AGS E-20 Catcher Groundwater Monitoring
Well Network
To verify the continued effectiveness of the impermeable cap over the former E-20 Catcher, the area is monitored by three shallow Upper Glacial aquifer wells (064-55, 064-56, and 064-80) (Figure 4.1-1).

Sampling Frequency and Analysis
During 2014, the former E-20 Catcher wells were monitored one time, and the samples were analyzed for tritium (Table 1-6). Since 2002, groundwater samples from this area have only been analyzed for tritium.
4.1.4.2 Former AGS E-20 Catcher Monitoring Well Results
Following the installation of the cap in 2000, tritium and sodium-22 concentrations decreased to levels below applicable DWS (Figure 4.1-3). During 2014, the maximum level of tritium was detected in well 064-55, at a concentration of 613 pCi/L.

4.1.4.3 Former AGS E-20 Catcher Groundwater Monitoring Program Evaluation
The 2014 monitoring data were evaluated using the following Data Quality Objective statement.

1. Is there a continuing source of contamination? If present, has the source been remediated or controlled?
Activated soil shielding at the former E-20 Catcher is being protected by an impermeable cap. The reduction in tritium concentrations since the impermeable cap was constructed in 2000 indicates that the cap has been effective in preventing rainwater infiltration into the activated soil that surrounds this portion of the AGS tunnel.

4.1.4.4 Former AGS E-20 Catcher Recommendation
The following is recommended for the AGS E-20 Catcher groundwater monitoring program:
- For 2015, the monitoring frequency for the former E-20 Catcher wells will continue to be annually.

4.1.5 AGS Building 914
Building 914 houses the beam transfer line between the AGS Ring and the Booster. Due to beam loss near the facility’s extraction (kicker) magnet, the extraction area of Building 914 is heavily shielded with iron. Because the extraction area is housed in a large building, most soil activation is expected to be below the floor of the building, where it is protected from rainwater infiltration.

4.1.5.1 AGS Building 914 Groundwater Monitoring
Well Network
Groundwater quality downgradient of the AGS Building 914 transfer line area is monitored by shallow Upper Glacial aquifer wells 064-03, 064-53, and 064-54 (Figure 4.1-1).

Sampling Frequency and Analysis
During 2014, the AGS Building 914 area wells were monitored one time, and samples were analyzed for tritium (Table 1-6).

4.1.5.2 AGS Building 914 Monitoring Well Results
Although low levels of tritium (up to 1,000 pCi/L) had been periodically detected in the groundwater downgradient of the Building 914 prior to 2009, tritium has not been detected in the groundwater samples since that time (Figure 4.1-4).

4.1.5.3 AGS Building 914 Groundwater Monitoring Program Evaluation
The 2014 monitoring data were evaluated using the following Data Quality Objective statement.

1. Is there a continuing source of contamination? If present, has the source been remediated or controlled?
The lack of detectable levels of tritium since 2008 indicates that the building structure and associated stormwater controls are effectively preventing significant rainwater infiltration into activated soil below the building. Continued surveillance of groundwater quality in the Building 914 area is required.
4.1.5.4 AGS Building 914 Recommendation

The following is recommended for the AGS Building 914 groundwater monitoring program:

- For 2015, the monitoring frequency for the AGS Building 914 area wells will continue to be annually.

4.1.6 Former g-2 Beam Stop

The g-2 experiment operated from April 1997 until April 2001. The g-2 Beam Stop is composed of iron and is covered by soil shielding. Like other beam loss areas in the AGS complex, the g-2 beam stop was an area where the soil surrounding the stop became activated by the interaction with secondary particles. To prevent rainwater from infiltrating the soil surrounding the beam stop, BNL installed a gunite cap over the stop area before the start of beam line operations.

In November 1999, tritium and sodium-22 were detected in groundwater monitoring wells approximately 250 feet downgradient of the g-2 experimental area. An investigation into the source of the contamination revealed that the tritium originated from activated soil shielding adjacent to the g-2 experiment’s VQ-12 magnet. The VQ-12 magnet section of the beam line was not a designed beam loss area, and the gunite cap installed over the nearby beam stop did not protect this area. In December 1999, an impermeable cap was installed over the VQ-12 soil activation area. This cap was joined to the previously installed beam stop cap. In September 2000, the activated soil shielding adjacent to the VQ-12 magnet and associated tritium plume were designated as new sub-Area of Concern 16T. The selected remedial actions for the g-2 tritium source area and plume are documented in a ROD that was signed in May 2007 (BNL 2007a). The monitoring program for the g-2 tritium source area and plume are described in Section 3.8.

4.1.6.1 Former g-2 Beam Stop Groundwater Monitoring

Well Network

Groundwater quality downgradient of the former g-2 beam stop is monitored using wells 054-67, 054-124, 054-125, and 054-126 (Figure 4.1-1). These wells are cross gradient of the VQ-12 source area monitoring wells described in Section 3.8.

Sampling Frequency and Analysis

During 2014, former g-2 Beam Stop wells 054-67 and 054-125 were monitored annually, and the samples were analyzed for tritium. Wells 054-124 and 054-126 were sampled quarterly for tritium under the g-2 tritium plume source area program (Table 1-6).

4.1.6.2 Former g-2 Beam Stop Monitoring Well Results

During 2014, tritium was detected in well 054-124, with a maximum concentration of 1,700 pCi/L during the fourth quarter. Tritium was not detected in the other wells.

4.1.6.3 Former g-2 Beam Stop Groundwater Monitoring Program Evaluation

The 2014 monitoring data were evaluated using the following Data Quality Objective statement.

1. Is there a continuing source of contamination? If present, has the source been remediated or controlled?

Although low levels of tritium were detected during 2014 in well 054-124, the tritium is believed to have originated from the nearby g-2 VQ-12 source area. The occasional detection of low levels of tritium in well 054-124 is likely due to periodic, short-term easterly shift in groundwater flow directions in that area caused by significant water withdrawals from nearby potable water supply well 10. Overall monitoring results for the past fifteen years indicate that the cap over the former beam stop is effectively preventing rainwater from infiltrating the activated soil shielding.
4.1.6.4 Former g-2 Beam Stop Recommendation
The following is recommended for the former g-2 beam stop groundwater monitoring program:

- During 2015, g-2 beam stop area wells 054-67 and 054-125 will continue to be monitored on an annual basis, whereas wells 054-124 and 054-126 will be monitored semiannually under the g-2 tritium plume source area program.

4.1.7 AGS J-10 Beam Stop
In 1998, BNL established a beam stop at the J-10 (12 o’clock) section of the AGS Ring, replacing the E-20 Catcher as the preferred repository for any beam that might be lost in the AGS Ring (Figure 4.1-1). The J-10 beam stop area of the AGS Ring is covered by layers of soil-crete (a sand and concrete mixture), which reduce the ability of rainwater to infiltrate the potentially activated soil shielding. A gunite cap was constructed over a small section of the J-10 region that did not have a soil-crete cover before beam stop operations began.

