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Detectors at light sources are not standalone.  They are part of an edge to HPC pipeline

Detectors, Data Reduction, and Online Data Processing

Earlier processing of data happens for many reasons:

● Data Reduction
○ To get the data out of the camera (bandwidth constraints)
○ To reduce downstream network, storage or computing constraints

● Pre-processing
○ Auto-calibration of data
○ Split a multi-step algorithm (calibrate + peak finding) into two steps and do the first in the FPGA layer 

and the second in the online CPU layer
● Feature extraction:  provide actionable information for the purposes of

○ Data Quality Monitoring
○ Experiment Steering or Control 

Repercussions:

● Data flow in this pipeline may be bidirectional 
● Detector firmware may not be static - it may change with experiment or parameters may change as a function 

of time



1 TB/s

LCLS-II Data Challenges
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● LCLS-II Upgrade: greater data velocity, volume, and complexity
Data Rates: 120 Hz to 1 MHz (10000x)
Raw Data Volumes: 2 GB/s to 200 GB/s (100x)
Recorded Data Volumes: 2 GB/s to 20 GB/s (10x)
Computational Requirements: 80% ~1 PF, 20% ~1 ExaFLOP

● Fast Feedback: real-time analysis (sec/min) is essential to the 
users’ ability to make informed decisions during experiments.  

● Variability: 
○ Wide variety of experiments with turnaround ~days
○ Large dynamic range: device readout 0.01 Hz - 1 MHz 
○ Data Complexity: Variable length data (raw, compressed) 
○ Access patterns to data vary by experiment and detector
○ Analysis is a mix of tried-and-true & innovative techniques

● Time to Science:  Development cycle must be fast & flexible
● No user left behind: alleviate the pressure on users to gather 

resources to mount a significant computing effort.

Surge to offsite – NERSC, LCF

LCLS Data Throughput
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Detectors are not standalone - they are components in an edge-to-HPC pipeline and used to 
do data reduction, feature extraction, and as part of experimental control loops

LCLS Data System enables & accelerates scientific discovery
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Real-time Information Extraction and Detectors
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Produce actionable information with low latency for 
fast feedback and experiment steering

Data Reduction



Workflows map algorithms onto the layers of the analysis 
pipeline (DRP, FFB, Offline) for each experiment technique

Undulator Instrument Endstation Experiment
Technique Detector Data Reduction 

Type FFB Algorithm Type Offline Algorithm Type

SXU NEH 1.1 DREAM COLTRIMS Digitizer Zero suppression ROENTDEK Coincidence 
Sorting

detailed reconstruction of 
ToF, x, y

SXU NEH 1.1 DREAM Time of Flight Digitizer Zero suppression peak finding statistics

SXU NEH 1.1 LAMP Time of Flight Digitizer Zero suppression peak finding statistics

SXU NEH 1.1 LAMP Imaging SXR Imag. + 
Digi. Veto Fourier Transform MTIP

SXU NEH 2.2 LJE XAS / XES TES Zero suppression Binning na

SXU NEH 2.2 LJE XAS / XES RIXS-ccd N.A. Binning na

SXU NEH 2.2 RIXS IXS / RIXS RIXS-ccd N.A. Binning na

SXU NEH 2.2 RIXS XRD / RXRD SXR Imaging ROI

SXU NEH 2.2 RIXS XPCS SXR Imaging Compression Photonize Stats Analysis

SXU NEH 1.2 --- X-ray/X-ray SXR Imaging ROI FXS Correlations (subset) FXS Correlations + MTIP

SXU NEH 1.2 --- Imaging epix100-HR + 
Digi. Veto Fourier Transform MTIP

SXU NEH 1.2 --- XAS / XES RIXS-ccd N.A. Peak Finding statistics

Undulator Instrument Technique Detector Data Reduction Type FFB Algorithm Type Offline Algorithm Type
HXU NEH 1.2 X-ray/X-ray SXR Imaging ROI Peak Finding Indexing

HXU NEH 1.2 Imaging epix100-HR + Digi. Veto Fourier Transform MTIP

HXU NEH 1.2 XAS / XES RIXS-ccd N.A.

