

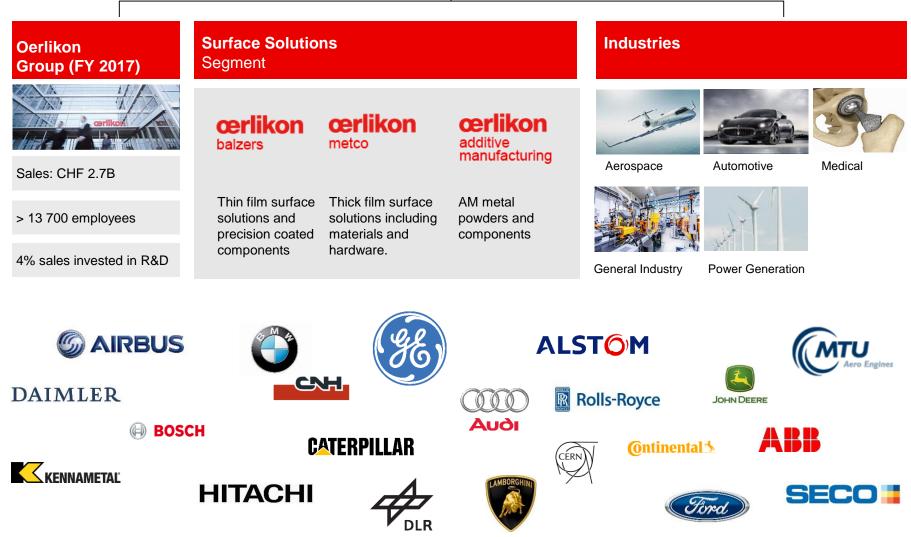
Industry Perspective on Critical AM Applications

Industrial AM Workshop on Metals and Ceramics 25 April 2019

Shawn Kelly

Shawn.Kelly@oerlikon.com

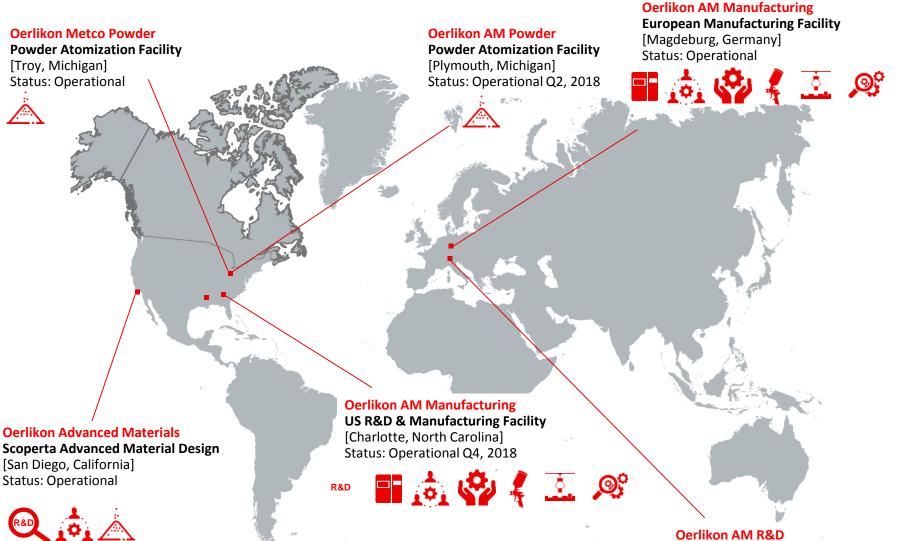
Agenda


1 Oerlikon AM

- 2 Applications we are seeing in aerospace
- 3 What is necessary to realize these applications.
- 4 What we have been doing internally
- 5 Where we see need for external support

Oerlikon Group Global Industrial Leader

Oerlikon AM Business Lines


Materials Plymouth, MI Troy, MI	Services Huntersville, NC Barleben, Germany Munich, Germany	Medical Shelton, CT
Prototype	Development	Production

Helping Our Customers Realize the Value of Additive Manufacturing

Oerlikon Additive Manufacturing

Building a Global AM Network

Oerlikon AM R&D Europe R&D [Munich, Germany] Status: Operational Q4, 2017

Aerospace Market Challenges - Optimization of weight and performance in a cost competitive framework

Weight optimized designs with balanced stress distributions increase fuel efficiency and performance enhancement

Barrier: Weight optimized shapes are prohibitively expensive or impossible to create using conventional techniques.

