

Ultrafast Imaging with the UXI Family of Hybrid CMOS Detectors

Quinn Looker

Sandia National Laboratories Albuquerque, NM

International Forum on Detectors for Photon Science (IFDEPS) Brookhaven National Laboratory

March 17-20, 2024

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2024-03049PE

The UXI Program is a Multi-Organizational Effort

2

John Porter Eric Harding Michael Jones Tony Colombo Michael Wood Aaron Edens

Mark Kimmel Chi Yang Precious Cantu Robert Speas Andy Pomerene James Burkart

Advanced hCMOS Systems

Marcos Sanchez Liam Claus Matthew Dayton Andy Montoya

Arthur CarpenterBrad GolickAnne GarafaloRobin BenedettiBrad FunstenJack DeanBrandon MoriokaNathan Palmer

Joel Long

Isar Mostafanezhad John Stahoviak Ryan Pang Aaron Lee

NHanced Semiconductors, Inc.

Sandia's Hybrid CMOS Detectors were Developed for Inertial Confinement Fusion and High Energy Density Physics Applications

Burst-Mode Imaging Used for Rapidly Evolving Plasmas

Burst-Mode Imaging Used for Rapidly Evolving Plasmas

Time-Integrated Image

5

ICF Target

Burst-Mode Imaging Used for Rapidly Evolving Plasmas

6

Hybrid CMOS Detectors Enable Multiple, Time-Resolved Images Along a Single Line-Of-Sight

25.6mm

- Direct detection in semiconductor sensor •
- High Soft X-ray Quantum Efficiency (50% for 6 keV) ۲
- 100% fill factor within 3.2 cm² area
- Multiple frames on identical line-of-sight •

7

25µm Pixel Pitch

The Sandia hCMOS Family has Two Branches

		Retired		Deployed	Prototype	In Production
		Furi	Hippogriff	Icarus V1/V2	Daedalus V1/V2	Tantalus
	Min. Integration time	~1.5 ns	~2 ns	~1.5 ns	~1.0 ns	~0.5 ns
	Frames	2	2 ª	4 ^b	3 a,b	4 a,c
	Pixels	448 × 1024	448 × 1024	512 × 1024	512 × 1024	512 × 1024
	Capacitor Full Well	1.5 million e ⁻	1.5 million e ⁻	0.7 million e ⁻	1.5 million e ⁻	0.5 million e ⁻
a	Row interlacing option for	2x, 4x, or more frar	nes	Retired	Prototype	In Production
с (Left/right half independent Duadrant independent tim	ing –		Proteus	Kraken V1	Kraken V2
d	Doubled when CDS inactive	e I	Vin. Integration time	50 ns	50 ns	50 ns
			Frames	4 ^d	4 ^d	8
			Pixels	256 × 768	800 × 800	800 × 800
			Capacitor Full Well	0.4 million e ⁻	0.4 million e ⁻	0.4 million e ⁻

A review of Sandia's Ultrafast X-Ray Imager Program: J. L. Porter et al., *Rev. Sci. Instr.* Vol. 94, p. 061101 (2023)

The Sandia UXI Family Comprises Nanosecond Gated Sensors

	Retired		Deployed	Prototype	In Production
	Furi	Hippogriff	Icarus V1/V2	Daedalus V1/V2	Tantalus
Year	FY14	FY15	FY16-18	FY18-23	FY24
Min. Integration time	~1.5 ns	~2 ns	~1.5 ns	~ 1.0 ns	~0.5 ns
Frames	2 (full resolution)	2 (full resolution) 4 or 8 (Row interlaced)	4 (full resolution) 8 (L/R interlaced)	3 (full resolution) 6+ (Row/L/R interlaced)	4 (full resolution) 16+ (Row/quad. interlaced)
Tiling Option	No	No	No	One Side	No
CMOS Process	350 nm (SNL)	350 nm (SNL)	350 nm (SNL)	350 nm (SNL)	130 nm (Tower Jazz)
Pixels	448 × 1024	448 × 1024	512 × 1024	512 × 1024	512 × 1024
Pixel Size	25 μm × 25 μm	25 μm × 25 μm	25 μm × 25 μm	25 μm × 25 μm	25 μm × 25 μm
Capacitor Full Well	1.5 million e ⁻	1.5 million e ⁻	0.7 million e ⁻	1.5 million e ⁻	0.5 million e ⁻
					TH