HXU NEH 1.2 Imaging ePixUHR Veto Fourier Transform MTIP
HXU XPP Scattering CSPAD N.A. Cube / Angular integration Visualization
HXU XPP XAS / XES ePix100 N.A. Photonize Stats Analysis
HXU XPP IXS / RIXS ePix100 N.A. Photonize Stats Analysis
HXU XPP XRD / RXRD ePix100 N.A. Photonize Stats Analysis
HXU XPP Scattering ePix10k-HR Binning Cube / Angular integration Visualization
HXU XPP Scattering ePixUHR Binning Cube / Angular integration Visualization
HXU XCS/IXS XPCS ePix100 N.A. Photonize Stats Analysis
HXU XCS/IXS IXS / RIXS ePix100 N.A. Photonize Stats Analysis
HXU XCS/IXS XRD / RXRD ePix100 N.A. Photonize Stats Analysis
HXU XCS/IXS XPCS epix100-HR Compression Photonize Stats Analysis
HXU XCS/IXS XPCS ePixUHR Compression Photonize Stats Analysis
HXU MFX Xtallography Jungfrau N.A. Peak Finding Indexing
HXU MFX Xtallography Jungfrau Veto Peak Finding Indexing
HXU CXI Xtallography Jungfrau N.A. Peak Finding Indexing
HXU CXI Imaging Jungfrau N.A. Fourier Transform MTIP
HXU CXI Xtallography ePixUHR Veto Peak Finding Indexing
HXU CXI Imaging ePixUHR Veto Fourier Transform MTIP
HXU MEC ePix100 N.A. TIFF Animated GIF



1 MHz capable DAQ with real-time data reduction 

DAQ and Data Reduction Pipeline tested at 
120 Hz → 1 kHz in TMO  with data reduction 
for waveforms in FPGA and ROI for Piranha.

Tested acquisition at 1 MHz without beam 
using data from 14 high-speed digitizer 
channels and other instruments such as wave8, 
Piranha camera. 

Users select from toolbox of data reduction 
algorithms
● Parameterized data reduction algorithms 

run on the DRP compute layer
● Algorithms:  Lossless compression, SZ 

compression, feature extraction, 
trigger/veto

● Validation:  save a programmable fraction 
of unreduced data (100 Hz)



SAXS/WAXS is challenging:  every shot contains information; hard to distinguish signal

Lossy compression with fixed error bounds - SZ Compression

● Demonstrated SZ3 lossy compression with fixed error bounds on single 
panel emulated ePixHR @ 8 kHz with full calibration in DAQ test stand
○ Data reduced by factor (9x, err= 100), (17x, err=200)
○ No perceptible effect on the science result

● R&D milestones supporting this demonstration:
○ Re-factor calibration software to split segments across many nodes 

driven by serial number (Mikhail Dubrovin)
○ SZ compression performance improvements (Franck Cappello at 

Argonne) and segmentation (Stefano Marchesini)
○ Code refactored for highly-parallelized readout 
○ Assumptions renormalized:  algorithms do not always operate on fully 

reconstructed, fully calibrated images
● Cons:  Does not produce actionable information; need to decompress prior 

to analysis in offline (there is a computational “penalty”)
● SZ compression has been previously demonstrated on crystallography

Credit:  Stefano Marchesini

Reduced by 17x, err=200



Free science from the limits of time and distance by 
providing adequate access to computing resources

Edge to HPC Workflows



View a selectable fraction of events that meet user-specified criteria  with ~1s latency

Real-time feedback to validate data reduction validation

Produce actionable information with low latency for fast feedback and experiment 
steering

Simple, real-time 
feedback needed for:

● beamline alignment 
and tuning

● data reduction 
tuning/validation

● basic experiment 
monitoring

● Can be a source of 
feature extracted 
information for 
experiment steering



Dedicated workflows for SFX Data Analysis (LCLS ExaFEL)

Multistep workflow from 
raw data processing to 
final result displayed in 
the browser. All steps 
report live (see above).

Users can interact with the ongoing analysis and readily 
evaluate once the results are good enough to move on.



Smart, adaptable detectors for data reduction, fast 
feedback, and experiment steering lower the barrier to 
doing science

Future Directions



Detectors with sparsified readout at ASIC enable leap from 100 kHz detector rates to 1 MHz

Smart Sensors:  SparkPix-S and SparkPix-RT

SparkPix-S:  Pixel-threshold
● Information in both XPCS and XSVS 

experiments is “sparse” and confined in a limited 
# of pixels/frame, each pixel containing a limited 
# of photons 

● 2D detector with fine spatial resolution, 
operating at the full rate of the machine, and 
discriminating between 0, 1, 2, 3…. 
photons/pixel/frame with high QE

SparkPix-RT
● Solve data transmission bottleneck by implementing 

compression algorithm solutions in ASIC
● bit-level compression
● auto-correction techniques (pedestal)

● R&D needed to  deal with calibration and segmentation

1 ph

2 ph

3 ph
4 ph

5 ph



MRCO reconstructs attosecond pulses using ML at the Edge

AI/ML at the Edge:  Data Reduction for TMO MRCO

● Deploy AI inference in FPGAs:  developed 
an AI inference library in High-Level 
Synthesis which enables high rate data 
processing & low latency feedback

● Implemented CookieNet feature extraction 
to reconstruct time-energy distribution of 
an attosecond FEL pulse in real-time  to 
reduce 100 GB/s →~1 GB/s

● Demonstrated in Data Reduction Pipeline 
FPGA (KCU1500)

● Demonstrated training and inference on 
Graphcore and SambaNova

This material is based upon work supported by the U.S. Department of Energy, Office of Science, 
Office of Basic Energy Sciences under Award Number FWP-100643 and  FWP-35896.  