œrlikon

am

CHALLENGE INCREASING EFFICIENCY

New engine concepts for increased fuel efficiency with higher combustion temperatures improve efficiency but require complex components in terms of material and geometry (e.g. cooling channels)

Barrier: Hard to machine high temperature alloys (e.g. Ni-based) and high geometrical complexity due to cooling and combustion features.

AM is helping to drive weight and efficiency optimization and reduce cost in aerospace

PARTS & MATERIALS Lightweight – High Performance

Low cost of complex geometry

Part consolidation

Optimized stress distribution through topology optimization

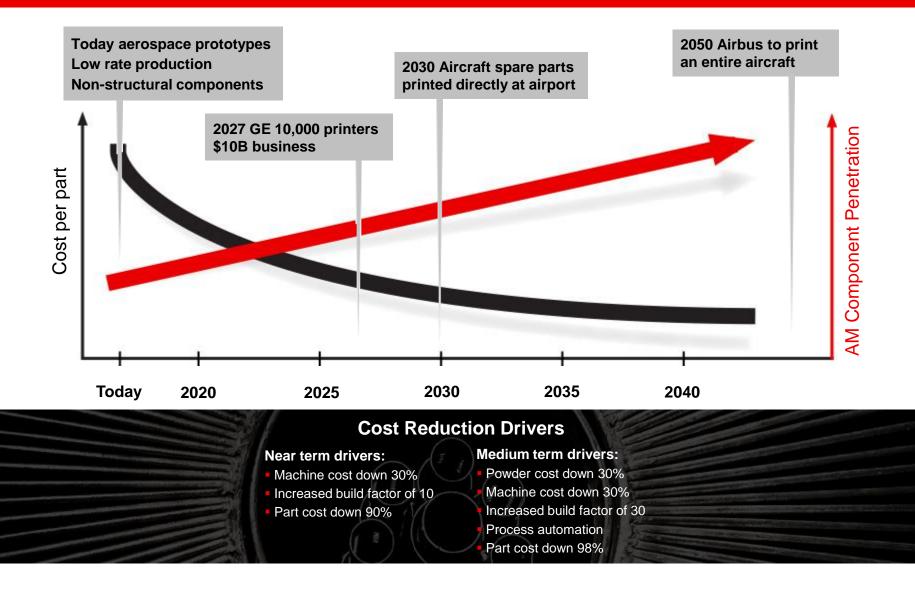
- Complex, optimized internal cooling
- New high-temperature materials (midterm)

