XIDyn A high dynamic range and timing resolution hard X-ray detector for 4th generation synchrotrons

Matt Wilson (STFC) On behalf of the XIDyn Collaboration IFDEPS 2024

Content

- Motivations to Requirements
- Challenge and Choices
- DynamiX and XIDer
- XIDyn ASIC
- XIDyn demonstrator
- Summary

lew Insertion Device Beamline

Motivation

- Diamond II upgrade
- Up to 10¹² ph/mm²/s
- Many beamlines >20keV
- Mpixels for 2029
- ~100µm pixels
- ~100kHz rate

1333 31 30 30

Quadrupole

Sextupole

4th generation

The European Synchrotron

Diamond-II Cell Layou

Motivation

Credit: https://diamond.ac.uk/Diamond-II/beamlineupdates/flagship-beamlines/K04.html

- K04 Ultra-XChem
- Serial MX for drug discovery
- 25keV increase diffraction yield relative to radiation decay
- Higher flux for weakly diffracting, inhomogeneous crystals – membrane proteins and large complexes

A. Ropert, J.M. Filhol, P. Elleaume, L. Farvacque, L. Hardy, J. Jacob, U. Weinrich, "Towards the Ultimate Storage Ring-Based Light Source", Proc. EPAC 2000, Vienna.

Motivation

- ESRF-EBS
- 30-100keV
- >>10⁹ ph/mm²/s
- 10-100s kHz
- Sufficient flux for time resolved with 16-bunch mode

4nm.rad

100pm.rad

Motivation

- Example of material science across scales
- Current detectors limiting throughput

Incident

Beam

ESRF

Current detector with magnetic beam stops

EuXFEL

- Version 1.0 of XIDyn won't get to EuXFEL 2030 specification
- High energy
- Pixel size ~100µm
- ~10² not 10⁴ pulsed
- 4.5MHz burst for 100s not 1000s
- Continuous at 100s kHz not MHz

ca Turcato, Detector Group, 34 th D/ Hard)	AC meeting, May 23rd, 2023	<u>30</u> *	1
	Target values		
Sensitive Energy Range	3-13 keV with Si 13-50 keV with high-Z materials	D	
Dynamic range in photons	10 ⁴ 12 keV ph./pixel	45	
Noise (ENC)	< 300 el. rms. ~1keV photon in Silicon		
Frame rate	Target: 1.1 MHz continuous Fallback: 4.5 MHz Burst Mode with min 1000 buffers		
Sensor type	2D pixelated		
Pixel size	Less than 100 x 100 µm ²		
Pixel count	Move away from fixed large detectors, modular approach Min. module size tbd, with the capability to build up several Mpixel full-size detector		
Number of modules	Tbd, depending on module size		
Operating pressure range	Both ambient and vacuum (below 10 ⁻³ mbar) versions needed		

Requirements

Parameter	Continuous	Burst Timing	
Operation	Constant with tolerable deadtimes	256 Frame capture and slower readout	
Energy Range [keV]	25keV typical	30-100keV	
Resolution [photon]	0.25-1	1	
Flux [ph/mm²/s]	~10 ¹²	~10 ¹¹	
Pixel Size [µm]	~100	~100	
Frame Rate [kHz]	~10-100	5700 for 16 bunch mode	
Instantaneous Flux [photons]	~100	~200	
Power [W/cm ²]	Ļ	ō	

Energy Challenge

The European Synchrotron

ESRF

ziti UNIVERSITÄT HEIDELBERG ZUKUNFT **SEIT 1386**

Schottky CdTe polarises with time and very unstable under high flux

HF-CZT

- Increasing 20keV mono beam size on HEXITEC-MHz ASIC
- Oph = dark+leakage current
- Flux up 10⁷ph/mm²/s
- Observed an excess leakage current ~100pA/mm²
- Small pixel, short integrations all help to mitigate effect

Counts

HF-CZT – Charge cloud size

- 250µm pixels simulated and measured on 2mm thick
- Assuming a Gaussian
 - FWHM @ 60keV = 45µm
 - FWTM @ 60keV = 80µm
- Could go thinner
 - 1.5mm offer by Redlen
 - For comparison 1mm CdTe
 - FWHM @ 60keV = 35µm
 - FWTM @ 60keV = 70µm

(b) HF-CdZnTe Simulation, -750V Experiment, -750V Charge Sharing Events (%) 80 60 40 (mµ) 20 ь size 20 40 60 80 100 120 140 Cloud (d) HF-CdZnTe 100 — Isolated Proportion of Event Type (%) Bipixels Tripixels 80 Ouadpixels 60 40 20 20 100 120 140 40 60 80 Energy (keV)

