

Kate Shanks March 18, 2024

- **CHESS funding:** NSF, Air Force Research Laboratory, NIH, NYSTAR; *auxiliary project: ONR*
- MM-PAD-2.1 funding: DOE-BES
- **Cornell detector group, past and present:** Sol Gruner, Julia Thom-Levy, Mark Tate, Hugh Philipp, Divya Gadkari, Dan Schuette, Prafull Purohit, Marty Novak, Lena Franklin, and others...
- Argonne MM-PAD-2.1 collaborators: Nino Miceli, John Weizeorick, Jon Baldwin
- **Power users and guinea pigs:** Todd Hufnagel (Johns Hopkins), Krzysztof Gofryk (INL), Zahir Islam (ANL), Darren Pagan (Penn State)
- CHESS colleagues and diffraction afficionados: Kelly Nygren, Sven Gustafson

Wide-dynamic-range area detectors are critically needed at synchrotron beamlines in order to advance diffraction-based techniques – especially for dynamic studies.

High-energy diffraction microscopy (aka 3DXRD) is a prime example of an application requiring increased dynamic range.

The **MM-PAD family** of detectors fills a unique "middle ground" combining key benefits of photon-integrating and photon-counting architectures.

Increases to dynamic range + frame rate must be accompanied by new strategies for managing large data volumes and high data rates.

Detector R&D at Cornell

Our typical development cycle:

Small-scale modules for pixel design

Medium-scale lab prototypes

Tech transfer to commercial partners

Detector proving grounds:

Characterization with home-lab sources

Characterization @ the beamline

User experiments @ the beamline

The canonical slide

Integrating

- Pixel well determined by size of bucket (typical: ~10² - 10⁴ photons)
- Read noise, dark current present
- No inherent photon rate limit

Counting

- Pixel well determined by size of counter
 (>> 10⁴ photons)
- Read noise, dark current suppressed
- Photon rate limit ~10⁶ ph/pix/s

The canonical slide

Integrating

- Pixel well determined by size of bucket (typical: ~10² - 10⁴ photons)
- Read noise, dark current present
- No inherent photon rate limit

Why do we care?

Counting

- Pixel well determined by size of counter
 (>> 10⁴ photons)
- Read noise, dark current suppressed
- Photon rate limit ~10⁶ ph/pix/s

Let's consider a specific use case...

High-energy diffraction microscopy / 3DXRD

Rotation-based diffraction technique using *isolated diffraction spots* from a polycrystalline sample to reconstruct the **centroid, strain tensor, and orientation** of individual grains

Example applications:

Investigating the role of slip systems in cold-dwell fatigue for aerospace alloys (Worsnop *et al.* (2022) *Nature Comm.*) Control of crystallographic texture for improved formability of magnesium alloys (Roumina *et al.* (2022) *Acta Materialia*)

The need for dynamic range: a user perspective

To timelapse the life of a mountain...

CHESS

(analogy and graphics courtesy S. Gustafson @ CHESS)

Imagine now, that the **mountain peaks are our signal**, our **detectors have limited fields of view** (dynamic range), and a full experiment can happen in minutes

Diffraction signals are moving targets

Say you go to a synchrotron and wish to do a simple metallic deformation experiment...

CHESS

Material state change -> Signal change

What changes in our signal?

Now, the same deformation experiment but with x-rays...

What changes in our signal?

Now, the same deformation experiment but with x-rays...

The accuracy and resolution of our techniques rely on our ability to fit centroids to each diffraction peak

Peak intensity

- Why do we care?
 - Peaks will either saturate, or fall below the noise floor
- Can we control it?
 - Yes! Through attenuation or exposure time

Wide-dynamic-range detectors to the rescue!

- Standard/typical detectors for 3DXRD (GE RT-41, Dexela 2923) have limited dynamic range (2-3 orders of magnitude)
- Choice driven by need for **large active area** with good stopping power in the **20-100 keV** range (at an "affordable" price...)
- Current best alternative: large area photoncounting PAD (e.g. CdTe Eiger 16M)
- BUT: we *need* photon-integrating options with comparable dynamic range to avoid systematics due to incident photon rate (see e.g. Imai & Hatsui JSR 2024)

Integrating

- Pixel well determined by size of bucket (typical: ~10² - 10⁴ photons)
- Read noise, dark current present
- No inherent photon rate limit

Counting

- Pixel well determined by size of counter (>> 10⁴ photons)
- Read noise, dark current suppressed
- Photon rate limit ~10⁶ ph/pix/s

How do we keep the rate-limit benefits of an integrating detector, but extend the dynamic range to something like that of a counting detector?