PRODUCTION PROCESS

Streamlined - Efficient

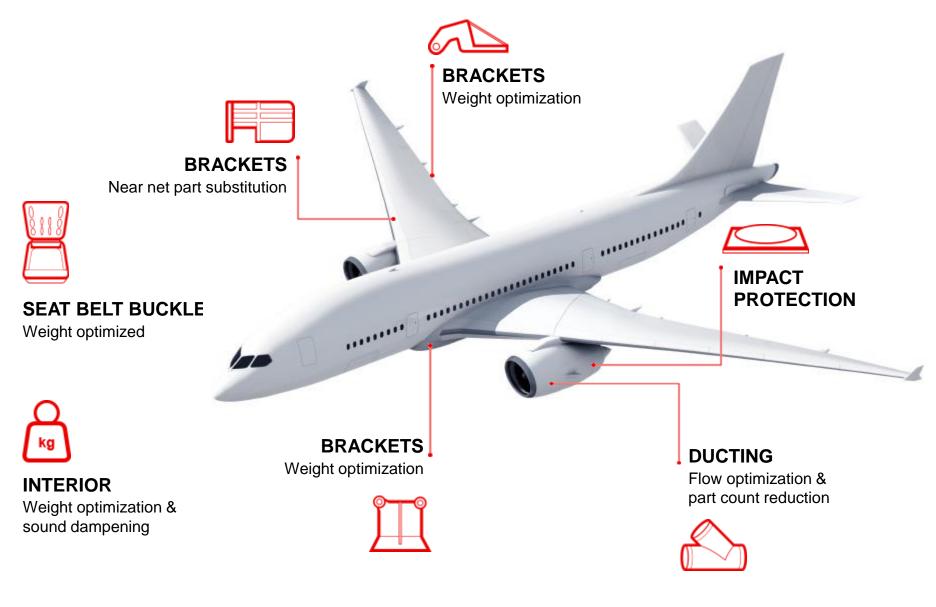
- Reduced development costs
- Reduced part cost
- Reduced inventory
- Reduced logistics
- Shorter lead-times

