PAUL SCHERRER INSTITUT

Aldo Mozzanica for the PSD Detector Group

The JUNGFRAU detector: beam line experience and future developments.

IFDEPS24, March 2024

- Introduction to the JUNGFRAU detector
- Applications at FELs, Synchrotron sources, and beyond
- Problems and limitations of current system
- Plans for the near and mid term Jungfrau developments
- Conclusions

Jungfrau principle of operation

- Used by GOTTHARD and AGIPD before Jungfrau
- Basic idea: Dynamically adding capacitors in the feedback loop of the preamplifier to adapt the gain to the number of incoming photons
- Comparator monitors preamplifier output and add capacitors if the dynamic range is ~ exceeded

<u>Three gain:</u>		
High (G0): 1 20	x 12.4 keV photons	
Medium (G1): <i>20</i> 700	x 12.4 keV photons	
Low (G2): 700 <10800	x 12.4 keV photons	

Summary of characterization results

noise in G0 (@10us integration)	80±3 E.N.C. rms
noise in HG0 (low energy operation)	50±2 E.N.C. rms
min energy @ with photon detection	1.5keV
noise in G1/G2	3keV/50keV rms
nominal gain values (G0-G1-G2)	40-1.4-0.11 ADU/keV
non linearity error	<1% (w. optimal calibration)
Saturation	~11K 12keV photons per frame
Saturation flux for continous sources	12MHz/pix @ 1.13kHz,12keV 50MHz/pixel @2.4kHz,6KeV
Min integration time	500ns
Frame rate	max 2.4kHz, 1.13kHz with current FW and PCB
Min period between frames	1/frame rate (now 880us) 3us in burst mode (current FW)

PAUL SCHERRER INSTITUT

JUNGFRAU detector at SwissFEL

PAUL SCHERRER INSTITUT

FE

Serial protein crystallography (SFX) experiments at SwissFEL

- Pohang Accelerator Laboratory is a Jungfrau early adopter, since 2018
- multiple single modules 2x4M, 1x5M one 16M (in commissioning)

Emission spectroscopy

Tae-Kyu Choi et. al., "Resonant X-ray emission spectroscopy using self-seeded hard X-ray pulses at PAL-XFEL", J. Synchrotron Rad. (2023) 30, 1038–1047

Crystallography

courtesy K.Kim

Coherent X-ray imaging

JF5M: Wide-Angle X-ray scattering JF4M: Small-Angle X-ray scattering JF0.5M: emission spectrometer

Junha Hwang et. al., "Development of Multiplex Imaging Chamber at PAL-XFEL", J. Synchrotron Rad. (Accepted 3 February 2024)

Jungfrau for low E: 4M at Maloja

- Multi-purpose low-energy X-ray beamline at SwissFEL
- 4M JUNGFRAU installed
- 6M for larger angles in planning
- In planning for Furka end station
- **Commissioning** with xenon cluster target

First results at Maloja

Cumulative energy spectrum in high gain (1000 frames all pixels)

103

photons

102

CDI with JUNGFRAU at Maloja

courtesy A.Colombo

geometry

JUNGFRAU for RIXs

* see Talk from J.Zhang

•

•

JUNGFRAU at Syncrotrons

- Working with a continuous source requires long integration times: cooling to reduce leakage current, noise.
- Forced to work at full speed
- Readout during integration: 96% duty cycle
- As a plus, rate capabilities scale with frame rate
- Noise at 840us integration goes up to 160-200e- r.m.s.
 3keV single photon sensitivity should be possible

It allows fast data collection with strong beam

5% transmission with 5 deg/s = 36 second 50% transmission with 50 deg/s = 3.6 second 100% transmission with 100 deg/s = 1.8 second

14

JUNGFRAU 9M at SLS PX*

*temporarily at MAXIV

• 9M detector with isolated dry chamber and warm/cool dual water loop

Serial crystallography with **1 ms time resolution** at MAX IV MicroMAX beamline

> thanks F.Leonarski J. Duan 15

JUNGFRAU 9M at SLS PX

- High rate capabilities allow (with • frame rate) to measure structural changes with 500us time resolution at high flux beamlines
- For even higher time resolution ٠ storage cell mode has been used

JUNGFRAU 4M at ESRF ID29

- The **first world beamline** dedicate to Time-resolved Serial crystallography at room temperature
- A completely new way to perform experiment and novel beam characteristics
- The beam is pulsed at 231.25 hz
 - limited by data transfer rate and live analysis, sample refreshing
 - Pulse length of **90 us** (**30 20 10 us**)
 - Beamsize ~ 4 x 2 um
 - ~ 3 x 10^15 ph/s (~3E11 per Pulse)
- Standard energy is 11.56 keV with 1 % bandwidth and 1.6 Å resolution