4.1.7.1 AGS J-10 Beam Stop Groundwater Monitoring
Well Network
The monitoring well network for the J-10 beam stop consists of downgradient wells 054-63 and 054-64 (Figure 4.1-1).

Sampling Frequency and Analysis
During 2014, the J-10 beam stop wells were monitored one time and the samples were analyzed for tritium (Table 1-6).

4.1.7.2 AGS J-10 Beam Stop Monitoring Well Results
Tritium has not been detected in the J-10 area wells since 2010 (Figure 4.1-5).

4.1.7.3 AGS J-10 Beam Stop Monitoring Program Evaluation
The 2014 monitoring data were evaluated using the following Data Quality Objective statement.

1. Is there a continuing source of contamination? If present, has the source been remediated or controlled?
Groundwater monitoring results indicate that the engineered controls in place at J-10 are preventing significant rainwater infiltration into the activated soil shielding. However, the occasional detection of low levels of tritium (up to 1,000 pCi/L) prior to 2010 indicates some water was periodically infiltrating through the activated soil shielding. Continued groundwater monitoring is required to verify the long-term effectiveness of the controls.

4.1.7.4 AGS J-10 Beam Stop Recommendation
The following is recommended for the AGS J-10 Beam Stop groundwater monitoring program:

- During 2015, the J-10 Beam Stop area wells will continue to be sampled on an annual basis.

4.1.8 Former AGS U-Line Beam Target and Stop Areas
The U-Line beam target area was in operation from 1974 through 1986. The entire assembly was in a ground-level tunnel covered with an earthen berm. Although the U-Line beam target has not been in operation since 1986, the associated tunnel, shielding, and overlying soil remain in place. The former U-Line target and beam stop are areas where secondary particles interacted with soil surrounding the tunnel.

In late 1999, BNL installed monitoring wells downgradient of the former U-Line target area to evaluate whether residual activated soil shielding was impacting groundwater quality. Low levels of tritium and sodium-22 were detected, but at concentrations well below the applicable DWS. In early
2000, temporary wells were installed downgradient of the former U-Line beam stop, which is approximately 200 feet north of the target area. Tritium was detected at concentrations up to 71,600 pCi/L. Sodium-22 was not detected in any of the samples. During 2000, an impermeable cap was installed over the former U-Line beam stop area to prevent rainwater infiltration and the continued leaching of radionuclides out of the soil shielding.

4.1.8.1 Former AGS U-Line Groundwater Monitoring Well Network

The former U-Line area is monitored by one upgradient well (054-127), three downgradient wells that monitor the former U-Line target area (054-66, 054-129, and 054-130), and three wells that monitor downgradient of the former U-Line beam stop area (054-128, 054-168, and 054-169) (Figure 4.1-1). Sampling Frequency and Analysis

During 2014, the former U-Line area wells were monitored one time, and the samples were analyzed for tritium (Table 4.1-6).

4.1.8.2 Former AGS U-Line Groundwater Monitoring Well Results

Former U-Line Target Area

Tritium has not been detected in the former U-Line Target area wells since 2010 (Figure 4.1-6).

Former U-Line Beam Stop Area

Tritium has not been detected in the former U-Line Beam Stop area wells since 2011 (Figure 4.1-7).

4.1.8.3 Former AGS U-Line Groundwater Monitoring Program Evaluation

The 2014 monitoring data were evaluated using the following Data Quality Objective statement.

1. Is there a continuing source of contamination? If present, has the source been remediated or controlled?

The significant decrease in tritium concentrations in groundwater since 2000 indicates that the impermeable cap installed over the former U-Line Beam Stop has been effective in stopping rainwater infiltration into the residual activated soil. Monitoring of the groundwater downgradient of the former U-Line target indicates that only low levels of tritium are being periodically released.

4.1.8.4 Former AGS U-Line Recommendation

The following is recommended for the former AGS U-Line groundwater monitoring program:

- For 2015, the former U-Line area wells will continue to be monitored for tritium on an annual basis.
4.2 RELATIVISTIC HEAVY ION COLLIDER (RHIC)

Beam line interactions at the Relativistic Heavy Ion Collider (RHIC) Collimators and Beam Stops produce secondary particles that interact with soil surrounding the 8 o’clock and 10 o’clock portions of the RHIC tunnel and the W-Line Stop (Figure 4.2-1). These interactions result in the production of tritium and sodium-22, which can be leached out of the soil by rainwater. Although the level of soil activation is expected to be minor, before RHIC operations began in 2000 BNL installed impermeable caps over these beam loss areas to prevent potential impact to groundwater quality.

4.2.1 RHIC Groundwater Monitoring

Well Network

Thirteen shallow wells are used to verify that the impermeable caps and operational controls implemented at the RHIC beam stops and collimators are effective in protecting groundwater quality. Six of the monitoring wells are located in the 10 o’clock beam stop area, six wells are in the collimator area, and one well is downgradient of the W-Line Beam Stop (Figure 4.2-1). As part of BNL’s Environmental Surveillance program, surface water samples are also collected semiannually from the Peconic River downstream of the beam stop area at sample location HV (sample location 026-03). These monitoring results are used to verify that potentially contaminated groundwater is not entering the Peconic River stream bed as base flow during high water-table conditions.

Sampling Frequency and Analysis

During 2014, groundwater samples were collected from the RHIC monitoring wells on a semiannual schedule, and the samples were analyzed for tritium (Table 1-6). Routine analysis for sodium-22 was discontinued starting in 2002 because tritium is the best indicator of possible cap failure (i.e., tritium is more leachable than sodium-22, and it migrates at the same rate as groundwater). Surface water samples were collected at location HV semiannually, and were analyzed for tritium and gamma emitting radionuclides (such as sodium-22).

4.2.2 RHIC Monitoring Well Results

During 2014, tritium was not detected in any of the RHIC monitoring wells. Furthermore, no tritium or sodium-22 was detected in surface water samples from downstream location HV.

4.2.3 RHIC Groundwater Monitoring Program Evaluation

The 2014 monitoring data were evaluated using the following Data Quality Objective statement.

1. Has the source of potential contamination been controlled?

Groundwater and surface water monitoring data continue to demonstrate that the impermeable caps installed over the RHIC beam stop and collimator areas are effectively preventing rainwater infiltration into the activated soil shielding.

4.2.4 RHIC Recommendation

The following is recommended for the RHIC groundwater monitoring program:

- During 2015, groundwater samples will continue to be collected on a semiannual basis. Surface water samples will also continue to be collected quarterly as part of the Environmental Surveillance program.
4.3 BROOKHAVEN MEDICAL RESEARCH REACTOR (BMRR)

The Brookhaven Medical Research Reactor (BMRR) was a 3-megawatt light water reactor that was used for biomedical research. Research operations at the BMRR ended in December 2000. All spent fuel was removed in 2003 and the primary cooling water system was drained.