 Produce spare parts on demand, eliminating some inventory stocks

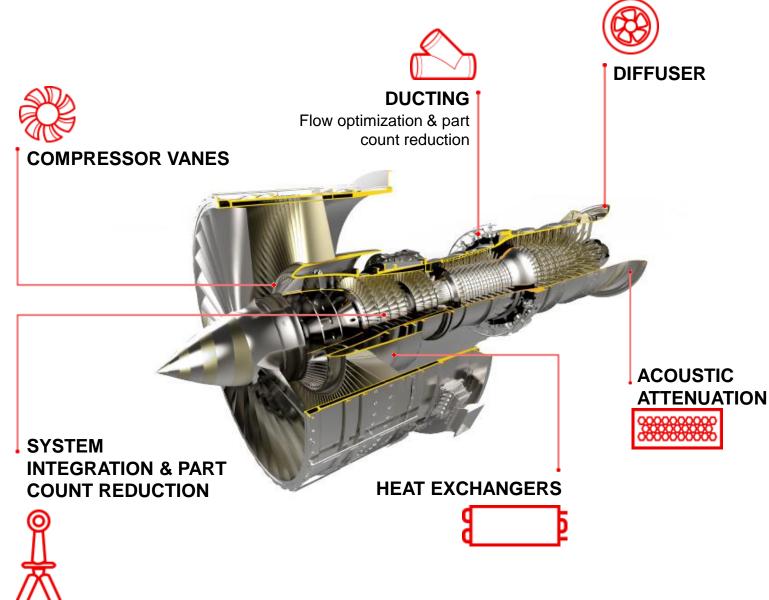


Reduce or eliminate assembly activities

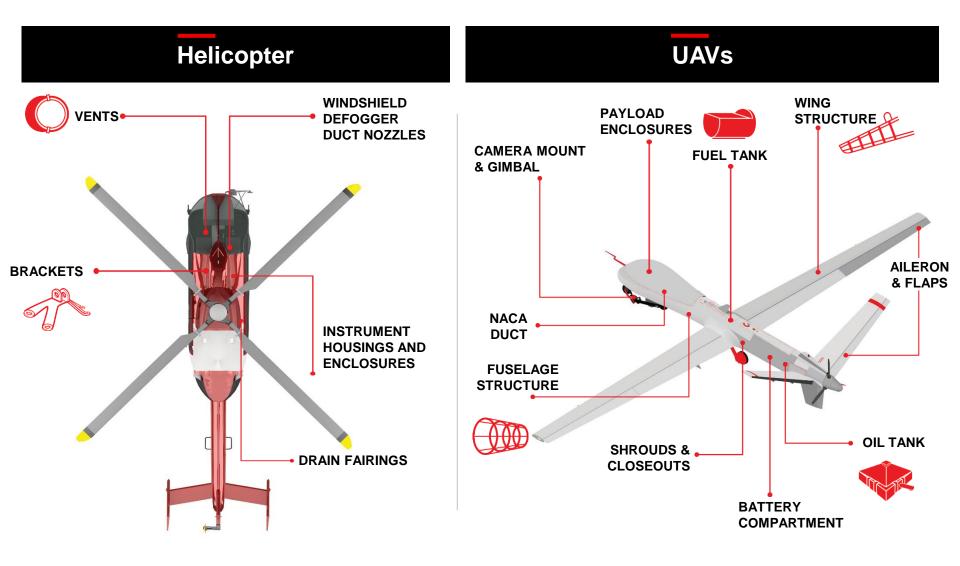
AM Technology is rapidly maturing



When does AM become a mainstream manufacturing technology?