A review of Sandia's Ultrafast X-Ray Imager Program: J. L. Porter et al., *Rev. Sci. Instr.* Vol. 94, p. 061101 (2023)

Icarus is the First Widely Deployed Detector of the SNL hCMOS Family

- First true half Megapixel array of the line
- 4 frames per pixel

10

- Higher gain optimized for smaller signals
- Small package constructed using standard techniques

	lcarus
Tech. Node	SNL 350nm
# Pixels	1024 x 512
Pixel Size	25µm x 25µm
# Frames	4 a
Full well	700ke ⁻
Min. gate time	~1.5ns
Abutment	No

^a 8 frames possible when using independent sensor half timing

Icarus Detector Module

Supporting Electronics Variants

Routine Optical Characterization Demonstrates Multi-Frame Integration Capability

- Direct pulsed laser illumination of sensor
- Vary relative delay of camera and laser

Example Image Set

Time

Pulsed X-Ray Characterization Demonstrates Linearity and Saturation Behavior

- Laser-induced plasma x-ray source ~1ns duration
- Intensity measured by x-ray photodiodes

12

• Imager response in linear region and saturation

Looker et al., *RSI* 91 043502 (2020) Looker et al., *RSI* 94 113505 (2023)

Icarus Enables Time-Resolved Imaging of Hot Plasmas

Evolution of magnetic reconnection layer on Z

Laser Entrance Window of MagLIF Target

Icarus Enables Time-Resolved Spectroscopy

Opacity Platform

Adding time resolution to quantitative opacity measurements on Z and NIF

MONSSTR

Time-resolved spectrometer for hot plasmas on Z

> 2

15 Icarus Enables Multi-Frame Gated Backlighting

CBI-SLOS on NIF

Time-resolved mix measurement in imploding capsules

Gated Backlighting on Z

A single gated image avoids target self-emission...

Target Self-Emission

Time-Integrated Image

Gated Image

And newly developed multi-frame backlighting provides multiple measurements *on the same shot*.

Hall et al., RSI 90 013702 (2019)

Time-resolved diffraction of dynamically heated Cu at LCLS

16

@4.2 ns Hot Cu 111)' a' = 3.625 Å, 454 (±3) K 2.0 x10⁶ (111)" a" = 3.687 Å, 1270 (±22) K 27% 1.5 Intensity (a.u.) 1076 875 K 1.0 628 K 0.5 Ambient Cu 0.0 2.10 2.25 2.30 2.05 2.15 2.20 d-spacing (Å) P. Hart et al., Proc. SPIE 110380Q (2019)

Demo with TX Products WaveGate at PETRA III

×10⁻¹⁵ FO -F1 3.5 -F2 F3 2.5 Exposure (J) 1.5 ×10⁻³ 10 12 16 18 20 14 22 ns) Detector Amplitude (V)

4000 5000 6000 7000 8000

2

-1000

0

1000 2000 3000

Time (ns)

