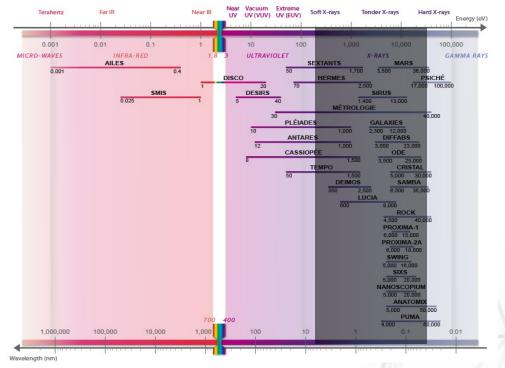


Facility Report : Synchrotron SOLEIL

Arkadiusz Dawiec, on behalf of the Detector Group


IFDEPS24, 18/03/2024

SOLEIL Synchrotron

- ➢ 3rd generation synchrotron
- ➢ Ee = 2.75 GeV
- > 354 m circumference
- 29 beamlines + support labs
- users since 2008
- energies : from IR to hard X-Rays

ongoing detectors R&D programs

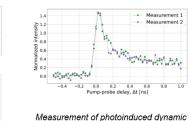
The upgrade project : SOLEIL II

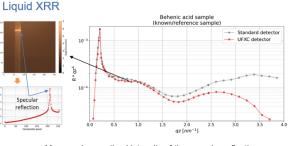
Detectors R&D @ SOLEIL : Tender/Hard X-rays

UFXC project

AGH

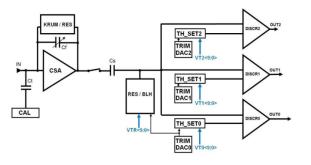
- Originally developed for time resolved experiments
 - improved pump-probe method by introducing shot-to-shot normalization (second probe)
- > pixels : $75 \times 75 \,\mu\text{m}^2$ with 2 counters/thresholds
- linear count rate up to 2×10⁶ ph/pix/sec (max 10⁷ ph/pix/sec)
- > different readout modes : standard, continuous and pump-probe-probe
- fully (natively) integrated within Tango Control system


In regular use on beamlines


A. Dawiec et al., IEEE NSS Conf Proc (2021)

18/03/2024

Pump-probe-probe TR XRD


asurement of photoinduced dynam structural changes (ref: InSb)

Measured normalized intensity of the specular reflection (ex: behenic acid layer on liquid)

UFERI project

- Ultra Fast Energy Resolved Imager
- Solution: Second Second
- first prototype realized and characterized (design by AGH)
 - > pixels : $75 \times 75 \,\mu\text{m}^2$ with 3 counters/thresholds
 - In-pixel offset and gain corections
 - linear count rate up to almost 10⁷ ph/pix/sec

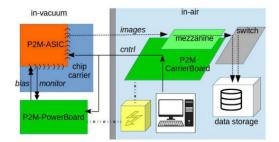
Complete characterization and performance measurements are ongoing => upcoming publication

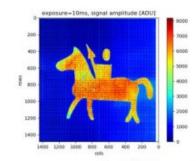
F. Orsini et al., IWORID (2023)

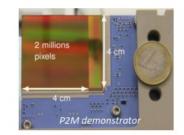
In-house built soft X-ray CMOS-BSI camera

- First version based on TUCSEN Dhyana95 camera (4 Mpx GSENSE400BSI)
- Min. energy ~100 eV
- > In-house built for vacuum and fully characterized
- Commercialazed by AXIS Photonique company
- > Several versions in regular use at SOLEIL:
 - different geometries and sensors

Camera specification	
Resolution	2048 x 2048
Pixel size	11 μm x 11 μm
Sensitive area	22.5 mm x 22.5 mm
Shutter type	Rolling shutter
Dark noise	1.7 e- (HRD)
	85 ke- (Low Gain mode)
Full well charge	30 ke- (HDR mode)
	2 ke- (High Gain mode)
Frame rate	24 fps (Full frame)
Dark current	> 3 e-/s/pix @ -20°C



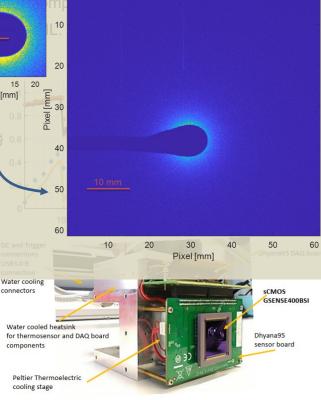

18/03/2024


0.8 ä 0.2 GSENSE400BSI TVIS-B GSENSE400BSI Pulsar 10^{2} 10³ Energy [eV] DC and Trigger Dhyana95 DAQ board connections USB3.0 B connection Water cooling connectors sCMOS GSENSE400BSI Water cooled heatsink Dhyana95 for thermosensor and DAQ board sensor board components Peltier Thermoelectric cooling stage

Percival project

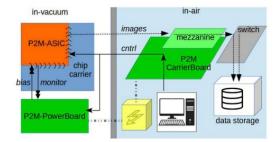
- > 2 Mpx sensor with 27 μ m² pixels (4 × 4 cm²), three gains, 82 Hz framerate
- ➢ Min. energy : ∼100 eV
- SOLEIL joined collaboration in 2019
- New sensor version under fabrication
- > Several user experiments at synchrotrons and FELs