Aircraft Applications

œrlikon


Aero Engine Applications

Rotorcraft Aand Defense Application

Basic Requirements for AM Success

Quality ASTM/ISO/AS NADCAP Work Instructions

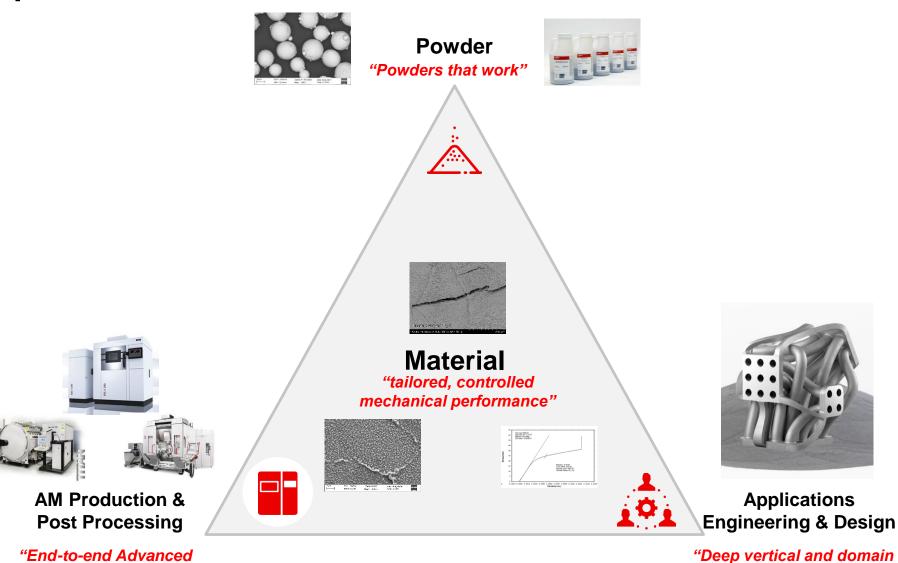
Material Knowledge

Powder performance Printed/Heat treated material performance

Robust Processes

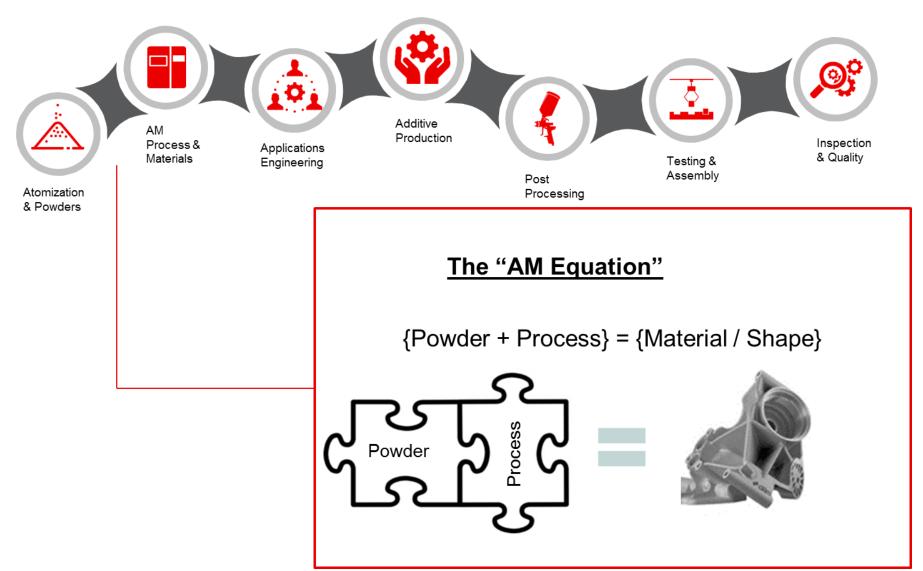
Key Performance Variables Stable Platforms Stable Processes

Design Data


Varies by industry Primarily Conventional Alloys High quality, complex, primary, secondary, and functional components

Oerlikon AM's view for achieving aerospace production?

knowledge for optimal

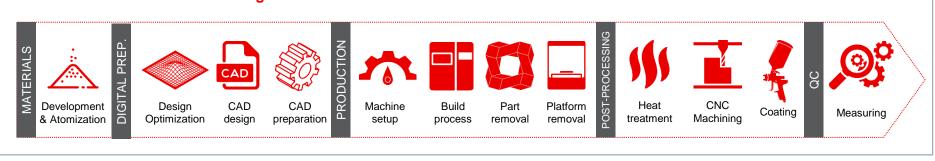

customer solutions"

stable Component Manufacturing"

Page 8

Integration of AM Value Chain to Realize Additive cerlikon <u>Amnufacturing</u>

INNOVATION & ADVANCED COMPONENT PRODUCTION CHARLOTTE, NC (US)



Key facts

- ~125,000 ft² facility, plus future expansion possible
- End-to-End engineering, manufacturing and R&D center
- Capacity for >50 AM systems and post processing

Key equipment

- Powder management and QA
- AM systems: 18 PBF-L; 6 PBF-EB (Shelton, CT)
- Post processing: 2 Wire-EDM, 1 vacuum furnace, 1 HIP, 1 mill/turn CNC, 5-axis milling, grit blasting, vibratory finishing, polishing,
- Comprehensive QA equipment and R&D laboratories for AM (metal powder lab and materials testing)

End-to-End AM Offering

R&D (including material)

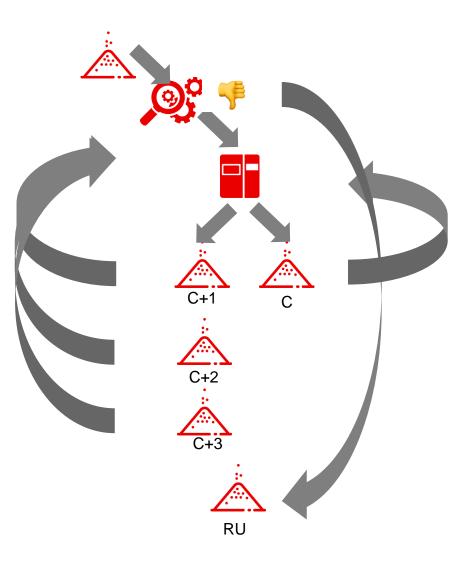
Why vertically integrate?