Mixed-Mode PAD (MM-PAD)

In a purely integrating pixel: well depth limited by feedback capacitance C_{int}

Voltage swing typically ~1 V, feedback capacitance up to 2 fF/μm² → ~1.2x10⁵
 8-keV ph/pix max in 150 x 150 μm pixel

Charge removal decouples well depth from C_{int} to provide extended dynamic range

Specification	MM-PAD-1.0* (8 keV equivalent)	MM-PAD-2.1† (20 keV equivalent)							
Status	Medium-scale lab prototypes operational; commercial units in progress	Pixel design fully vetted; medium-scale lab prototypes in progress							
# of pixels per chip	128 x 128								
Pixel size	150	μm							
Frame rate	1.1 kHz	<u>></u> 1.1 kHz							
Duty cycle at max FR	~0%	<u>></u> 90%							
Read noise	0.16 photon	0.13 photon							
Well capacity	4.7x10 ⁷ photons	2.2x10 ⁷ photons							
Instantaneous photon rate	> 10 ¹² ph/s/pix	> 10 ¹² ph/s/pix							
Sustained photon rate	4x10 ⁸ ph/s/pix	3x10 ¹⁰ ph/s/pix							
	*Tate <i>et al., Journal of Phy</i>	ysics: Conference Series (2013)							

MM-PAD: applications

Wide dynamic range gives extraordinary experimental flexibility

Giewekemeyer et al., Journal of Synchrotron Radiation (2014)

- Capture scattering pattern from Au test object, allowing ptychographic image reconstruction with ~25nm resolution
- Key detector features: wide dynamic range, fidelity at high incident photon rates (>10⁷ ph/pix/s in central spot)

Deformation in metals CHESS / Beaudoin (U. Illinois)

Chatterjee et al., J. Mechanics & Physics of Solids (2017)

- Probe grain-level deformation mechanisms and residual stress in polycrystalline Ti-7Al alloy under applied stress gradient
- Key detector features: CdTe sensor
 for efficient detection of 42 keV
 photons

Piezomagnetic ordering in UO2 APS / Gofryk (Idaho Nat'l Lab)

Antonio et al., Nat. Communications Materials (2021)

- Observe Bragg peak splitting in UO2 during 10ms magnetic pulse
- Key detector features: Fast (1 kHz) continuous frame rate

MM-PAD-2.1 pixel

improvements to MM-PAD pixel

Developed in TSMC 180nm process via 4 MPW submissions over 2014-2018

Full system: collaboration with detector group at APS | APS: firmware, support electronics | Cornell: ASIC, sensor

Full-scale ASIC characterization

- 128x128 pixel full-scale ASIC fabricated in early 2020
 - May 2021: tests with CdTe single-chip modules at CHESS FAST/ID3A 61 keV photon energy

Readout system block diagram for 6-module MM-PAD-2.1

Project status

- Single-chip Si, CdTe hybrids have been assembled
- May 2021: high-flux testing at CHESS using single-chip readout system adapted from EM-PAD-II (MM-PAD variant for STEM)
- Test/debug of full-system readout electronics currently ongoing
- Selectable readout of full array at continuous frame rate of 1.6 kHz or 128x128 pixel area at 9 kHz

The data rate problem

Wide dynamic range + high frame rate + lots of pixels = too much data, too fast... How do we solve the data rate problem AT the detector?

One concept: leverage *detector firmware* to deploy flexible, field-programmable data compression/reduction/monitoring tools *in-line*, before any data is saved

Problems:

- this physical integration is high-risk and expensive
- Not saving full-frame raw data feels risky – are we sure we know what signals we care about?

Data-intensive science requires coordinated tools

CHESS

A setup for FPGA-based real-time image processing

CHESS

Summary

Wide-dynamic-range area detectors are critically needed at synchrotron beamlines in order to advance diffraction-based techniques – especially for dynamic studies.

High-energy diffraction microscopy (aka 3DXRD) is a prime example of an application requiring increased dynamic range.