When it was operating, the BMRR primary cooling water system contained 2,550 gallons of water that contained approximately 5 curies (Ci) of tritium. Unlike the HFBR, the BMRR does not have a spent fuel storage canal or pressurized imbedded piping systems that contained radioactive liquids. Historically, fuel elements that required storage were either stored within the reactor vessel, or they were transferred to the HFBR spent fuel canal. The BMRR primary cooling water system piping is fully exposed in the containment structure, and was accessible for routine visual inspections while it was operating.

In 1997, tritium was detected in wells installed directly downgradient (within 30 feet) of the BMRR. The maximum tritium concentration observed during 1997 was 11,800 pCi/L, almost one-half of the 20,000 pCi/L DWS. The highest observed tritium concentration since the start of groundwater monitoring was 17,100 pCi/L in October 1999. The tritium detected in groundwater is believed to have originated from the historical discharge of small amounts of BMRR primary cooling water to a basement floor drain and sump system that may have leaked. Although the last discharge of primary cooling water to the floor drain system occurred in 1987, the floor drains continued to be used for secondary (non-radioactive) cooling water until 1997. The infiltration of this water may have promoted the movement of residual tritium from the soil surrounding the floor drain piping system to the groundwater. The floor drains were permanently sealed in 1998.

4.3.1 BMRR Groundwater Monitoring

Well Network

The monitoring well network for the BMRR facility consists of one upgradient and three downgradient wells (Figure 4.3-1).

Sampling Frequency and Analysis

The BMRR wells are currently sampled once every two years. Samples were not collected in 2013, but were collected during 2014. The samples collected in 2014 were analyzed for tritium, gamma emitting radionuclides, gross alpha, and gross beta.

4.3.2 BMRR Monitoring Well Results

Monitoring conducted since 1997 has shown that tritium concentrations in the BMRR wells have always been below the 20,000 pCi/L DWS (Figure 4.3-2). During the 2014 sample period, tritium was detected in downgradient well 084-27, at a concentration of 593 pCi/L. Furthermore, gamma, gross alpha, and gross beta analyses have not indicated the presence of any other reactor-related radionuclides.

4.3.3 BMRR Groundwater Monitoring Program Evaluation

Monitoring data for 2014 were evaluated using the following Data Quality Objective statement.

1. Is there a continuing source of contamination? If present, has the source been remediated or controlled?

Tritium concentrations in groundwater have never exceeded the 20,000 pCi/L DWS. Tritium concentrations were <5,000 pCi/L from September 2000 through 2010, and <600 pCi/L during the 2012 and 2014 sample periods. The continued decrease in tritium concentrations in the groundwater indicate that the BMRR structure is effectively preventing rainwater infiltration into the underlying soils, or that the amount of residual tritium in the vadose zone has been significantly reduced.
4.3.4 BMRR Recommendation

The following is recommended for the BMRR groundwater monitoring program:

- The monitoring frequency for the BMRR wells will continue to be once every two years, with the next set of samples being collected in 2016.
4.4 SEWAGE TREATMENT PLANT (STP)

The STP processes sanitary wastewater from BNL research and support facilities. Until October 2014, treated effluent from the STP was discharged to the Peconic River under a NY SDEC SPDES permit (NY-0005835). On average, 0.5 million gallons per day (MGD) of waste water are processed during the summer and 0.3 MGD of water are processed during the rest of the year. Before discharge into the Peconic River, the sanitary waste stream was treated by: 1) primary clarification to remove settleable solids and floatable materials; 2) aerobic oxidation for secondary removal of the biological matter and nitrification of ammonia; 3) secondary clarification; 4) sand filtration for final effluent polishing; and 5) ultraviolet disinfection for bacterial control. Oxygen levels are regulated during the treatment process to remove nitrogen biologically, using nitrate-bound oxygen for respiration.

Wastewater from the STP clarifier was released to the sand filter beds, where the water percolated through 3 feet of sand before being recovered by an underlying clay tile drain system, which transported the water to the discharge point at the Peconic River (SPDES Outfall 001). Approximately 15 percent of the water released to the filter beds was either lost to evaporation or to direct groundwater recharge. Starting in October 2014, the Laboratory discontinued discharging its treated effluent to the Peconic River, and redirected the effluent to newly constructed groundwater recharge basins (Figure 4.1.1). As required by the NYS SPDES permit, monitoring wells are used to evaluate groundwater quality near the recharge basins.

Two emergency hold-up ponds are located east of the sand filter bed area. The hold-up ponds are used to store sanitary waste in the event of mechanical problems at the plant or if the influent contains contaminants in concentrations exceeding BNL administrative limits and/or SPDES permit effluent release criteria. The hold-up ponds have a combined holding capacity of nearly six million gallons of water, and provide BNL with the ability to divert all sanitary system effluent for approximately one week. The hold-up ponds are equipped with fabric-reinforced plastic liners that are heat-welded along all seams. In 2001, improvements were made with the addition of new primary liners and a leak detection system. The older liners now serve as secondary containment.

4.4.1 STP Groundwater Monitoring

Well Network

In addition to the comprehensive influent and effluent monitoring program at the STP, the groundwater monitoring program is designed to provide a secondary means of verifying that STP operations are not impacting groundwater quality. One upgradient well (039-87) and six downgradient wells (039-88, 039-89, 039-115, 048-08, 048-09 and 048-10) are used to monitor groundwater quality in the recharge basin area (Figure 4.4.1). Monitoring results from three wells (039-88, 039-89, and 039-90) are also used to evaluate groundwater quality in the holding pond area.

Sampling Frequency and Analysis

In accordance with the SPDES permit, the STP recharge basin area monitoring wells are sampled annually. Samples were collected in December 2014. As required by the permit, the samples are analyzed for the following metals: copper, iron, lead, nickel, silver, zinc and mercury. During 2014, samples were also analyzed for pesticides (Table 1-6).

4.4.2 STP Monitoring Well Results

All metals concentrations, tracked under the SPDES permit, were below the applicable AWQS. As in previous years, sodium was detected at concentrations above the 20 mg/L AWQS in the STP area, with a concentration of 52 mg/L in well 039-115. A trace level of the pesticide heptachlor was also detected in well 039-115 at a concentration of 0.027 µg/L. The AWQS for heptacholor is 0.04 µg/L.
4.4.3 STP Groundwater Monitoring Program Evaluation

The 2014 monitoring data were evaluated using the following Data Quality Objective statement.

1. Are STP operations impacting groundwater quality?

Monitoring results for 2014 continue to indicate that STP operations are not having a significant impact on groundwater quality, and that the BNL administrative and engineered controls continue to be effective.