- Manage the external and internal powder supply chain
- Shared technical resources (manufacturing, materials, design) to develop and deliver solutions capable of replacing conventional manufacturing
- Reduce lead times from non-printing supply chain
- AM specific:
 - Heat treatment
 - Finishing
 - Inspection

Technical Roadmap Themes - US			
Technical Area	2018 Foundation	2019 Stabilize	2020+ Grow
Powder Ensure powder that can be used internally and externally; expand materials palate	 6 new alloys; 18 total PLY requalification Implement powder management strategy 	 Launch of 4 alloys (22) PLY requalification Establish powder reuse limits 	 y-TiAl, NiTi, Refractory metals Amorphous alloys/FGM/SMA Ceramic powder
Printing Processes Enable stable printing processes that unlock current and future markets	 Printing process readiness to capture customers Establish SPC for Services. 	 Process windows Customer driven application development Multi-Laser Readiness 	 Adv. Process Control DED Simulation tools
Materials Use structure/property/process knowledge to enable data driven expansion of AM applications	 Generate "quick" data for existing powders and processes Establish HT practices 	 HS Aluminum Optimized HT (Including HIP) Impact of flaws 	 A/B Basis Data AM Specific Alloys Designed microstructure
Post Processing Deliver finished components to customers, in-house to realize lead times and low vol savings	 Initial equipment online Establish external supplier base Cross-BU support 	 80% capability in-house Recipes established. Begin exploring differentiating capability 	 Integrate surface solutions Differentiating post process capability in house.

Highlights – Powder Management Strategy

Challenge:


 Implement a fully traceable and efficient powder management strategy servicing critical applications.

Solution:

- Maintain lot and cycle count
- Verify re-used powder in-spec

Current Status:

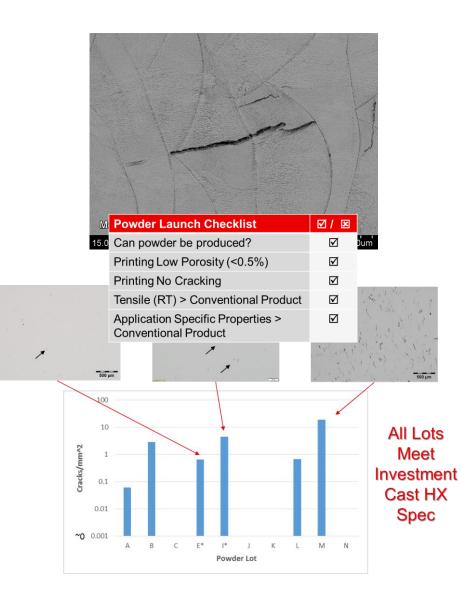
- Tracking all powder in shop
- Equipment installed
- Building Quality database
- Result of Project:
- Process control
- Customer confidence

Highlights - Powder Launch Strategy

Challenge:

 Nickel Alloy H-X cracks when printed. (started 7/16)

Solution:


Identify crack-free chemistry

Current Status:

- Re-Launch of H-X
- Customer pre-production in progress

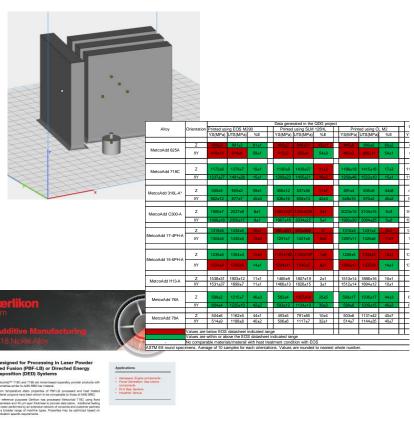
Result of Project:

- Established powder launch procedure for H230, 738, MARM509, H188, etc
- Ongoing work with customer to supply powder and enter series production

Page 21

Highlights – Materials "Quick" Data Generation

Challenge:


- Existing MetcoAdd alloys launched with limited data.
- Difficult to convince customers to switch to MetcoAdd powders.

Solution:

- "QDG" Project to generate datasheets for 9 alloys using stock machine parameters.
- Completed in 2.5 months.

Result:

- Established benchmark for performance.
- Identify need for HT optimization.