Kjell Koch-Mehrin Thesis - here

Flux Challenge

Charge Integrating and Cancellation

Adaptive Gain Integrating Detectors

Prototype characterization of the JUNGFRAU pixel detector for SwissFEL

A. Mozzanica,^{a.1} A. Bergamaschi,^a S. Cartier,^{a.b} R. Dinapoli,^a D. Greiffenberg,^a I. Johnson,^a J. Jungmann,^a D. Maliakal,^a D. Mezza,^a C. Ruder,^a L. Schaedler,^a B. Schmitt,^a X. Shi^a and G. Tinti^{a,c}

 14th International Conference on Synchrotron Radiation Instrumentation (SR1 2021)
 IOP Publishing

 Journal of Physics: Conference Series
 2380 (2022) 012093
 doi:10.1088/1742-6596/2380/1/012093

Development of CoRDIA: an Imaging Detector for nextgeneration Synchrotron Rings and Free Electron Lasers

> A Marras¹, A Klujev¹, S Lange¹, T Laurus¹, D Pennicard¹, U Trunk¹, C B Wunderer¹, M L Hafiane¹, T Hemperek², T Kamilaris², H Krueger², T Wang² and H Graafsma¹²

1) Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Germany 2) University of Bonn, Bonn, Germany

3) Mid Sweden University, Sundsvall, Sweden

PUBLISHED BY IOP PUBLISHED FOR SISSA MEDIALAB RECEIVED: April 8, 2020 Accepter: May 17, 8, 2020 Publisher: June 33, 2020 Publisher: June 33, 2020

High dynamic range CdTe mixed-mode pixel array detector (MM-PAD) for kilohertz imaging of hard x-rays

H.T. Philipp^{e,1} M.W. Tate^a K.S. Shanks^a P. Purohit^a and S.M. Grune^{a,b} ^aLaboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14833, U.S.A. ^bCornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14833, U.S.A.

E-mail: htp2@cornell.edu

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB Received: December 1, 2021 Revised: February 2, 2022 Accepted: February 14, 2022 Published: March 7, 2022

Characterization of 128×128 MM-PAD-2.1 ASIC: a fast framing hard x-ray detector with high dynamic range

D. Gadkari, a,b K.S. Shanks, c H. Hu, a,c H.T. Philipp, a M.W. Tate, a J. Thom-Levy b,* and S.M. Gruner a,c,d

DynamiX – Coarse Stage

DynamiX – Transfer and Fine Stage

XIDer

- 2 stage cancellation
- Incremental digitisation
- 200MHz target for cancellation rate
- Multiple test structures inc probe output

Concepts for the XIDer readout ASIC incorporating a pipelined ADC with very low dead time

D. Schimansky, a,* P. Busca, b F. Erdinger, a P. Fajardo b and P. Fischer a

^a Institute of Computer Engineering, Heidelberg University, Im Neuenheimer Feld 368, Heidelberg, Germany ^b European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble, France

E-mail: david.schimansky@ziti.uni-heidelberg.de

Benefit of incremental digitisation

XIDyn MPW

- Enough similarities and requirements and design to collaborate
- Both 65nm TSMC designs
- 32x16 pixels
 - 16x6 of XIDer and DynamiX
 - 2x14.1Gbps serialiser/16x16
- HF-CZT on 110µm pitch
- Aim to be side by side pixel comparison

XIDer Pixel Results

- Threshold scan of the pixels gives a noise of σ=308e- for both stages combined
- Linearity scan for impulse test signal within spec
- Flexibly RAM for storing,veto, summing or histogram in pixel
- Charge transfer between coarse→fine ~77ns... ideally speed up in scaling to larger ASIC

DynamiX Pixel Results

- S-parameter from coarse stage ~560e- → 6.5keV FWHM
- Transfer to fine stage + fine stage noise \rightarrow 10keV FWHM

Serialiser Results

- Aurora encoded 64b66b CML
- 14.1Gbps working
 - Half speed contingency
- Conversion to optical via Samtec Firefly close to ASIC
- Receiver and frame build in FPGA with 100G UDP out
 - Just completed firmware milestone
 - All test data here via slower lines

First X-ray Test

- 20keV mono-energy beam
- Change filters and beam-size to change flux on the detector
- Very preliminary!