4.4.4 STP Recommendation

The following is recommended for the STP groundwater monitoring program:

- In accordance with the SPDES permit, the STP groundwater monitoring wells will be sampled once per year, and the samples will be analyzed for metals. BNL may conduct additional analyses as part of its facility surveillance program.
4.5 MOTOR POOL MAINTENANCE AREA

The Motor Pool (Building 423) and Site Maintenance facility (Building 326) are attached structures located along West Princeton Avenue (Figure 4.5-1). The Motor Pool area consists of a five-bay automotive repair shop, which includes office and storage spaces. The Site Maintenance facility provides office space, supply storage, locker room, and lunchroom facilities for custodial, grounds, and heavy equipment personnel. Both facilities have been used continuously since 1947.

Potential environmental concerns at the Motor Pool include 1) the use of USTs to store gasoline, diesel fuel, and waste oil, 2) hydraulic fluids used for lift stations, and 3) the use of solvents for parts cleaning. In August 1989, the gasoline and waste oil USTs, pump islands, and associated piping were upgraded to conform to Suffolk County Article 12 requirements for secondary containment, leak detection devices, and overfill alarms. Following the removal of the old USTs, there were no obvious signs of soil contamination. The present tank inventory includes two 8,000-gallon USTs used to store unleaded gasoline, one 260-gallon above ground storage tank used for waste oil, and one 3,000-gallon UST for No. 2 fuel oil. The Motor Pool facility has five vehicle-lift stations. The hydraulic fluid reservoirs for the lifts are located above ground.

Since 1996, several small-scale hydraulic oil and diesel oil spills have been remediated at the Motor Pool. The only known environmental concern associated with the Site Maintenance facility (Building 326) was the December 1996 discovery of an old oil spill directly south of the building. In an effort to investigate the potential impact that this spill had on groundwater quality, four wells were installed downgradient of the spill site. Although the solvent TCA was detected in the groundwater at concentrations above the AWQS, petroleum hydrocarbons were not detected.

4.5.1 Motor Pool Maintenance Area Groundwater Monitoring

Well Network

The Motor Pool facility’s groundwater monitoring program for the UST area is used to confirm that the current engineered and institutional controls are effective in preventing contamination of the aquifer, and to evaluate continued impacts from historical spills. Two shallow Upper Glacial aquifer wells (102-05 and 102-06) are used to monitor for potential contaminant releases from the UST area (Figure 4.5-1). Groundwater quality downgradient of Building 423 and Building 326 is monitored using four wells (102-10, 102-11, 102-12, and 102-13). The program periodically assesses VOC contamination that resulted from historical vehicle maintenance operations, and to confirm that the current engineered and institutional controls are effective in preventing additional contamination of the aquifer.

Sampling Frequency and Analysis

During 2014, the two UST area wells were monitored annually, and the samples were analyzed for VOCs (Table 1-6). The wells were also checked for the presence of floating petroleum hydrocarbons during these sample periods. The Building 423/326 area wells were monitored annually, and the samples were analyzed for VOCs.

4.5.2 Motor Pool Monitoring Well Results

Underground Storage Tank Area

During 2014, no VOCs were detected in the UST area monitoring wells. As in previous years, no floating product was detected in the wells.

Building 423/326 Area

During 2014, all VOC concentrations were below the 5 µg/L NYS AWQS (Figure 4.5-2). The highest VOC concentrations were detected in well 102-12, with TCA at 1.8 µg/L and DCA at 1.4 µg/L.
4.5.3 Motor Pool Groundwater Monitoring Program Evaluation

The 2014 monitoring data were evaluated using the following Data Quality Objective statement.

1. Is there a continuing source of contamination? If present, has the source been remediated or controlled?

Although small-scale solvent and gasoline releases from vehicle maintenance operations have impacted groundwater quality in the Motor Pool area, there has been a steady decrease in VOC concentrations. During 2011 through 2014, all VOC concentration in groundwater were below the AWQS, and there were no reported gasoline or motor oil losses or spills that could further affect groundwater quality. Furthermore, all waste oils and used solvents generated from current operations are being properly stored and recycled. The gasoline USTs have electronic leak detection systems, and there is a daily product reconciliation (i.e., an accounting of the volume of gasoline stored in USTs and volume of gasoline sold).

4.5.4 Motor Pool Recommendations

The following are recommendations for the Motor Pool area monitoring program:

- The sampling frequency for the UST and the Building 423/326 area wells will continue to be annually.
- Consider abandoning wells 102-10, 102-11, 102-12, and 102-13 if monitoring results for 2015 continue to show that VOC concentrations are below AWQS.
4.6 ON-SITE SERVICE STATION

Building 630 is a commercial automobile service station, privately operated under a contract with BNL. The station was built in 1966, and is used for automobile repair and gasoline sales. Potential environmental concerns at the Service Station include the use of USTs for the storage of gasoline and waste oil, hydraulic fluids used for lift stations, and the use of solvents for parts cleaning. When the Service Station was built in 1966, the UST inventory consisted of one 6,000-gallon and two 8,000-gallon tanks for storing gasoline, and one 500-gallon tank for used motor oil. In August 1989, the USTs, pump islands, and associated piping were upgraded to conform to Suffolk County Article 12 requirements for secondary containment, leak detection devices, and overfill alarms. During the removal of the old USTs, there were no obvious signs of soil contamination.

The current tank inventory includes three 8,000-gallon USTs for storing unleaded gasoline and one 500-gallon UST used for waste oil. The facility has three hydraulic vehicle-lift stations.

Groundwater quality in the Service Station area has been impacted by historical small-scale spills of oils, gasoline, and solvents, and by carbon tetrachloride contamination associated with a nearby UST that was used as part of a science experiment conducted in the 1950s. In April 1998, BNL removed a UST from an area approximately 200 feet northwest (upgradient) of the service station. Although there were indications that the tank was releasing small quantities of carbon tetrachloride before its removal, a significant increase in carbon tetrachloride concentrations in groundwater indicated that additional amounts of this chemical were inadvertently released during the excavation and removal process. BNL remediated the carbon tetrachloride plume, and the treatment system was decommissioned in 2010 (Section 3.2.1).

4.6.1 Service Station Groundwater Monitoring

Well Network

The service station’s groundwater monitoring program is used to confirm that the current engineered and institutional controls in place are effective in preventing contamination of the aquifer and to evaluate continued impacts from historical spills. Four wells are used to monitor for potential contaminant releases (Figure 4.6-1).

Sampling Frequency and Analysis

During 2014, the service station facility wells were monitored one time, and the samples were analyzed for VOCs (Table 1-6). Three of the wells near the gasoline USTs were also checked for the presence of floating petroleum hydrocarbons.

4.6.2 Service Station Monitoring Well Results

Although low levels of carbon tetrachloride and its breakdown product chloroform continued to be detected in the Service Station monitoring wells during 2014, the concentrations were less than the AWQS of 5 µg/L and 7 µg/L, respectively.