Gain insight into attosecond electron dynamics:

● MRCO/Cookiebox:  Angle-resolved Electron Spectroscopy determines 
photoelectron angular distributions during photochemical processes

MRCO/Cookiebox



Goal:  Provide a set of libraries to synthesize AI inference networks into FPGAs
ML in FPGA:  SLAC Neural Network Library (SNL) Framework

SNL implementation is targeting scientific instruments (frame rate of 100 kHz to 1 MHz) which must 
continuously adapt to new data and changing environments. 

● Targeted at networks of a medium size, 10 - 20 layers,  100,000s of trainable parameters, 
● Dynamic reloading of weights and biases to avoid re-synthesis.

○ Cannot re-synthesize for new training set; cannot risk FPGA implementation failing due 
to increase in resource usage , timing failure, or change to internal interconnect 
structure.  

● High speed training is needed to support this as are real time bias and weight updates.

Features:

● Supports a Keras-like API for layer definition and configuration, modular and extensible
● Currently supported layer types:  Conv2D, MaxPooling, AveragePooling, Dense, Reservoir.
● Current activators:  LeakyRelu, Relu

To Do: Quantization, attention layers for transformers (foundation models), global optimization 
suggestions



Use ML to analyze data at the rate the production (1 MHz)
Figures:  Greg Stewart at SLAC

More good information, faster → better decisions → better data → experiment success!

Analyze data at the rate of production using ML and providing access to network and 
compute

● Introduce AI/ML feature extraction at the edge to produce actionable information to feed experiment 
steering.

● AI-assisted decision making (running offline) uses analyzed information and other inputs to steer 
experiment.

● Embrace the use of heterogeneous pipelines (FPGA, CPU, GPU) and make them flexible, resilient, and 
transparent to use and configure



Provide actionable information by developing on-the-fly inference at the edge using ML 
trained remotely on streamed data - rapid (re)training workflows

Connect scientific instruments and HPC to create smart instruments

AI/ML at the Edge can  introduce new, compute-intensive workflows, such as those required to re-train a model on 
streaming experimental data.  Experiment conditions can change within 1000 seconds, so rapid re-training 
necessary.

This material is based on  work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number FWP-
100643. 

Model training on local 
GPU: 1102 seconds

7 seconds

7 + 19 + 5 = 31 
s

19 
sec

5 seconds



Machine learning enabled real-time experiment steering

Chen, Z. et al., 2023 (https://doi.org/10.48550/arXiv.2306.02015)
This material is based upon work supported by the U.S. Department 
of Energy, Office of Science, Office of Basic Energy Sciences under 
Award Number DE-SC0022216.

● Help users make physics-
informed decisions during their 
beam time.

● Develop a data-driven 
experiment steering framework 
to suggest next measurement 
point, time delay t, that 
maximizes information gain

● Uses a surrogate model for spin 
excitations based on current 
measurement 

● Uses Bayesian design for real-
time decision making and 
parameter estimation  

● Needs access to computing

More good information, faster → better decisions → better data → experiment success!

Actionable information produced at each layer of computing feeds decision-making algorithms that 
can drive experiments over seconds, minutes, or hours



AI-powered edge to HPC pipelines are the way of the future, whether we like it or not

Summary Thoughts

● What works for my facility may not work for yours; your mileage may vary.
● At minimum, it would be nice if detectors could auto-calibrate (even partially - pedestal) 
● Users should not, in general, be expected to program firmware…but they might change parameters
● As we try to stuff AI/ML, adaptability, and intelligence into ASICs and FPGAs we will run into:

○ Need more resources at the detector (memory, etc)
○ If processing, need to collect and report information/statistics about what the detector is doing
○ Differences of scale between online/offline:

■ When users develop algorithms offline, they usually develop on fully calibrated and stitched together 
images with infinite computing resources available, batch sizes are large

■ Online data is segmented, every bit is touched once, computing/memory are limited, batch size is one
■ LLMs are the new hotness and they keep getting bigger.  FPGAs do not provide enough space.

○ Do we develop something specific and small for the edge that only works for a limited use case? Or do 
we develop something generic and large in the offline and try to port it online?

● Start with some basics and make them modular:  calibration, simple bit-level data reduction.  
○ But know that scientists are dreaming about detectors that can adapt to data as it comes in, react to 

anomalies, and help steer experiments in the most promising directions.