The Sandia UXI Family Comprises Nanosecond Gated Sensors

	Retired		Deployed	Prototype	In Production
	Furi	Hippogriff	Icarus V1/V2	Daedalus V1/V2	Tantalus
Year	FY14	FY15	FY16-18	FY18-23	FY24
Min. Integration time	~1.5 ns	~2 ns	~1.5 ns	~1.0 ns	~0.5 ns
Frames	2 (full resolution)	2 (full resolution) 4 or 8 (Row interlaced)	4 (full resolution) 8 (L/R interlaced)	3 (full resolution) 6+ (Row/L/R interlaced)	4 (full resolution) 16+ (Row/quad. interlaced)
Tiling Option	No	No	No	One Side	No
CMOS Process	350 nm (SNL)	350 nm (SNL)	350 nm (SNL)	350 nm (SNL)	130 nm (Tower Jazz)
Pixels	448 × 1024	448 × 1024	512 × 1024	512 × 1024	512 × 1024
Pixel Size	25 μm × 25 μm	25 μm × 25 μm	25 μm × 25 μm	25 μm × 25 μm	25 μm × 25 μm
Capacitor Full Well	1.5 million e ⁻	1.5 million e	0.7 million e ⁻	1.5 million e ⁻	0.5 million e ⁻
					TH

A review of Sandia's Ultrafast X-Ray Imager Program: J. L. Porter et al., *Rev. Sci. Instr.* Vol. 94, p. 061101 (2023)

Daedalus is the Newly Completed Addition to the UXI Family

- Highly similar to Icarus in performance and form factor
- Shorter minimum integration time
- Higher full well

19

- New timing modes added
- Two-detector abutment
- Temperature sensor and corner diode

	lcarus	Daedalus
Tech. Node	SNL 350nm	SNL 350nm
# Pixels	1024 x 512	1024 x 512
Pixel Size	25µm x 25µm	25µm x 25µm
# Frames	4 a	3 ^{a,b}
Full well	700ke ⁻	1.5Me⁻
Min. gate time	~1.5ns	~1.0ns
Abutment	No	1 short side

^a Sensor halves can be independently timed^b Row interlacing can multiply number of frames

L. Claus et al., *Proc. SPIE* 107630M (2018)

Combined 12.8mm x 51.2mm Area

1.25mm Gap Looker et al., *RSI* 94 113505 (2023)

Daedalus Adds New Timing Flexibility

Extend temporal coverage with **row interlacing**

20

Time (ns)

Fill temporal gaps with **zero dead time mode**

Time

Time (ns)

Increase full well with **high full well mode**

Future Directions

Sensor development

- Faster charge collection
- Higher atomic number

ROIC development

- Faster gate times
- Increased number of frames
- Smaller nodes
- Commercial foundries

Package development

- Improved PCB Design
- Through Si Vias
- Thermal Management

Future Directions

Sensor development

- Faster charge collection
- Higher atomic number

ROIC development

- Faster gate times
- Increased number of frames
- Smaller nodes
- Commercial foundries

Package development

- Improved PCB Design
- Through Si Vias
- Thermal Management

²³ Photodiode Temporal Response Is Now a Limiting Factor

- Overall detector response is convolution of ROIC gate and photodiode current
- With faster ROIC gates, PD current now uncovered as a limiting factor
- Thinner photodiode layer somewhat reduces charge collection time, but also reduces QE
- New PD pixel designs allow sub-ns collection time

Inferred Photodiode Signal from Gate Profile Deconvolution Looker et al., *RSI* 92 053504 (2021)

Measured Photocurrent from Test Devices

A GaAs Photodiode Array Variant Is Under Development

- Sensor replacement only: 25 µm Si -> 20 µm GaAs
- Identical user experience and performance with enhanced hard X-ray sensitivity
- Fabrication process development underway

Other detector materials show promise for hard x-ray detectors

25

Future Directions

Sensor development

- Faster charge collection
- Higher atomic number

ROIC development

- Faster gate times
- Increased number of frames
- Smaller nodes
- Commercial foundries

Package development

- Improved PCB Design
- Through Si Vias
- Thermal Management

Smaller Nodes May Enable More Frames with Faster Gate Time

27

Analog

Storage

Transistors

Future Directions

Sensor development

- Faster charge collection
- Higher atomic number

ROIC development

- Faster gate times
- Increased number of frames
- Smaller nodes
- Commercial foundries