Groundwater monitoring conducted over the past 15 years has shown the water quality at the Service Station has been affected by a variety of VOCs that appeared to be related to historical vehicle maintenance and refueling operations. Although VOCs continued to exceed AWQS in two wells during 2014, the concentrations were significantly less than previous years. VOCs detected in well 085-237 included 1-methylethylbenzene at 5.9 µg/L, n-propylbenzene at 5.1 µg/L, PCE at 11 µg/L. PCE was also detected above the AWQS in well 085-236 at a concentration of 9.6 µg/L. Figure 4.6-2 provides a summary of TVOC concentrations in the Service Station wells since 1999. As in previous years, no floating product was detected in the wells.

4.6.3 Service Station Groundwater Monitoring Program Evaluation

The 2014 monitoring data were evaluated using the following Data Quality Objective statement.
1. Is there a continuing source of contamination? If present, has the source been remediated or controlled?
During 2014, VOCs continued to be detected in the groundwater at concentrations greater than the applicable AWQS. There were no reported gasoline or motor oil losses or spills that could affect groundwater quality, and all waste oils and used solvents generated from current operations are being properly stored and recycled. The gasoline USTs have electronic leak detection systems, and there is a daily product reconciliation (i.e., an accounting of the volume of gasoline stored in USTs and volume of gasoline sold). It is believed that the petroleum hydrocarbon-related compounds and solvents that have been detected in groundwater originated from historical vehicle maintenance operations before improved chemical storage and handling controls were implemented in the 1980s.

4.6.4 Service Station Groundwater Monitoring Program Recommendation
No changes to the monitoring program are proposed for 2015.
4.7 MAJOR PETROLEUM FACILITY (MPF)

The MPF is the storage area for fuel oil used at the Central Steam Facility (CSF). The fuel oil is held in a network of seven above ground storage tanks, which have a combined capacity of up to 1.7 million gallons of No. 6 fuel oil and 60,000 gallons of No. 2 fuel oil. The tanks are connected to the CSF by above ground pipelines that have secondary containment and leak detection devices. The fuel storage tanks are positioned in berm containment areas that have a capacity to hold >110 percent of the volume of the largest tank located there. The bermed areas have bentonite clay liners consisting of either Environmat™ (bentonite clay sandwiched between geotextile material) or bentonite clay mixed into the native soil to form an impervious soil/clay layer. Fuel-unloading operations occur in a centralized building that has secondary containment features. The MPF is operated under NYSDEC Permit #1-1700 and, as required by law, a Spill Prevention Control and Countermeasures (SPCC) Plan and a Facility Response Plan have been developed for the facility. Groundwater quality near the MPF has been impacted by several oil and solvent spills: 1) the 1977 fuel oil/solvent spill east of the MPF (Section 3.3); and 2) solvent spills near the CSF.

During October 2013, petroleum contaminated soils were discovered during the planned reconstruction of the spill containment berm that surrounds MPF storage Tank 3 (BNL Spill Report 13-33). The contaminated soils were transported to an approved off-site facility for disposal as non-hazardous waste. The investigation concluded that the petroleum was related to an historical release, and not associated with current fuel storage operations.

4.7.1 MPF Groundwater Monitoring

Well Network
Eight shallow Upper Glacial aquifer wells are used to confirm that the engineered and institutional controls in place are effective in preventing contamination of the aquifer (Figure 4.7-1).

Sampling Frequency and Analysis
Groundwater contaminants from the fuel oil products stored at the MPF can travel both as free product and in dissolved form with advective groundwater flow. The Special License Conditions for the MPF requires semiannual sampling for VOCs and SVOCs and monthly monitoring for floating petroleum (Table 1-6).

4.7.2 MPF Monitoring Well Results

During 2014, the MPF wells were monitored monthly for the presence of floating petroleum, and groundwater samples were collected in April and October. The groundwater samples were analyzed for SVOCs and VOCs. As in the past, no SVOCs were detected, and no floating product was observed. Although low levels of a number of VOCs not associated with fuel storage activities continued to be detected in some of the MPF area wells, during 2014 all VOC concentrations in downgradient wells were less than the applicable AWQS (Figure 4.7-1). PCE was detected in upgradient well 076-25 at the AWQS of 5 µg/L. VOCs that had been routinely detected in well 076-380 were less than AWQS during 2014 (Figure 4.7-2).

4.7.3 MPF Groundwater Monitoring Program Evaluation

The 2014 monitoring data were evaluated using the following Data Quality Objective statement.

1. Are the potential sources of contamination being controlled?

Groundwater monitoring at the MPF continues to show that fuel storage and distribution operations are not impacting groundwater quality. VOCs that are periodically detected in the groundwater are likely to have originated from historical solvent spills near the Central Steam Facility (Building 610).
number of historical spill sites near the CSF were identified during the 1990s, and the contaminated soils were excavated and disposed of in accordance with regulatory requirements.

4.7.4 MPF Recommendation

For 2015, monitoring will continue as required by the NYS operating permit.
4.8 WASTE MANAGEMENT FACILITY (WMF)

The WMF is designed to safely handle, repackage, and temporarily store BNL-derived wastes prior to shipment to off-site disposal or treatment facilities. The WMF is a state-of-the-art facility, with administrative and engineered controls that meet all applicable federal, state, and local environmental protection requirements. The WMF consists of three buildings: the Operations Building, Reclamation Building (for radioactive waste), and the RCRA Building.

Groundwater monitoring is a requirement of the RCRA Part B permit issued for WMF operations. The groundwater monitoring program for the WMF is designed to supplement the engineered and institutional controls by providing additional means of detecting potential contaminant releases from the facility. Because of the close proximity of the WMF to BNL potable supply wells 11 and 12, it is imperative that the engineered and institutional controls implemented at the WMF are effective in ensuring that waste handling operations do not degrade the quality of the soil and groundwater in this area.

4.8.1 WMF Groundwater Monitoring

Well Network

Groundwater quality at the WMF is monitored using six shallow Upper Glacial aquifer wells. Two wells (055-03 and 055-10) are used to monitor background water quality, and four wells monitor groundwater quality downgradient of the two main waste handling and storage facilities. Wells 066-220 and 066-221 are located downgradient of the RCRA Building, and wells 066-222 and 066-223 are located downgradient of the Reclamation Building. BNL discontinued sampling of well 066-224 following the 2012 closure of the former Mixed Waste Building. Locations of the monitoring wells are shown on Figure 4.8-1.

Sampling Frequency and Analysis

During 2014, the WMF wells were sampled in February and August. Groundwater samples were analyzed twice for VOCs, tritium, gamma spectroscopy, gross alpha, and gross beta, and one time for metals and anions (e.g., chlorides, sulfates, and nitrates) (Table 1-6). A complete set of monitoring data and groundwater flow maps are presented in the 2014 Groundwater Monitoring Report for the Waste Management Facility (BNL 2015c).

