Deployment status of CITIUS a 17.4 kframes/s integration-type X-ray imaging detector

with 1 Gphoton/s/pixel detection capability at 10 keV (18 Tcps/cm^2)

Sensor development: 2015-2020

Takaki Hatsui

RIKEN SPring-8 Center

18th March, 2024 IFDEPS

Outline

- Motivation
- The CITIUS performance
 - for XFEL applications
 - for SR applications
- Development
- Summary

SPring.

SACLA

Photon Counting?

State-of-the-art in 2013

EIGER, EIGER2

40% From Dectris web site EIGER2 6 Measured Rate [Mcps/pixel] EIGER 5 4 **10** Mcps 3 2 · 1 **3** Mcps 0 10 12 8 0 2 6 Incoming Rate [Mcps/pixel]

SPring. 8

10 Mcps @ 10 kframes/s 1 frame can detect up to 1,000 photons

Count rates decrease at "several bunch modes" by x10

Higher count rates are needed. \rightarrow integrating-type detector

Photon Counting?

Q.E. map by scanning a pencil beam Eiger, 8 keV @SPring-8 BL40XU

Medipix solved this by summing at the penalty of the count rate

Uniform Sensitivity

4

SPring 8

SACLA

Y. Honjo K. Ozaki, H. Nishino et.al,

CITIUS

Experimentally verified Performance

Parameters		Value	
	Thickness	650 µm	
	Pixel Size	72.6 µm	
	Pixel	0.28 Mpixel/sensor	
	Number		
Sensor	Noise	0.018 phs.@8 keV (40 e-)	
		XFEL variants	SR variants
		>17,000 phs.	>1,800 phs.
	Peak Signal	@ 6 keV	@12 keV
	Frame Rate	5 kHz	17.4 kHz

30 Mcps/pixel @12 keV 1 Gcps/pixel @10 keV in an extended mode

26.1 kfps for spectro-imaging 104.4 kfps for ROI spectro-imaging

System Development

Largest	Pixel	
Syste	Number	20.2 Mpixel
m	Image Area	325 x 363 mm

to be installed to SACLA June 2024

18th March, 2024 IFDEPS

XFEL Variants

SACLA Feasibility Study

- First scientific experiment
 - Non-linear Quantum Optics
 - a test for linearity and systematic errors of CITIUS
 - successful data
 - Ichiro Inoue et.al., to be submitted

Low Noise Operations for SACLA

Operating at 960 frames/s 16 frames for one shot lower noise from 40 to 25 e-rms

20.2M CITIUS for SACLA

to be installed June 2024

SR Variants

CITIUS for SR: Standard Mode: Bragg-CDI

Bragg CDI at ESRF

	Count rate	Resoluti on	Acquisiti on Time
CITIUS	30 Mcps/pixel	20 ± 6 n m	23 s
MARPI X	1 Mcps/pixel	22 ± 9 n m	200 s

A detailed analysis showed CITIUS with 1 ms exposure gives similar quality of data with MARPIX with 1 s exposure.

M. Grimes et.al., J. Appl. Cryst. 56(4) https://doi.org/10.1107/S1600576723004314

SPring. **Extended mode** 945 Mcps/pixel at 10 keV demonstrated

Standard mode

frame cycle = (1/17.4 kHz)_ duty ratio \sim 95%

Extended mode super frame = 2 * (1/17.4 kHz) duty ratio \sim 90 %

SACI A

Undulator Direct beam through a 20 µm Slit Experiment Setup @ BL29XU Y. Honjo, K. Ozaki, et.al.,

X-ray through higher-order-cut mirrors

840k detector (3 sensors) Prototype of 2.2M detector This data was taken with a detector that houses only one sensor module

17.4 kfps 57.5 µs/frame 10 keV

Y. Honjo K. Ozaki, et.al,

Undulator Direct beam through a 20 $\mu m\Box$ slit

Undulator Direct beam through a 20 $\mu m\Box$ slit Detection Capability

Detection Capability v.s. Photon Energy

Sample: Ta Test Chart (NTT-AT) 200 nm thick (phase shift 0.41 rad@6.5keV)

Virtual Source Size: 30mm × 150mm Exposure Time: 1 second Max. Intensity: 250 Mphotons/s/pixel