The **MM-PAD family** of detectors fills a unique "middle ground" combining key benefits of photon-integrating and photon-counting architectures.

Increases to dynamic range + frame rate must be accompanied by new strategies for managing large data volumes and high data rates.

Thank you!

Backup slides

Postscript: The Data Problem

Detector strategies: in-line sparsification, compression, event-driven readout + triggering

Proposed broader approach: interface these detectorside strategies with *domain-science-informed experiment planning tools* (e.g. simulation, virtual diffractometer) to build user confidence, ensure data integrity, and achieve better scientific outcomes

Since the facility upgrade in 2019, researchers at CHESS have collected **1.0 PB of raw data** across 7 beamlines

Data volumes are an issue both after beamtime...

- Storage challenges (disk space, file transfer, data preservation)
- Computing challenges (software, efficiency, speed)
- ... and also **during** beamtime:
- Challenges extracting information from or visualizing large datasets -> difficult for users (especially novices) to make informed decisions on-the-fly about data collection strategy

Use case: high-energy diffraction microscopy (HEDM)

What changes in our signal?

- Readout limited to ~0% duty cycle at max frame rate of 1.1 kHz
- Charge removal circuitry runs at 2 Mhz max
 - 4x10⁸ 8 keV x-rays/pix/s max sustained photon rate

Firmware data acquisition, processing and control

Firmware Modules implemented within the Kintex UltraScale XCKU040 FPGA

Within the FPGA:

- Dexela CameraLink data was fed into the XCKU040 FPGA on the KCU105 board:
 - Deserialized, buffered and re-ordered
 - Masked using the stored ROI information
 - Buffered and transmitted via GbE to the FPGA Computer
- All modules were designed in VHDL using Xilinx/AMD Vivado IDE
- All modules were individually and then collectively simulated using Vivado Simulator
- Real-time signal acquisition for trigger testing was achieved using Vivado ILA (Integrated Logic Analyzer)

Modules were designed in VHDL in Vivado IDE

ର 📓 ବ୍ ବ୍ 💥 📲	I€)I 12	ter i -	•F Te	+	Ы															4
																2.	1,052.	000 ns	<u>.</u>	
Name	Value					19,000	.000 n:				20,000	.000 ns				21,	000.01	00 ns		
Heq_zero_FF	0		·		-			+			<u> -</u>		┢							
₩ eq_zero_zero	0			1																
¥ zero_frame	1				Т			1					t.			Ŧ		_		
🕌 less_than_18_pix	1				-			1					ŧ.			+				
₩ gt_740_pix	0																			
🕌 all_rows_done	1																			
W row_end_ltched	1				Г			П						1		ľ				
> 👹 Tx_FIFO_in[15:0]	0000	0000		0000		(• X	0000	t,		0000	003	eX 0000	ġ.	0011	X 0000		(10)	0	000	
> V Tot_numPix(15:0)	0000	0000	0007		X	0001		0011		0016		0019		0000						
> 😻 num_pix1[15:0]	0000	0000	V 0007		χ	000f		χr	0010		0013		0017		X	0000				
> 😻 num_pix2[15:0]	0000		0000					0001		0003		k	0002		0000					
> V numZero_Pix[15:0]	0000	0000	X 000e	X 0000	χ	0004	0000	χ	0002					0000						
> V numPix_left[15:0]	0000	0000																		
> Vieft_over_Bytes[15:0]	0000	0000																		
> V row_count_ltched[15:0]	32	26	27	χ°	χ	28		X	29	•	30	X o	Х	31	χo	X	32	0	X 33	
> V num_pix1_ltched[15:0]	0	0	χ 7	X •	Х	15	0	X	16	•	19	X •	X	23	X		0			
> V num_pix2_ltched[15:0]	0			0				X	1	<u> </u>	3	X o	X	2	χ		0			
la row_end3_ltched	1				П			ſŤ	1											
la row_end1_ltched	1				Г			Π												
> V Dest0[15:0]	08c8		_					ċ		08c	8									
> 😼 Dest1[15:0]	4559									45b	9									
> 😼 Dest2[15:0]	8c16									8c1	6									
> SRC0[15:0]	f1f0									flf	0									
> W SRC1[15:0]	1110									111	o i									i
																				Ē
																				ľ

Modules were individually and collectively simulated in Vivado Simulator