4.8.2 WMF Monitoring Well Results

Radiological Analyses

Gross alpha and beta levels in samples from both upgradient and downgradient monitoring wells were consistent with background concentrations, and no BNL-related, gamma-emitting radionuclides or tritium were detected.

Non-Radiological Analyses

All anions (chlorides, sulfates, and nitrates) and most metals concentrations were below applicable ambient water quality or drinking water standards. As in previous years, sodium was detected at concentrations above the 20 mg/L AWQS in both upgradient wells (055-03 and 055-10) at concentrations up to 140 mg/L, and in all four downgradient wells (066-220, 066-221, 066-222, and 066-223) at concentrations up to 78 mg/L. The elevated sodium concentrations are likely the result of road salting operations. Although trace levels of several VOCs (e.g., chloroform) continue to be detected in a number of the WMF’s upgradient and downgradient wells, all concentrations are below the applicable AWQS.
4.8.3 WMF Groundwater Monitoring Program Evaluation

The 2014 monitoring data were evaluated using the following Data Quality Objective statement.

1. Are potential sources of contamination within the WMF being controlled?

Groundwater monitoring results for 2014 continued to show that WMF operations are not affecting groundwater quality. Furthermore, there were no outdoor or indoor spills at the facility during 2014 that could have impacted soil or groundwater quality.

4.8.4 WMF Recommendation

The following are recommended for 2015:

- Continue monitoring the wells at a semiannual frequency as required by the RCRA Part B Permit.
4.9 NATIONAL SYNCHROTRON LIGHT SOURCE II (NSLS-II)

The NSLS-II is a new electron accelerator. Portions of the new NSLS-II facility began start-up testing starting in the spring of 2012. Full beam line operations are expected to start in 2014. High-energy particle interactions in water, air, and soil can produce radioactivity from spallation reactions or neutron capture in nitrogen, oxygen, or other materials. In high-energy proton accelerators, such as BNL’s AGS, BLIP and RHIC, these interactions can produce significant activation of the soil shielding. However, electron accelerators such as the NSLS-II have significantly reduced potential for environmental impacts, and can produce only about one to five percent of the induced activity of a proton accelerator. As required by the BNL Standards-Based Management System (SBMS) Accelerator Safety subject area, analyses have been conducted to estimate the rate of formation of tritium and sodium-22 in the surrounding soils during the operation of the NSLS-II’s Linac, Booster, and Storage Ring. The results of these analyses indicate that interactions of neutrons with the soils below the tunnel floor and surrounding soil shielding (berm) have the potential to create very low levels of tritium and sodium-22 in the soil. However, because the soil beneath the concrete floor will not be exposed to rainfall, the potential leaching of radioactive isotopes from the soil to the water table at these locations will be minimal. There is also the potential to create very low levels of tritium in the water used to cool the magnets and other accelerator components.

4.9.1 NSLS-II Groundwater Monitoring

Well Network

Four monitoring wells are located downgradient of the facility’s Linac, Booster and Storage Ring area where beam line operations may result in low level activation of the surrounding soil shielding (Figure 4.9-1). Two nearby Major Petroleum Facility (MPF) monitoring wells (076-18 and 076-19) are used as upgradient/background wells for the NSLS-II facility. The monitoring network is considered adequate for meeting the monitoring requirements under DOE Order 458.1, Radiation Protection of the Public and Environment.

Sampling Frequency and Analysis

During 2014, the four NSLS-II monitoring wells and the two MPF wells were sampled one time, and the samples were analyzed for tritium (Table 1-5).

4.9.2 NSLS-II Monitoring Well Results

No tritium was detected in the groundwater samples collected during 2014.

4.9.3 NSLS-II Groundwater Monitoring Program Evaluation

The 2014 monitoring data were evaluated using the following Data Quality Objective statement.

1. Are the engineered and operational controls effective at preventing or reducing the leaching of radionuclides from activated soils to the groundwater?

The focus of the NSLS-II groundwater surveillance program for 2011 was the collection of pre-operation samples to establish baseline values for tritium and sodium-22. Only limited beam line operations were conducted during 2012 through 2014. The monitoring results for 2014 indicate that NSLS-II beam line operations conducted to date have not impacted groundwater quality.

4.9.4 NSLS-II Recommendations

For 2015, the four NSLS-II and two MPF monitoring wells will continue to be monitored annually for tritium.
This Page Intentionally Left Blank.
5.0 SUMMARY OF RECOMMENDATIONS

This section is provided as a quick reference to all of the recommendations included in Sections 3 and 4. The recommendations are sequenced as they appear in Sections 3 and 4. Table 5-1 summarizes the changes to the monitoring well sampling programs.

5.1 OU I South Boundary Treatment System
The following recommendations are presented for the OU I South Boundary Pump and Treat System and groundwater monitoring program:

- Maintain the extraction wells in standby mode. Groundwater monitoring will continue as detailed in Table 1-5 and one or both extraction wells can be restarted if TVOC concentrations rebound significantly above capture goals. Analyze the extraction wells quarterly for Sr-90.

- Continue the groundwater characterization of the Sr-90 observed in temporary well OU I-SR-90 GP-30 and determine both the extent and whether a continuing source area can be isolated. This characterization will utilize temporary wells and be supplemented by permanent monitoring wells if warranted.

- Use the groundwater model to predict the attenuation of VOCs observed in well 088-109.

5.2 Carbon Tetrachloride Treatment System
The former OU III Carbon Tetrachloride Groundwater Remediation System and monitoring program have met the cleanup and monitoring goals. This program has ended.

5.3 Building 96 Treatment System
The following are recommendations for the OU III Building 96 Groundwater Remediation System and monitoring program:

- Maintain full time operation of treatment wells RTW-1, RTW-2, and RTW-3. Maintain a monthly sampling frequency of the influent and effluent for each well.

- Maintain treatment well RTW-4 in standby mode, and maintain a monthly sampling frequency of the influent. Restart the well if extraction or monitoring well data indicate that TVOC concentrations exceed 50 µg/L.

- Due to the elevated VOCs located to the west of the main plume, perform a soil vapor survey upgradient of well 095-307 to determine any residual source areas.

- Install additional temporary wells (Geoprobes) between wells 095-159 and 095-162 to further delineate the extent of PCE contamination identified in Geoprobe B452-GP-49. Samples will be obtained up to the water table.

- Continue to maintain the RTW-1 resin treatment in standby mode, and if concentrations of hexavalent chromium in the effluent increase to over 50 µg/L (an administrative limit established that is half of the SPDES limit of 100 µg/L), treatment would resume. The maximum hexavalent chromium detected in the effluent in 2014 was 7.0 µg/L.

- Due to significant reduction of hexavalent chromium in the monitoring wells over the last several years, further sampling will be eliminated.