18th March, 2024

IFDFPS

Y. Takahashi et.al., JSR 2023

talk by Y. Takahashi

Y. Honjo K. Ozaki, H. Nishino et.al,

CITIUS

Experimentally verified Performance

Parameters		Value	
	Thickness	650 µm	
	Pixel Size	72.6 µm	
	Pixel	0.29 Maiv	al/concor
	Number	0.28 Mpixel/sensor	
Sensor	ensor Noise 0.018 phs.@8 keV (4		keV (40 e-)
		XFEL variants	SR variants
		>17,000 phs.	>1,800 phs.
	Peak Signal	@ 6 keV	@12 keV
	Frame Rate	5 kHz	17.4 kHz
			—

30 Mcps/pixel @12 keV 1 Gcps/pixel @10 keV in an extended mode

System Development

Largest	Pixel	
Syste	Number	20.2 Mpixel
m	Image Area	325 x 363 mm

to be installed to SACLA June 2024

Sensor Module

Format: about 280 kpixels

- horizontal 384 pixels
- Vertical 728 pixels ADCs
- one ADC for 8 pixels Digital computation
- Gain selection
- 48 Serializers @ 2.9 Gbps/lane
- Total 140 Gpbs/module Technology
- Stitching lithography
- 3D integration

X-ray Shield (ADC area) Imaging Area

Stitching Lithography and 3D integration (by Sony Semiconductor Solutions)

1 row without ASIC

Stitching Lithography

- technique to make chips larger than on lithography shot (> 30 mm)
- Widely used for camera with 35mm Full-frame Image Sensor

from https://electronics.sony.com/

3D integration

- no bumps results in uniform response for high-energy X-rays
- no fluorescence from bumps

Tiling in CITIUS

• Stepped Tiling

Camera Head developed or under development

840k

A stepped Tiling with a 728 pixel pitch

Assembly around the sensors

Mechanical Assembly of 20.2M CITIUS

Top roof: voltage generators (AC 100V to 24V) Ethernet hub for command comm.

Sensor Sus-System (SSS) 2.52 Mpixels fully functional unit Calibration/Experiments can be done with a dedicated housing with external 24V power

Y. Honjo K. Ozaki, H. Nishino et.al,

CITIUS

Experimentally verified Performance

Parameters		Value	
	Thickness	650 μm	
	Pixel Size	72.6 μm	
	Pixel		
	Number		
Sensor	Noise	Noise 0.018 phs.@8 keV (40 e	
		XFEL variants	SR variants
		>17,000 phs.	>1,800 phs.
	Peak Signal	@ 6 keV	@12 keV
	Frame Rate	5 kHz	17.4 kHz

30 Mcps/pixel @12 keV 1 Gcps/pixel @10 keV in an extended mode

26.1 kfps for spectro-imaging 104.4 kfps for ROI spectro-imaging

System Development

Largest	Pixel Number	20.2 Mpixel
Syste		
m	Image Area	325 x 363 mm

to be installed to SACLA June 2024

Quantum Efficiency

Photodiode 650 µm

Use cases up to 37 keV

3DXRD for electronics investigation

Previously with flat panels

Hayashi, et.al., Science 366, 1492-1496 (2019).

Parallax

Data at 37 keV

deconvolution software under development

3D XRD to visualize the metal grains

Parameters		Value	
	Thickness	650	um
	Pixel Size	72.6 μm	
	Pixel	0.28 Mpixel/sensor	
	Number		
Sensor	Noise	0.018 phs.@8 keV (40 e-)	
		XFEL variants	SR variants
		>17,000 phs.	>1,800 phs.
	Peak Signal	@ 6 keV	@12 keV
	Frame Rate	5 kHz	17.4 kHz

30 Mcps/pixel @12 keV 1 Gcps/pixel @10 keV in an extended mode

26.1 kfps for spectro-imaging 104.4 kfps for ROI spectro-imaging

System Development

Largest	Pixel Number	20.2 Mpixel
Syste		
m	Image Area	325 x 363 mm

to be installed to SACLA June 2024

Sensitivity \rightarrow Spectro-imaging

Ti. Fe. Ni. Fe Cu. Cu

K. Ozaki, Y. Honjo, et.al.,

X-ray Beam Monitor for SPring-8-II Accelerator feedback with electron K. Ozaki, T. Kudo, S. Takahashi, M. Sano, T. Itoga, et.al.,

- monitors
 - not enough
- X-ray beam position monitor is required.