JUNGFRAU 4M at ESRF ID29

thanks D.de Sanctis

-14ms

Measuring with storage cells

Measuring with storage cells

JUNGFRAU with pink beam (chopper)

First serial Xtallography with JF

- Pink beam at APS BioCARS beamline
- full beam transmission
- chopped down to single bunch (or few)
- <10 um beam size
- Makes liquid jet experiments possible at SYNs

PAUL SCHERRER INSTITU JF at <u>Synchrotrons</u>: pro and cons

Cons

- huge data rates : we have to run full speed, always
 - save raw data not a good strategy on the long run
 - online conversion will ٠ require IT resources
- Calibration is more complex
- Pedestals are essential: "frequent" dark collection and temperature control - moderate cooling (<0C) is required
- Fluorescence suppression at medium/high rates not possible

Pros

- very high count rate limit: 24Mcps @ 12.4keV, 40Mcps at 8keV
 - can be extended 10x with a DR extension method
 - or even higher if dead time is acceptable
- No "corner effect"
- low energies: single photon resolution at 2.5keV (or lower for short int. times)
- at low flux, JF gives energy information, without Th scan.
- works with strong single bunches, suitable for serial pink beam crystallography

Jungfrau at laser facilities (LULI/PHELIX

- PW class Laser (rep rate O(1/h)) on W or Cu wire as source, split beam as "pump"
- Sample projects image onto detector
- Strong EMP produced shielding required (Be entrance window)
- Signal can be strong, 100s ph./pulse middle gain
- Game changer with respect to image plates!

courtesy S.Schreiner 10.1063/5.0160120

JUNGFRAU at electron facilities

1M vacuum JUNGFRAU System installed at REGAE facility, DESY, Hamburg Diffraction from 3MeV electrons.

3D reciprocal space representation of the hexagonal 1T-TaS₂ super lattice from REGAE diffraction data (a= 12.1 Å, c=17.6 Å).

A perfect detector?

PAUL SCHERRER INSTITUT

JUNGFRAU non-linearities at switching points

- data from SwissFEL Bernina enstation
 - Intensity fluctuations up to 100%
- Small changes (<1%) within an intense diffuse signal</p>
 - Non-linearities at the switching point prevent proper data collection
 - Fixing gain 1 as stop-gap solution

JUNGFRAU non-linearities at switching points

JUNGFRAU Anomaly

- Linearity issue in gain switching region
 - need to correct the offsets

JUNGFRAU storage cell issues@EU-XFEL

- in storage cell mode the gaps are more pronounced
- effect changes with occupancy
- without close loop correction data is unusable
- Fixed gain1 proved to be a workaround in many cases.

we are not alone..

Detectors continue to be a challenge, despite a decade of XFEL use. Gain-switching is particularly challenging. Gain-selection > Gain-switching but may not be viable for higher repetition rates. Necessary for high dynamic range to address the extremely diverse science cases.

Summary slide presented at 5way meeting last summer. Courtesy Tim van Driel (LCLS)

- a few pixels (<1%) show this long term 2 step behavior
- Step size continuously distributed
- Step size scales with integration time – plot for 1ms
- step size scales with amplifier gain
- Does not improve with temperature (but occupancy of "hot" and "cold" might changed)
- In the (extreme) case of this plot the step corresponds to two 12keV photons and a current ~pA at pre input.

- Mitigation: pixel mask
- at FEL timings (expose<100us) this is completely negligible

"Jumping" pixels – statistics for a 4M

PAUL SCHERRER INSTITUT

- many problems we see can be interpreted as deviation from linear behavior of the amplifier references and of the readout chain
- deviations become bigger when ASIC is operated at boundary conditions, e.g. pedestal g1/g2 collection

- the readout chain has been completely reworked
- more robust voltage delivery: buffers buffers buffers!

Bonus: improving linearity simplifies gain calibration and improve calibration data quality

- Readout chain linearity massively improved
- dynamic performance at 40MHz also improved. Settling time allow (theoretical) 65MHz
 - this simplify the ADC phase window setting at system level

off chip transient at 40MHz, full swing

ULDIF INI

Additional improvements

- low noise mode as JF1.1
 - 35e- rms expected
- (unoptimized) electron collection mode
- 16 storage cells
- digital comparator disable (avoids late switching)
- internal current source strength can be selected
- flexible

JF 2.0 towards higher frame rate

- 10kHz frame rate target
- On chip ADCs
 - preliminary specs:
 - 12b 10Ms/s
 - every 8 columns
- High speed serializers and transceivers for off chip communication
 - 1.5 GHz PLL
 - 3.125 Gb/s
 - 64/66b encoding
- Requires complete back end and DAQ redesign \rightarrow Matterhorn readout board.
- On the FE side, we are evaluating:
 - lower noise at long exposure times
 - higher DR for FELs (4x higher)

- the JUNGFRAU pixel detector developed for SwissFEL, is in use at FELs and Synchrotrons worldwide
- ASIC and system issues which mostly impact users have been identified and (mostly) understood
- A new ASIC addressing these issue is under way.
- Higher frame rates will be achieved down the road

Acknowledgements

Back: Marie Ruat, Bernd Schmitt, Sophie Redford, Aldo Mozzanica, Erik Fröjdh.