5.4 452 Freon-11 Source Area and Groundwater Plume
The following are recommendations for the Building 452 Freon-11 remediation system and monitoring program:
Starting in February 2015, begin pulsed-pumping operation (one month on, one month off) of the Building 452 Treatment System extraction well EW-18. Maintain Building 96 treatment well RTW-1 in full-time operation. Prepare a petition for shutdown when Freon-11 concentrations decrease to below the 50 µg/L cleanup goal in all wells.

Maintain a quarterly monitoring frequency for source area, plume core, and bypass wells.

5.5 Middle Road Treatment System Building

The following recommendations are made for the Middle Road Pump and Treat System and groundwater monitoring program:

- Maintain extraction wells RW-4, RW-5 and RW-6 in standby mode. Restart the well(s) if extraction or monitoring well data indicate that TVOC concentrations exceed the 50 µg/L capture goal.
- Shut down well RW-1 as the VOC concentrations in this well were below 5 µg/L during 2014. In addition all of the characterization and monitoring data upgradient of this well show the high concentrations of VOCs are deeper than this well and being captured by the other extraction wells.
- Continue full time operation of extraction wells RW-2, RW-3 and RW-7.
- Increase sampling in well 105-23 from semi-annual to quarterly to monitor for the deeper VOCs in this area.

5.6 OU III South Boundary Treatment System

The following are recommendations for the OU III South Boundary Pump and Treat System and groundwater monitoring program:

- Maintain wells EW-6, EW-7, EW-8, and EW-12 in standby mode. The system’s extraction wells will continue to be sampled on a quarterly basis except well EW-12. The wells will be restarted if extraction or monitoring well data indicate TVOC concentrations exceed the 50 µg/L capture goal.
- Place wells EW-3 and EW-5 in standby mode as VOC concentrations have been below AWQS during 2014. If the extraction or monitoring wells show an increase in TVOC concentrations above the 50 µg/L capture goal in the vicinity of wells EW-3 and EW-5 evaluate the need to restart them. The wells will remain in an operationally ready state and will continue to be sampled on a quarterly basis.
- Continue to operate extraction wells EW-4 and EW-17 on a full time basis.
- Maintain the routine O&M monitoring frequency implemented last year.
- Reduce sampling of well EW-17 from monthly to quarterly.

5.7 Western South Boundary Treatment System

The following are recommendations for the OU III Western South Boundary Treatment System and groundwater monitoring program:

- Continue full-time operation of extraction well WSB-1, and pulsed pumping of WSB-2 at the schedule of one month on and two months off. If TVOC concentrations greater than 20 µg/L are observed in WSB-2 or the adjacent core monitoring wells, extraction well WSB-2 may be put into full time operation.
- Install two temporary wells to monitor the VOCs (Freon-12) between monitoring wells 103-15 and 119-10.
5.8 **Industrial Park Treatment System**
The following is the recommendation for the Industrial Park In-Well Air Stripping System and groundwater monitoring program:
- Continue operation of the two new extraction wells IP-EW8 and IP-EW9 which began operation in January 2015.
- Maintain UV B-1 through UV B-7 in stand-by mode. Continue monitoring and evaluate the need to operate some of the UVB wells in conjunction with the two new extraction wells to address the deeper VOC contamination.
- Perform additional groundwater characterization in the Industrial Park to evaluate when the higher concentrations observed upgradient of the new extraction wells will reach the new extraction wells.

5.9 **Industrial Park East Treatment System**
The following is recommended for the Industrial Park East Treatment System and groundwater monitoring program.
- Continue monitoring in accordance with the post closure monitoring requirements.

5.10 **North Street Treatment System**
The following is recommended for the North Street Treatment System and groundwater monitoring program:
- Continue monitoring and if concentrations remain below the 50 µg/L TVOC concentration capture goal in core monitoring wells and extraction wells for at least two sampling rounds, NS-1 and or NS-2 can be shutdown.
- Continue the current groundwater monitoring well schedule for the North Street system.
- Increase sampling of core monitoring wells to quarterly.

5.11 **North Street East Treatment System**
The following recommendations are made for the North Street East Treatment System and groundwater monitoring program:
- Maintain the treatment system in standby mode. The extraction wells will continue to be sampled on a quarterly basis. One or both extraction wells can be restarted if VOC concentrations in the core monitoring wells or extraction wells rebound to concentrations significantly above the capture goal of 50 µg/L.
- Reduce groundwater monitoring to the standby monitoring frequency (semi-annual for core and bypass wells and annual for perimeter wells).

5.12 **LIPA/Airport Treatment System**
The following recommendations are made for the LIPA/Airport Treatment System and groundwater monitoring program:
- Continue the Airport extraction wells pulsed pumping schedule of pumping one week per month except for wells RTW-1A, RTW-4A and RW-6A, which will continue with full-time operations. If concentrations above the capture goal of 10 µg/L TVOC are observed in any of the extraction
wells or the monitoring wells adjacent to them, the well(s) will be put back into full-time operation.

- Maintain LIPA wells EW-1L, EW-2L and EW-3L in standby mode. These extraction wells will be restarted if TVOC concentrations rebound above the 50 µg/L capture goal in either the plume core monitoring wells or the extraction wells. Continue operation of Magothy well EW-4L.

5.13 Magothy Monitoring

The following are recommendations for the Magothy groundwater monitoring program:

- Continue the current monitoring schedule for the Magothy monitoring program.
- Continue pumping the Magothy extraction wells at Middle Road, LIPA/Airport and new IP wells. The North Street, North Street East and South Boundary Magothy extraction wells are currently in standby as they have reached the OU III cleanup goals identified for shutdown of these wells. The IPE extraction well was abandoned as it had reached its cleanup goal.

5.14 Central Monitoring

No changes to the OU III Central Groundwater Monitoring Program are warranted at this time.

5.15 Off-Site Monitoring

No changes to the OU III Off-Site Groundwater Monitoring Program are warranted at this time.

5.16 South Boundary Radionuclide Monitoring Program

There are no recommended changes to the South Boundary Radionuclide groundwater monitoring program.