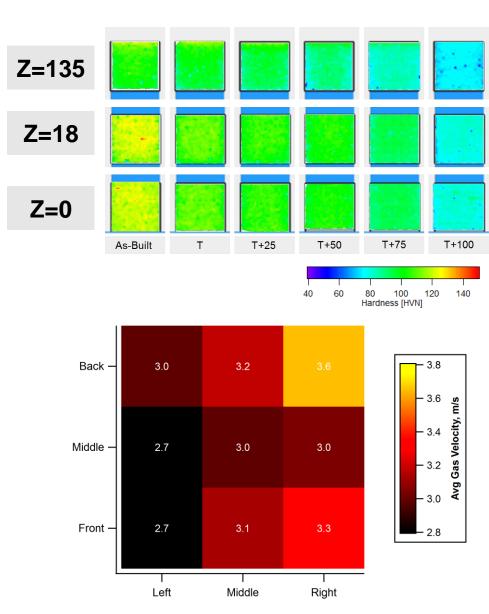
t Heat Treatment Microstructure (x 60 magnification, Vertical Build Direction)

Highlights – Process Qualification

Challenge:

- Doubling speed would significantly open the AM viable part envelope (AlSi10Mg)
- Properties and heat treatment response depend on layer thickness

Solution:


- 8 month machine stabilization and heat treatment optimization study.
- Preliminary data met requirements.

Current Status:

- confirmation of properties at different build locations and height.
- Stabilize process

Result:

 Expand parameter set to 2x and 3x layer thickness, define HT mod.

Technical Roadmap Themes - US cerlikon			
Technical Area	2018 Foundation	2019 Stabilize	2020+ Grow
Powder Ensure powder that can be used internally and externally; expand materials palate	 6 new alloys; 18 total PLY requalification Implement powder management strategy 	 Launch of 4 alloys (22) PLY requalification Establish powder reuse limits 	 y-TiAl, NiTi, Refractory metals Amorphous alloys/FGM/SMA Ceramic powder
Printing Processes Enable stable printing processes that unlock current and future markets	 Printing process readiness to capture customers Establish SPC for Services. 	 Process windows Customer driven application development Multi-Laser Readiness 	 Adv. Process Control DED Simulation tools
Materials Use structure/property/process knowledge to enable data driven expansion of AM applications	 Generate "quick" data for existing powders and processes Establish HT practices 	 HS Aluminum Optimized HT (Including HIP) Impact of flaws 	 A/B Basis Data AM Specific Alloys Designed microstructure
Post Processing Deliver finished components to customers, in-house to realize lead times and low vol savings	 Initial equipment online Establish external supplier base Cross-BU support 	 80% capability in-house Recipes established. Begin exploring differentiating capability 	 Integrate surface solutions Differentiating post process capability in house.

Greatest industry needs

- Stable repeatable printing equipment and process understanding:
 - In process inspection
 - Billion dollar facility in a million dollar machine
- How to rapidly identify material performance:
 - without creating \$500k test programs
 - Across different printers/features/process parameters/alloy chemistries

am

- Future items:
 - New AM specific alloys
 - Harnessing structure property and processing relationships
 - alloy design,
 - microstructure design
 - Heat treatment design

Thank you.

Oerlikon AM Portfolio

- Currently Offer 14 alloys that have been printed on multiple machines and are at various stages data generation
- Developing 8 additional products for launch by 4Q18-1Q19

Alloy Base	Current Portfolio	
Ni-based	718	
	625	
	НХ	
	H230	
Co-based	75A, 76A	
	78A, 78-1A	
Fe-based	17-4PH	
	15-5PH	
	316L	
	C300	
	H13 H11	

Alloy base	Development Pipeline
Al-based	AlSi10Mg
Co-based	Haynes/Udimet 188
	MAR-M-509
Ni-based	Inconel 738LC
	CM-247LC (Rene 108)
	Alloy 939
Fe-based	Alloy 904L
Ti Alloys	Ti-6AI-4V Gr 5 and Gr 23; TBD

œrlikon

am