Facilities Council

ESRF

The European Synchrotron

ZUKUNFT **SEIT 1386**

Measured BabyD ouptut against diode measurement of flux

European

XIDyn Pixel

- Selectable gain for different energy beamlines
- In pixel trim for charge cancellation and voltage thresholds per pixel
 - help with IR drop
- Switch to disconnect from pixel
 - Prevent charge overflow
 - Asynchronous source
- Very high gain mode to help with single photon and calibration
 - Potential to measure leakage current and compensate?
- In pixel RAM to store up to x256 8bit subframes at 5.7MHz
- Store 16bit subframes, sum and readout

XIDyn Full Scale ASIC

- 144x192 pixels on 110µm pitch
- RAM per pixel for summing, storing or adaptively used over telegram command
- 144x32 pixels per 14.1Gbps serialiser
 - 177kHz continuous frame rate possible
 - e.g. 1 subframe per turn of Diamond at 533kHz... sum or average 4 subframes and readout at 133.25 kHz
 - Ability to use 1 of 6 serialisers
 - fewer lines, lower cost but still 30kHz continuous
 - 36 ASICs per Mpixel \rightarrow 3Tbps/Mpixel or 6TBs/16M
- Master clock derived from RF clock

XIDyn Demonstrator

Target to build a v1 2x2 module in 2025

Alpha Data

1st Level FPGA – Frame Building

2nd Level FPGA – Frame Processing (optional)

Data Storage @ 100G rates

Bonding

- CZT is temperature sensitive and brittle
- Only available as single die
 - Lithography difficult
- Low temperature silver epoxy and gold studs
- In bonding with shadow masks

Summary

- 144x192 pixel v1 ASIC in design
 >100kHz continuous at >10¹¹ph/mm²/s
 5.7MHz burst capture
- 2x2 Camera demonstrator for 2025
- Mpixels for facilities in late 2020s
- CdZnTe detector tests, readout hardware, etc in parallel
- Future versions and wider collaboration welcome

Back-up Slides

More on CZT

11TH INTERNATIONAL CONFERENCE ON POSITION SENSITIVE DETECTORS 3–8 September 2017 The Open University, Walton Hall, Milton Keynes, U.K.

Characterisation of Redlen high-flux CdZnTe

B. Thomas,^{*a,b*,1} M.C. Veale,^{*a*} M.D. Wilson,^{*a*} P. Seller,^{*a*} A. Schneider^{*a*} and K. Iniewski^{*c*}

Table 1. A summary of the measured charge transport properties of three "high-flux" Redlen CdZnTe detectors [14, 16].

	$\mu_e \tau_e$	μ_e	τ_e	$\mu_h \tau_h$	μ_h	τ_h
	(×10 * cm ² V ·)	(cm-v ·s ·)	(×10 ° s)	(×10 * cm ² v ·)	(cm-v ·s ·)	(×10 ° s)
High Flux	11+6	940 ± 100	12 ± 0.8	20 ± 14	114 ± 22	2.5 ± 1.4
CdZnTe	11 ± 0	940 ± 190	1.2 ± 0.0	2.9 ± 1.4	114 ± 22	
Standard	100	1100	11	0.2	88	0.2
CdZnTe	100					

Calibration

- Single photon illumination to give E = ADU = Test Signal Trim Vref, Vth and Cancel
- Test signal sweeps
 - Current source or voltage step
- LED sweeps
- Mono-energy beam illumination

10000

100

Shifting 0y Peak

Shifting 1_γ Peak

—25um - 50um

> -75um -100un

150un

High Speed Data Output

- Impedance of wire bonds
- Materials for PCB and tracking
- Optical conversion
- Mitigation
 - Half speed serialiser
 - "Benchtop" Quad
 - Use test devices to prototype

Bond Wires

Greedy ASIC designer -> Nightmare on the PCB

Fusing Current as a function of bond diameter

Fusing Current as a function of bond length

Dead Space

Other Examples and % Dead Area

Examples of tiled systems. Hexitec and LPD are STFC systems, PILATUS by Dectris, AGIPD by DESY

System	Pixel Size	Pixels per tile (X,Y)		Missing Pixels Per tile (X,Y)		Dead Area (% X, Y)		Notes	
LPD	500	128	32	4	4	3%	13%	Majority of dead area in guard bands	
Hexitec	250	80	80	2	0	3%	0%	Compromise with overlapping Geom.	
Pilatus	172	487	195	7	17	1%	9%	Gold standard for syncrotrons	
Eiger	75	1028	512	12	35	1%	7%		
AGPID	250	498	128	42	30	8%	23%	Edge pixel issues between ASICs	

Dead area % in X and Y – typically one dimension is sacrificed for wire bonds

Got to aim for <10% to be comparable to other systems. Will always be difficult to do better than 2-3% due to guard bands.

AGIPD and PILATUS – ASICs back to back with wire bonds on 2 sides

a) Annotated means photograph of the edge of a front end module, b) FEMs and copper interposers for handle and insurting.

Hexitec 2x6 Heat Exchanger High Power Trials – Target 5W per cm²

Various measurement points with Black stickers placed to give IR camera reading.

Two branches of resistive loads used to split current across 2 power supplies running up to 7.4A on each channel

Load Resistors = 20 Ohm 1% Glued to base plates with a thin layer of epoxy.

Chiller – Huber 280W set to 15C

ESRF

MPW Wafers

KK