5.17 BGRR/WCF Strontium-90 Treatment System

The following are recommendations for the BGRR/WCF Groundwater Treatment System and monitoring program:

- Continue to monitor source area Sr-90 concentrations on a monthly basis immediately downgradient of the BGRR.
- Maintain the sampling frequency for BGRR cap monitoring wells 075-699 and 075-700 at semi-annual due to elevated Sr-90 concentrations in 2012-2014.
- Install temporary wells immediately south of the Building 701 cap to identify any eastward plume shift out of the well network.
- Characterize the Sr-90 concentrations immediately south of the HFBR Building using temporary and/or permanent monitoring wells.
- Characterize the WCF plume segment south of Rutherford Drive using temporary wells.
- Install temporary wells as needed to fill in data gaps and characterize the BGRR Sr-90 plume segment south of Cornell Avenue.
- Install a sentinel monitoring well for the leading edge of the WCF Sr-90 plume segment in the vicinity of Temple Place west of monitoring well 075-89.
- Continue operating wells SR-1, SR-2, SR-3, SR-7, SR-8, and SR-9 in full time mode.
- Due to low Sr-90 concentrations in BGRR extraction wells SR-4, SR-5 and SR-6, continue these wells in a pulsed pumping mode (one month on and one month off).
5.18 Chemical/Animal Holes Strontium-90 Treatment System

The following are the recommendations for the Chemical/Animal Holes Strontium-90 Treatment System and groundwater monitoring program:

- Due to elevated Sr-90 concentrations in monitoring wells north of EW-1 in the first quarter 2015, the planned submittal of the Petition for Shutdown will be delayed. Continue to operate all three extraction wells in pulsed pumping mode of one month on and two months off.
- In May 2015, install three permanent shallow wells to monitor the residual Sr-90 upgradient of EW-1.
- To enhance the monitoring well network in the western portion of the plume, install a monitoring well downgradient of Geoprobe CAH-GP-07-2014.

5.19 HFBR Tritium Pump and Recharge System

The following are recommendations for the HFBR AOC 29 Tritium Pump and Recharge System and monitoring program:

- The extraction wells remain in standby mode. One or more extraction wells can be restarted if tritium concentrations in the extraction wells rebound to concentrations above 20,000 pCi/L.
- Discontinue sampling of 24 monitoring wells located south of Temple Place as summarized in Tables 3.2.18-1 and 5-1 following the third quarter 2015 sampling round. There is no longer a need to monitor south of Temple Place based on the attenuation of the leading edge of the plume and the limited releases of tritium being observed from the HFBR in recent years as discussed previously.
- Up to six new monitoring wells will be installed on the HFBR lawn area immediately north of Cornell Avenue. This will create a network that can detect future releases of tritium from the source area. Following the installation of these new wells, monitoring will also be discontinued for the 25 monitoring wells currently located along Cornell Avenue. The monitoring network for the HFBR going forward will consist of a network of wells located immediately north of Cornell Avenue.

5.20 Building 650 (Sump Outfall) Strontium-90 Monitoring

The following are recommendations for the Building 650 and Sump Outfall Strontium-90 Monitoring Program:

- Continue the current monitoring frequency stated in Table 1-5 with the exception of well 076-13 for which the frequency will be increased to quarterly.
- Install several temporary wells immediately north of the NSLS-II for the purpose of siting a permanent sentinel monitoring well.

5.21 Operable Unit V

Based on the recommendation in the 2013 Groundwater Status Report, sampling of well 000-122 was discontinued. This completed the groundwater sampling requirements for OU V.

5.22 Operable Unit VI EDB Treatment System

The following recommendations are made for the OU VI EDB Treatment System and groundwater monitoring program:

- Maintain routine operations of the treatment system.
- Update the groundwater model to re-evaluate the projected system operation duration.
5.23 Site Background Monitoring
No changes to the monitoring program are warranted at this time.

5.24 Current Landfill Groundwater Monitoring
The groundwater monitoring well network is adequate at this time. No changes to the monitoring frequency are needed.

5.25 Former Landfill Groundwater Monitoring
The groundwater monitoring well network is adequate at this time. No changes to the monitoring frequency are needed.

5.26 g-2 Tritium Source Area and Groundwater Plume
The following are recommended for the g-2 tritium source area and plume groundwater monitoring program:

- As required by the ROD, BNL will continue to conduct routine inspections of the g-2 cap and monitor groundwater quality downgradient of the source area. Because tritium concentrations in the wells immediately downgradient of the source area have been continuously less than 50,000 pCi/L for nearly three years, reduce the sampling frequency from quarterly to semiannually starting in 2015.
- Reduce the sampling frequency of the Building 912 area wells that are used to track the g-2 tritium plume from semiannually to annually.
- Install several additional Geoprobe wells in the vicinity of the NSLS-II during the summer of 2015 to verify that tritium concentrations in the downgradient plume segment have decreased to less than the 20,000 pCi/L DWS. If verified, discontinue monitoring the remnants of the g-2 plume in the area south of Brookhaven Avenue.

5.27 Brookhaven Linac Isotope Producer (BLIP) Facility
The following is recommended for the BLIP groundwater monitoring program:

- As required by the ROD, BNL will continue to conduct routine inspections of the cap, and to monitor groundwater quality downgradient of the BLIP facility.
- Because tritium levels in groundwater have remained below the 20,000 pCi/L MCL/DWS since January 2006, the monitoring frequency for downgradient monitoring wells 064-47, 064-48, and 064-67 will continue to be semiannual. Sampling frequency for upgradient well 064-46 will continue to be annually.

5.28 Alternating Gradient Synchrotron (AGS) Complex
The groundwater monitoring well network is adequate at this time. No changes to the monitoring frequency are needed.

5.29 Relativistic Heavy Ion Collider (RHIC) Facility
The following is recommended for the RHIC groundwater monitoring program:

- During 2015, groundwater samples will continue to be collected on a semiannual basis. Surface water samples will also continue to be collected quarterly as part of the Environmental Surveillance program.

5.30 Brookhaven Medical Research Reactor (BMRR) Facility
The following is recommended for the BMRR groundwater monitoring program:
The monitoring frequency for the BMRR wells will continue to be once every two years, with the next set of samples being collected in 2016.

5.31 Sewage Treatment Plant (STP) Facility
The following is recommended for the STP groundwater monitoring program:
- In accordance with the SPDES permit, the STP groundwater monitoring wells will be sampled once per year, and the samples will be analyzed for metals. BNL may conduct additional analyses as part of its facility surveillance program.

5.32 Motor Pool Maintenance Area
The following are recommendations for the Motor Pool area monitoring program:
- The sampling frequency for the UST and the Building 423/326 area wells will continue to be annually.
- Consider abandoning wells 102-10, 102-11, 102-12, and 102-13 if monitoring results for 2015 continue to show that VOC concentrations are below AWQS.

5.33 On-Site Service Station
No changes to the monitoring program are proposed for 2015.

5.34 Major Petroleum Facility (MPF) Area
For 2015, monitoring will continue as required by the NYS operating permit.

5.35 Waste Management Facility (WMF)
The following are recommended for 2015:
- Continue monitoring the wells at a semiannual frequency as required by the RCRA Part B Permit.

5.36 National Synchrotron Light Source II (NSLS-II)
For 2015, the four NSLS-II and two MPF monitoring wells will continue to be monitored annually for tritium.
Reference List

BNL. 2014b Operation and Maintenance Manual for the OU III Middle Road and South Boundary Groundwater Treatment Systems, Revision 2, Brookhaven National Laboratory, Upton, NY. 2014