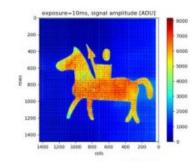
A. Marras et al, JSR 28 (2021)

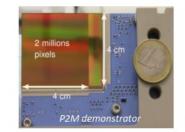


In-house built soft X-ray CMOS-BSI camera

First version based on TUCSEN Dhyana95 camera Recent upgrade 0 a Very large sCMOS Soft X-ray camera


- ➢ Min. energy ~100 eV
- > In-house built for vacuum GSENSE 2020BSI cterized GSENSE 6060BSI



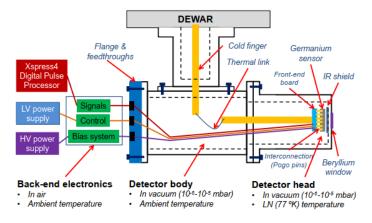


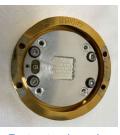
Percival project

- 2 Mpx sensor with 27 μm² pixels (4 × 4 cm²), three gains, 82 Hz framerate
- ➢ Min. energy : ~100 eV
- SOLEIL joined collaboration in 2019
- New sensor version under fabrication
- > Several user experiments at synchrotrons and FELs

A. Marras et al, JSR 28 (2021)

K. Desjardins et al, JSR 27 (2020)




Detectors R&D @ SOLEIL : Spectroscopy

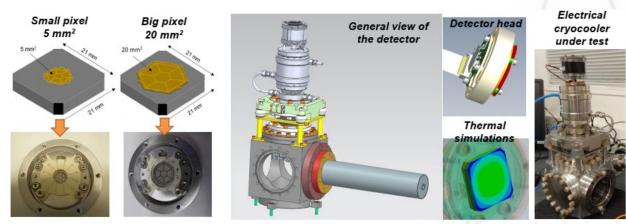
DLS-SOLEIL Germanium detector

- Germanium detector demonstrator within Diamond-SOLEIL collaboration
- Project started in 2018 (SOLEIL joined ongoing DLS R&D effort)
- Prototype with 19 elements and new FEC board
- > First experimental tests made. New germanium crystal being processed.

Detector head

Back-end electronics

N. Tartoni al., IEEE-NSS 2022/MIC



Front-end board with 19 CUBE preamplifiers

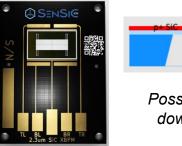
LEAPS INNOV Germanium detector

- New generation of multi-element germanium detectors for spectroscopy applications within 5 – 100 keV energy range
- 11 partners : ALBA, DESY, DIAMOND, ELETTRA, ESRF, EuXFEL, INFN, MAXIV, PSI, SOLARIS, SOLEIL
- Project started in 2021, now in fabrication phase
- Main features:
 - two versions of germanium sensor: 5 mm² and 20 mm² pixel sizes,
 - a new full electronic chain has been designed and built,
 - the mechanical design has been optimized using thermal simulations.

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 101004728.

F. Orsini et al., NIM A 1045 (2023) 167600

18/03/2024



Detectors R&D @ SOLEIL : Other activites

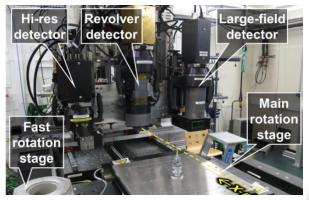
Beam diagnostic (examples)

SiC membranes

Tests and characterisation of the detectors from SenSiC

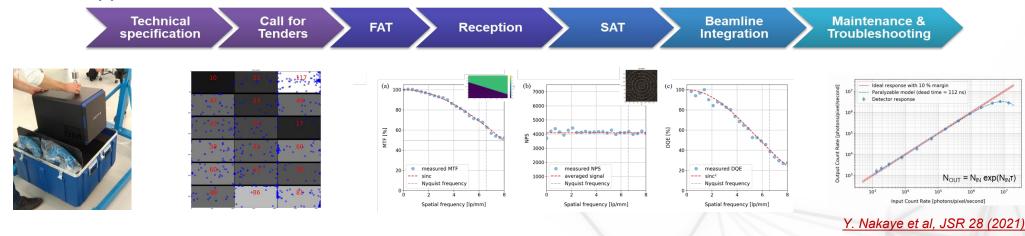
Possible thickness down to 200 nm

CVD Diamond XBPM


Collaboration with CEA-Saclay Diamond Lab

K. Desjardins et al, JSR 25 (2018)

Indirect X-ray cameras


Example : tomography detectors on the ANATOMIX beamline

K. Desjardins et al, MEDSI (2018)

Beamlines support / detectors characterization :

n++ Sid

18/03/2024

Thank you !

Marie Andrä, Arkadiusz (Arek) Dawiec, Kewin Desjardins, Nishu Goyal, Francisco-Jose (Paco) Iguaz-Gutierrezo, Claude Menneglier, Jean Roche