X-ray Intensity Image

Undulator beam is hidden by the bending X-rays

18th March, 2024 IFDEPS

K. Ozaki, T. Kudo, S. Takahashi, M. Sano, T. Itoga, et.al.,

CITIUS development

<u>Charge Integration</u> Type Imaging Unit with <u>high-Speed</u> <u>extended-Dynamic-Range</u>

Development of CITIUS pixels with Sony

2015-2020

- Integrating type
- Gain selection (≠ gain switching)
- High frame rate @ low power
- **650 μm thick <u>silicon</u> photodiode**
- Low noise
- **Radiation** hard

Bottleneck delivering CITIUS: 2020–2023 Global chip shortage

Sensor modules: Sony produced and delivered on time. After the reliability review, we got approval for mass production (MP), In total, 249 MP devices have been produced.

Proximity board, data-processing cards:

delayed by about one year, but now solved and under production at 100 units/year

18th March, 2024 IFDEPS

Data Size

280k pixels 17.4 kframes/s 32 bits/pixel after calib.

SPring.

SACLA

Data Size Estimation

Charge Sharing in Integrating-pixels

Charge Deficit in a realistic detector

Simulation Parameters	Values
Point spreading function (pixel)	0.154
Detector noise σ_{det} (e^-)	60
W (eV)	3.65
T_1 for single thresholding	$7\sigma_{det}$

Charge Deficit of 6 % (effective QE drops by 6%) is not acceptable for high-accuracy applications. → **Statistically-Lossless Compression (SLC)**

Data Compression on the fly quasi-elastic scattering

with **RIKEN R-CCS**

Reconfigurable High-Performance

Summary

Motivation, Development History

Architecture: Integrating pixels & High Frame rate

- High Count rate: 945 Mcps/pixel
- Uniform Sensitivity: Spectro-imaging with 252 eV FWHM
- Faster Recording: 17.4 kframes/s

Detector variants from 280 kpixels to 20.2 Mpixels

Data-size: 20.2 Mpixels at 17.4 kframes/s produces 6 EB/year

- SPring-8 Data Center Initiative, a hybrid of
 - FPGA-accelerated Edge computing
 - On-Site supercomputing
 - Cloud supercomputing

Acknowledgment

RIKEN and JASRI Team

<u>K. Ozaki, Y. Honjo, H. Nishino</u>, K. Kobayashi, <u>Y. Joti</u>, T. Kudo, T. Sugimoto, M. Yamaga, T. Kameshima, Y. Inagaki, K. Fujiwara, T. Nakagawa, Y. Oyaki, M. Kimoto, M. Nakamachi, M. Yabashi, T. Ishikawa

RIKEN R-CCS

- S. Matsuoka, <u>K. Sato</u>, K. Sano, F, Shoji and their division members

Private Companies

- Sony Semiconductor Solutions
- GLORY System Create Ltd
- Nihon Gijyutu Center
- Meisei Electric Co. Ltd.
- JEPICO Corporation
- Tokyo Electron Device Limited

Thank you for your attention.

Proposal of Statistically-Lossless Compression (SLC)

In the definition of information technology, it is a kind of *lossy* compression, which gives higher compression ratio.

SLC is defined as a type of compression that preserves or almost preserves the 1st and 2nd moments of the statistical information.

• Poisson-statistics is to be kept.

Charge Sharing in Integrating-pixels (1/4) *low dose*

Charge Sharing in Integrating-pixels (2/4)

hypothetical situation

Charge Sharing in Integrating-pixels (3/4)

Charge sharing in combination with "single thresholding" induces a non-linear response

T. Hatsui 48

SPring.

SACLA

Charge Sharing in Integrating-pixels (4/4)

Charge Deficit in a realistic detector

Simulation Parameters	Values
Point spreading function (pixel)	0.154
Detector noise σ_{det} (e^-)	60
W (eV)	3.65
T_1 for single thresholding	$7\sigma_{det}$

Charge Deficit of 6 % is not acceptable for high-accuracy applications.