Middle: Jiaguo Zhang, **Carlos Lopez**, Marie Andrae, Rebecca Barten, **Martin Brueckner**, **Christian Ruder**, Dominic Greiffenberg, **Seraphin Vetter**.

Front: Xintian Shi, **Dhanya Thattil**, Gemma Tinti, Anna Bergamaschi, Marco Ramilli, Roberto Dinapoli, Davide Mezza. Not in pic: Sabina Chiriotti

Jungfrau on top of Jungfrau

Specification summary

ASIC technology	UMC110nm
mudule pixel count	525k
mudule size	80x40 mm ²
sensor thickness	320-500 μm
pixel size	75x75 mm ²
dynamic range	up to 10 ⁴ 12keV photons
noise r.m.s.	50 e.n.c.
min Energy	1.5 keV
linearity	better than 1%
point spread function	1 pixel
dead time	<500ns
ext. power consumption	30 W /module
cooling	liquid @ e.g. 10ºC
readout time = 1 / frame rate	2.4kHz with 2x10GbE
rate capability @ syncrotron (with 10GbE)	$10^4 \times 2.4 \ 10^3 = 2.4 \times 10^7$ photons per ch. per s

JUNGFRAU at LCLS - September 2016

Silver behenate (AgBe) powder measurement

- full beam transmission
- 9.5 keV photons
- 10-15 um beam size ٠

photons per pixel per frame 10³ Average

Two JUNGFRAU modules

- 1 MPixel in total ٠
- 36 pixel-width gap
- 10 μ s integration time
- 200 V bias •
- dynamic range
- ~10^4 9.5 keV photons
- central ring pixels are in the middle of low gain

Single photon measurements

- Cu Fluorescence target
- $10\mu s$ integration time
- HG0
- HV=200V
- Readout at 500-700Hz
 - limited by prototype firmware
 - 20MHz ASIC readout

JUNGFRAU calibration procedure(s)

20keVxN

Second version of calibration procedure established for JUNGFRAU

- Single or multi photon peaks for G0 (absolute)
- Backplane Pulsing (BG) for G1/G0 crost calib.
- Internal Current Source (CS) for G2/G1 cross calib.
- Calibration uncertainty <<1% for G0 and G1, order 1% for G2
- Validation of procedure on SLS and LCLS data ongoing

Cal. Validation with IR laser

Raper

= 1030 nm

IR laser calibration

- targets individual pixels
- scan intensity with filters
- access all gain stages
- significant charge loss to neighboring pixels at high intensity
- reflected in gain ratio between G1 and G2

Cons

- huge data rates : we have to run full speed, always
 - save raw data not a good strategy on the long run
 - online conversion will require IT resources
- Calibration is more complex
- Pedestals are essential: "frequent" dark collection and temperature control – moderate cooling (<0C) is required
- Fluorescence suppression at medium/high rates not possible

Pros

- very high count rate limit: 24Mcps
 @ 12.4keV, 40Mcps at 8keV
 - can be extended 10x with a DR extension method
 - or even higher if dead time is acceptable
- No "corner effect"
- low energies: single photon resolution at 2.5keV (or lower for short int. times)
- at low flux, JF gives energy information, without Th scan.
- works with strong single bunches, suitable for serial pink beam crystallography

JF at Synchrotrons: pro and cons

Cons

- huge data rates : we have to run full speed, always
 - save raw data not a good strategy on the long run
 - online conversion will

Pros

- very high count rate limit: 24Mcps
 @ 12.4keV, 40Mcps at 8keV
 - can be extended 10x with a

JF at Synchrotrons: pro and cons

Cons

- huge data rates : we have to run full speed, always
 - save raw data not a good strategy on the long run

Pros

- very high count rate limit: 24Mcps
 @ 12.4keV, 40Mcps at 8keV
 - can be extended 10x with a DR extension method
 - or even higher if dead time is acceptable

• No "corner effect"

- low energies: single photon resolution at 2.5keV (or lower for short int. times)
- at low flux, JF gives energy information, without Th scan.
- works with strong single bunches, suitable for serial pink beam crystallography

JF at Synchrotrons: pro and cons