Package development

- Improved PCB Design
- Through Si Vias
- Thermal Management

Packaging Improvements Increase Total Image Size and Aid Thermal Stability

Abuttable Modules Multiply Image Area

29

1.25mm Gap Combined 12.8mm x 51.2mm Area

Eliminate bond pad periphery with TSVs

Packages with thermal management

- Lower read noise
- Better timing stability

30 Summary and Questions

	Deployed Prototype		In Production
	Icarus V1/V2	Daedalus V1/V2	Tantalus
Year	FY16-18	FY18-23	FY24
Min. Integration time	~1.5 ns	~1.0 ns	~0.5 ns
Frames	4 (full resolution) 8 (L/R interlaced)	3 (full resolution) 6+ (Row/L/R interlaced)	4 (full resolution) 16+ (Row/quad. interlaced)
Tiling Option	No	One Side	No
CMOS Process	350 nm (SNL)	350 nm (SNL)	130 nm (Tower Jazz)
Pixels	512 × 1024	512 × 1024	512 × 1024
Pixel Size	25 μm × 25 μm	25 μm × 25 μm	25 μm × 25 μm
Capacitor Full Well	0.7 million e ⁻	1.5 million e ⁻	0.5 million e ⁻

	Prototype	In Production	
	Kraken V1	Kraken V2	
Min. Integration Time	50 ns	50 ns	
Min. Interframe Time	50 ns	50 ns	
Effective Dynamic Range	>11 bits (68 dB)	>11 bits (68 dB)	
Read Noise	158 e ⁻	< 100 e ⁻	
Frames	4 (8 without CDS)	8	
Pixels	800 × 800 (2 side abuttable)	800 × 800 (2 side abuttable)	
Pixel Pitch	30 µm	30 µm	
Chip Size	24 x 24 mm	24 x 24 mm	
Capacitor Full Well	0.4 million e ⁻	0.4 million e	

31 Other Slides

hCMOS Detectors of Today Are the Result of Significant Development

Many Parts and Processes Come Together to Form a UXI Camera

UXI Camera System Development for Application-Specific Needs Sandia's Hybrid CMOS Detectors were Developed for Inertial Confinement Fusion and High Energy Density Physics Applications

National ICF Facilities

Sandia Z Machine

Livermore NIF

- High Intensity (~MJ x-rays, 10¹⁷ neutrons in ~ns)
- Low Shot Rate (<5 shots/day)

Key Detector Attributes

- Radiation Hard
- EMI Resistant
- Selective Sensitivity
- Temporal Resolution
- Shock and Debris Resistance

Tools of the Trade

- Photodiodes/PCDs/X-ray Diodes
- Organic Scintillator + PMT
- X-ray Film/Image Plate
- Microchannel Plate
- Streak Camera

hCMOS Detectors are Created With a Radiation Hardened Process

- All detectors in the family are fabricated in Sandia's rad hard CMOS7 350 nm process
- ASIC design minimizes active circuitry during irradiation
- Need to quantify total system tolerance to total neutron dose and single event upsets
- Sandia's Ion Beam Laboratory Irradiation station for NIFrelevant dose of D-D or D-T neutrons
- NIF neutron test well

35

D-D/D-T Neutron Irradiation Station

Lewis et al., RSI 92 083103 (2021)

The Related Instrument Line Kraken is Targeted to Multi-Frame Radiography

- Longer integration times
- Lower read noise
- More frames •

Kraken V1

Kraken V2 incorporates 2-side abutability 10-pixel deadband

8-frame Radiograph Set of Laser-Irradiated	d
Sil <u>ica Beads</u>	

Minimum integration time	50 ns
Minimum interframe time	50 ns
Array size	800 × 800 pixels with 2-side abutment
Pixel size	30 μm
Read noise	157 e-
Full well	490,000 e-
Dynamic range	3,130
Sensitivity	5.71 × 10 ¹² e-/(J/cm ²)

Specification