2x2 sum: Overview

Process Sequence

- Look at the 2x2 pixel matrix.
- If the sum of the 2x2 matrix exceeds a threshold T1, leave them as inputs,
- otherwise, set them to 0.

Implementation

- calibration
- multiple frame buffers to calculate 2x2 sum

Advantage

sub-pixel information is kept

Drawback

significant complexity in memory access

(a) Input: an image data I (2D, (height, width) = (H, W)), threshold T_1 Output: the processed image data I_{proc} (2D, (height, width) = (H, W)) $\forall (i, j), I_{proc}(i, j) = 0;$ for i = 0, ..., H - 2 do for j = 0, ..., W - 2 do q = I(i, j) + I(i + 1, j) + I(i, j + 1) + I(i + 1, j + 1);if $q \ge T_1$ then $I_{proc}(i, j) = I(i, j);$ $I_{proc}(i, j + 1) = I(i + 1, j);$ $I_{proc}(i, j + 1) = I(i, j + 1);$ $I_{proc}(i + 1, j + 1) = I(i + 1, j + 1);$

T2C: Overview

Process Sequence

- Look at each pixel.
- If the signal < T1, set 0.
- If T2 > signal > T1, set C,
- If signal > T2, return signal.

Implementation

- calibration
- multiple frame buffers are not mandatory for T2C.

Advantage

• pixel-wise algorithm

Drawback

• sub-pixel information is lost

(a) Input: an image data I (2D, (height, width) = (H, W)), threshold T_1, T_2 , correction value COutput: the processed image data I_{proc} (2D, (height, width) = (H, W)) $\forall (i, j), I_{proc}(i, j) = 0;$ for i = 0, ..., H - 1 do for j = 0, ..., W - 1 do if $I(i, j) < T_1$ then $\lfloor I_{proc}(i, j) = 0;$ else if $I(i, j) \le T_2$ then $\mid I_{proc}(i, j) = C;$

(b) Detector image *I(i,j)*

Output *I*_{proc}(*i*,*j*)

Sim. Performance: Charge Deficit

cf) for "single threshold", charge deficit \sim 0.06

Sim. Performance: Excess Noise

Excess noise compared to the data after digitization.

SPring. 8

Compression Benchmark

for simulated coherent SAXS data at 10⁻⁴ photons/pixel/frame equivalent to 1.7 photons/pixel/s with CITIUS standard mode

Preprocessing	This study		Single thresholding	Detector
	T2C	2×2-sum	single thresholding	Output
Charge Deficit (1st moment)	0.0005 ± 0.0012	0.0013 ± 0.0006	0.06 ± 0.008	(0)
Sub-pixel information	lost	kept	kept	(kept)
Standard deviation (2nd moment)	0.9809	1.0009	0.9482	(1.0)
Algorithm Comprexity	simple	Demanding frame	simple	
	$(2\Gamma + 0.2) \times 10^{3}$	$(1.0 \pm 0.1)\times 10^3$	$(22 + 02) \times 10^3$	1 1
Compression Factor	$(3.5 \pm 0.3) \times 10^{\circ}$	$(1.0 \pm 0.1) \times 10^{\circ}$	$(3.3 \pm 0.2) \times 10^{\circ}$	1.1
Compression Computation Speed on	0.31	0.29	0.31	0.019
CPU after preprocessing on a CPU				
core [1] (GB/s)				
Decode Rate (GB/s)	12	10	6.7	0.40

[1] Zstandard was used. Computation time for Zstandard was measured for single-core computation. Time for I/O was not included.

18th March, 2024 IFDEPS

Implementation of T2C

Scientific Experiments

SPring-8 BL35XU

 Inelastic Scattering by X-ray imaging detector

Data Rate

- 8.7 kHz, 840 kpixel
- 2.6 PB/day
- Compression factor
 - max. x7000
 - Compressed data: 33 TB for 6 days experiments
- Scientists are no longer saving the native output of CITIUS.
- T2C processed data is now the "raw" data.

Data-Framing boards (DFBs) used in this study. Each DFB has three Arria10 FPGAs. On-the-fly calibration and T2C was implemented.